JPS61287437A - Dispersing device for three phase fluidized bed reactor - Google Patents

Dispersing device for three phase fluidized bed reactor

Info

Publication number
JPS61287437A
JPS61287437A JP12797385A JP12797385A JPS61287437A JP S61287437 A JPS61287437 A JP S61287437A JP 12797385 A JP12797385 A JP 12797385A JP 12797385 A JP12797385 A JP 12797385A JP S61287437 A JPS61287437 A JP S61287437A
Authority
JP
Japan
Prior art keywords
gas
liquid
dispersion
ejection
dispersing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12797385A
Other languages
Japanese (ja)
Inventor
Shigeo Makino
牧野 重男
Takafumi Shimada
嶋田 隆文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12797385A priority Critical patent/JPS61287437A/en
Publication of JPS61287437A publication Critical patent/JPS61287437A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To improve operation performance and reliability by disposing plural ejection orifices ejecting gas/liquid mixed phase stream toward horizontal direction to the top of a dispersing cylinder, and disposing also flexible plates for letting the ejection nozzles open downward to the ejection nozzles of the ejection orifices. CONSTITUTION:Plural ejection orifices 12 for ejecting gas/liquid mixed phase stream in the horizontal direction are disposed to the top of a dispersing cylinder 11 for passing gas/liquid mixed stream (b, c) installed to penetrate through an attaching plate 2 at the bottom of a main body. Further, flexible dispering plates 14a are attached to the ejection nozzles 12a of the ejection orifices 12 to cover the orifices. Gas/liquid mixed phase stream (b, c) is ejected from each ejecting orifice 12, collides the dispersing plates 14a and is deflected downwards. Thus, the gas is atomized remarkably enlarging contact surface area between the gas and the liquid. Simultaneously, dispersing effect into solid is also enhanced, and dispersing performance and reaction performance of a fluidized bed reactor is improved remarkably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体、液体、気体を同時に接触させ流動状態
にして反応させる三相流動反応器における気・液混相流
の分散装置VC関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a gas/liquid multiphase flow dispersion device VC in a three-phase fluid reactor in which solid, liquid, and gas are simultaneously contacted and reacted in a fluidized state. It is.

(従来の技術) 前記三相流動反応器は、固体、液体、気体の接触効率が
良くまた流動状態にあることから、生起する反応が著し
い発熱反応の場合に有効であることが知られており、例
えば、原油から分離された重、中油留分に触媒の存在下
で水素を供給して反応せしめる水素化脱硫反応装置、ま
たは、水素化分解反応装置等の接触反応器があり、三相
流動反応器による石油系型、中質油留分の水素化脱硫の
具体例は、圧力50〜150に9/c1rL”G、温度
350〜420℃の条件下、0.5〜5朋φの円柱上で
、球状のニッケルーモリブデン系、コノ(ルトーモリブ
デン系またはタングステン−モリブデン系の触媒と、供
給油およびガス状水木を接触させて三相の流動層とし水
素化反応が達成させている。
(Prior Art) The three-phase fluidized reactor is known to be effective when the reaction that occurs is a significantly exothermic reaction because it has good contact efficiency between solid, liquid, and gas and is in a fluid state. For example, there are catalytic reactors such as hydrodesulfurization reactors, which supply hydrogen to heavy and medium oil fractions separated from crude oil in the presence of a catalyst, and hydrocracking reactors, which react with three-phase flow. A specific example of hydrodesulfurization of a petroleum type, medium oil fraction using a reactor is a cylinder with a diameter of 0.5 to 5 mm under the conditions of a pressure of 50 to 150, 9/c1rL"G and a temperature of 350 to 420°C. In the above, a spherical nickel-molybdenum-based, cono(luto-molybdenum-based, or tungsten-molybdenum-based catalyst) is brought into contact with the supplied oil and gaseous water to form a three-phase fluidized bed, and a hydrogenation reaction is accomplished.

前記三相流動反応器は、田中栄−;化学工学第34巻、
第12号(1970年)等によってその一般的な流動状
態が詳しく述べられており、立型円筒状容器に充填され
た触媒等の固体粒子を、静止状態に比し少々くとも10
%以上の大きい容積を占める膨張状態にすることにより
所望の流動化が得られ、かつ、固体粒子が同伴上昇され
ない程度の速度で液体および気体の気・液混相流を前記
容器内の下部から供給、分散流通させることにより、前
記固体粒子を安定された流動層に形成し、前記流動を継
続するためには%液・気体が流入された固・液・気体の
三相からなる前記流動層の上部側からポンプで液体、気
体を抜出して、前記容器の下部側に供給する液体、気体
の循環が不可欠な要素とな)、固体粒子(触媒)の流動
に必要な流速を確保して固・液・気体の接触効率を高め
るために、三相流動反応器内の下部に液体と気体の気・
液混相流を流通、分散する分散装置が配設されている。
The three-phase flow reactor is described in Sakae Tanaka, Chemical Engineering Vol. 34,
12 (1970) etc., the general flow state is described in detail, and solid particles such as catalyst packed in a vertical cylindrical container are at least 10
A gas-liquid mixed phase flow of liquid and gas is supplied from the lower part of the container at a speed that allows desired fluidization to be achieved by creating an expanded state that occupies a large volume of at least %, and at a speed that prevents solid particles from rising along with it. By dispersing and circulating the solid particles, the solid particles are formed into a stable fluidized bed, and in order to continue the fluidization, the fluidized bed consisting of three phases of solid, liquid, and gas into which liquid and gas are injected. Circulating the liquid and gas by pumping them out from the upper side and supplying them to the lower side of the container is an essential element), ensuring the flow rate necessary for the flow of solid particles (catalyst) In order to increase the contact efficiency between liquid and gas, the liquid and gas are placed at the bottom of the three-phase flow reactor.
A dispersion device that distributes and disperses the liquid multiphase flow is provided.

前記三相流動反応器の従来例について説明すると、第2
図に示すように反応器本体(1)内の下部に取付板(2
)を固設し上、下部に区画し、取付板(2)の上部を、
固体粒子(触媒等)が収容され液・気温相流が供給され
て流動化される固・液・気体三相の流動層(a)とし、
取付板(2ンの下部を液・気体の混合層にして、流動層
(α)から抜出された循環液体(b′)は循環口(1b
)から、同じく循環気体(≦)は循環口(1c)から前
記混合層内に循環され、前記取付板(2)に分散筒(5
αンとキャップ(5b)とからなる複数の分散装置(5
)が配設され、液・気温相流(b、e)が各分散装置(
5)で前記流動N(al内へh机分散される構造になっ
ており、さらに、前記分散装置(5)は、第3図に示す
ように取付板(2)に貫装され上部に複数の流出口(5
c)が配設された分散筒(5α)と、該分散的(55)
の上側に間隔をおいて嵌装状に配設されたキャップ(5
b)とからなり5分散的(5a)内を流通する気・液混
相流(hlc)が各流出口(5a)から出て下向き流(
矢示方向)になり、液体−気体の分散が行われかつ流動
層(、i)内への分散、流通が助長され、流動層!、)
内における気・液混相流(b、a)の分散、上昇流によ
って流動層(α)の膨張状態即ち流動化が確保され固・
欣・気体三相の接触効率が高められて反応が促進される
構造になっている。
To explain the conventional example of the three-phase fluidized reactor, the second
As shown in the figure, the mounting plate (2) is attached to the lower part of the reactor body (1).
) is fixed and divided into upper and lower parts, and the upper part of the mounting plate (2) is
A solid-liquid-gas three-phase fluidized bed (a) in which solid particles (catalysts, etc.) are accommodated and fluidized by supplying a liquid/temperature phase flow;
The lower part of the mounting plate (2) is made into a mixed layer of liquid and gas, and the circulating liquid (b') extracted from the fluidized bed (α) is passed through the circulation port (1b).
), the circulating gas (≦) is also circulated into the mixing layer from the circulation port (1c), and the dispersion cylinder (5) is placed on the mounting plate (2).
A plurality of dispersion devices (5
) are arranged, and the liquid/temperature phase flow (b, e) flows through each dispersion device (
5) has a structure in which the flow N (h) is dispersed into the aluminum, and the dispersion device (5) is penetrated through the mounting plate (2) as shown in FIG. outlet (5
c) a dispersion cylinder (5α) in which the dispersion cylinder (55) is disposed;
The caps (5
b) The gas-liquid multiphase flow (HLC) flowing in the dispersion (5a) exits from each outlet (5a) and flows downward (
(in the direction of the arrow), the liquid-gas is dispersed, and the dispersion and flow into the fluidized bed (, i) is promoted, forming a fluidized bed! ,)
The expansion state of the fluidized bed (α), that is, fluidization, is ensured by the dispersion and upward flow of the gas-liquid mixed phase flow (b, a) in the solid and
It has a structure that increases the contact efficiency between the three phases of air and gas and promotes the reaction.

(従来技術の問題点) 従来の前記分散装置は、三相流動 反応器本体内の水平
断面における液体、気体の不均一分布を小さくすること
を主目的にしたものであるが、気体(気泡)の微細化が
十分に得られず気体供給量当りの気・液接触界面積が少
ないため、反応に必要な気体を液体中に溶解させるため
に同気体全必要以上に供給する必要があり、また、前記
分散装置では上部の固体粒子が分散筒を経て下部の混合
層(b%G)内へ流入、堆積するのを腫けることができ
ず、前記三相流動反応器は、固・液・気体の三相反応で
あって、固体粒子の故・気体供給系への侵入は、重大な
危険を招く恐れがある。即ち、固体粒子の前記侵入によ
り主として液体の供給が阻害され、流@層全継続するに
必要な流速(流量)を確保できなくなり%固定j−の状
態になって異常反応を引起し反応器に到命的な欠陥を与
えかねない、などの問題点がある。
(Problems with the prior art) The main purpose of the conventional dispersion device is to reduce the non-uniform distribution of liquid and gas in the horizontal section within the three-phase flow reactor body. Because the gas-liquid contact area is small due to insufficient miniaturization of the gas and the gas-liquid contact area per amount of gas supplied, it is necessary to supply more gas than is necessary to dissolve the gas necessary for the reaction into the liquid. , the dispersion device cannot prevent the solid particles in the upper part from flowing into and depositing in the mixed layer (b%G) in the lower part through the dispersion cylinder, and the three-phase flow reactor cannot prevent the solid particles from flowing into the mixed layer (b%G) at the lower part through the dispersion cylinder. Since this is a three-phase gas reaction, the introduction of solid particles into the gas supply system can pose a serious hazard. In other words, the intrusion of solid particles mainly obstructs the supply of liquid, making it impossible to secure the flow rate (flow rate) necessary to continue the flow throughout the layer, resulting in a state of fixed %, causing an abnormal reaction, and causing the reactor to leak. There are problems such as the possibility of fatal defects.

(発明の目的1問題点の解決手段) 本発明は、前記のような問題点に対処するために開発さ
れたものであって、三相流動反応器本体内の下部に配設
され気・液混相fM、を流通させて分散する分散装置に
おいて、前記本体内下部の取付板に貫設され前記気・液
混相流が流通される分散的の上部に、前記気・液混相流
を水平方向に噴出する複数の噴出孔を配設し、前記各噴
出孔の噴出口に、噴出流体で前記噴出[1を下向きに開
口させる可撓性の分散プレート金付設して積った構成に
特徴を有し、気・液混相流が流通される分散筒の上部に
複数の噴出孔を設けるとともに、前記各噴出孔の噴出口
會可撓件の分散プレートで覆うことにより、供給気体の
微細化とともに気体供給量当りの気−液接触界面積を著
しく畠めて分散性能、反応性能を著しく向上せしめ、か
つ、固体の気・液供給系への侵入を防止し、気体の節減
とともに運転性能および信頼性を向上させて前記のよう
な問題点を解消した三相流動反応器の分散装置を提供す
るにある。
(Objective of the Invention 1: Means for Solving Problems) The present invention was developed to solve the above-mentioned problems. In a dispersion device that distributes and distributes a multiphase fM, the gas/liquid multiphase flow is horizontally distributed in the upper part of the dispersion device, which is installed through a mounting plate at the lower part of the main body and through which the gas/liquid multiphase flow flows. It is characterized by a configuration in which a plurality of ejection holes are arranged, and a flexible dispersion plate metal is attached and stacked on the ejection port of each of the ejection holes to open the ejection [1] downward with ejected fluid. By providing a plurality of jet holes in the upper part of the dispersion tube through which the gas/liquid multiphase flow flows, and by covering the jet holes of each jet hole with a flexible dispersion plate, the supply gas is made finer and the gas is It significantly increases the gas-liquid contact area per supply amount, significantly improving dispersion performance and reaction performance, and prevents solids from entering the gas/liquid supply system, reducing gas consumption and improving operational performance and reliability. The object of the present invention is to provide a dispersion device for a three-phase flow reactor that improves the properties and solves the above-mentioned problems.

(実施例) 第1図(A)(B)に本発明の一実施例を示しており、
図中(2)は三相流動反応器本体(1)内の下部に配設
され本体内部を上、下部に区画した取付板であって。
(Example) An example of the present invention is shown in FIGS. 1(A) and (B),
In the figure, (2) is a mounting plate that is disposed at the lower part of the three-phase fluid reactor main body (1) and divides the inside of the main body into an upper part and a lower part.

該取付板(2)には複数の分散装置Onが設けられ、該
分散装置OQによって下部の混合層から気・液晶相流(
b、a)として流通、分散させ上部の流動)―(α)に
供給する構成になっている。
The mounting plate (2) is provided with a plurality of dispersion devices On, and the dispersion devices OQ disperse gas/liquid crystal phase flow (
The structure is such that it is distributed as b, a), dispersed, and supplied to the upper flow) - (α).

前記分散装[11QIについてさらに詳述すると、仕切
板(2)に上下貫通させて設けられ気・液晶相流(b、
a)が流通される分散m (] l)と、分散局(l 
+、)の上部に放射方向に貫設され気・液混合流Cb、
a)を水平方向に噴出する複数の噴出孔aりと1分散筒
Qllの上部に嵌装され複数の固定ポル)Q〜で装着さ
れた分散プレート板01とからなり、分散筒(+11の
上部は横断六角形の頭部(11α)に形成され1頭部L
lla)のへ周面に噴出孔04がそれぞれ配設されてい
るととも罠、前記分散プレート板(14+の前記へ周面
の部分は、スリン) (146)によって分割された可
撓性を有する各分散プレー) (14a)に形成され、
各分散プレート(14α)は、各噴出孔021の噴出口
(12G)ft櫟うように配置され、かつ噴出口(12
α)からの噴出流体で外側へ変形されて下向きの開口を
形成する構成になっている。
To describe the dispersion device [11QI] in more detail, it is provided vertically through the partition plate (2) and has a gas/liquid crystal phase flow (b,
a) is distributed m (] l) and the distributed station (l
A gas/liquid mixed flow Cb is provided through the upper part of +,) in the radial direction.
a) consists of a plurality of ejection holes a for ejecting water in the horizontal direction and a dispersion plate plate 01 fitted on the top of one dispersion cylinder (Qll) and attached with a plurality of fixed poles (Qll); is formed into a transverse hexagonal head (11α), with one head L
In addition, the dispersion plate plate (14+) has a flexible structure in which the ejection holes 04 are respectively disposed on the peripheral surface of the dispersion plate (14+). Each distributed play) is formed in (14a),
Each dispersion plate (14α) is arranged so as to cross the ejection port (12G) ft of each ejection port 021, and
It is configured to be deformed outward by the fluid ejected from α) to form a downward opening.

(性能試験) 三相流動反応器本体(1)の内径は300.、、高さは
3000b+m、供給液体はJIS規定の白灯油、供給
気体は窒素、固体(触媒)は見掛は比重1.35、直径
1.5mm、長さ約51111の押出し成形品、操作温
度は常温、操作圧力は電圧とし、気体(窒素)の空塔速
度が4 on / secになるようにし、また、固体
(触媒)は静止時の充填高さが1700mmとなるよう
に充填するとともに、液体の空塔速度を1〜10 cm
 / seeの範囲で供給する条件とし、取付板(2)
に第2,3図に示す従来の分散装#(5)全4個配設し
て(その分散的(55)の内径は20間、流出口(5c
)の直匝は5朋、キャップ(56)の内径は30屑翼、
キャップと分散局間との隙間は211Nハ試験した結果
、気体の滞留量(ガスホールドアツプ)は12〜15 
Vol %であり、数mmk越える大きい気泡が多数−
められた。また、触媒(固体)の混合層内への侵入も見
られ、特に液体、気体(窒素)の供給をとめた時などに
多数の触媒が侵入して再流通時に偏流が生じた。
(Performance test) The inner diameter of the three-phase flow reactor main body (1) is 300mm. The height is 3000 b+m, the liquid supplied is JIS white kerosene, the gas supplied is nitrogen, the solid (catalyst) is an extruded product with an apparent specific gravity of 1.35, a diameter of 1.5 mm, and a length of approximately 51111 mm, operating temperature is room temperature, the operating pressure is voltage, the superficial velocity of gas (nitrogen) is 4 on/sec, and the solid (catalyst) is filled so that the filling height at rest is 1700 mm. The superficial velocity of the liquid is 1 to 10 cm.
/see, and the mounting plate (2)
A total of four conventional dispersion units #(5) shown in Figs.
) has a straight diameter of 5 mm, the inner diameter of the cap (56) is 30 blades,
The gap between the cap and the dispersion station was 211N.As a result of testing, the amount of gas retained (gas hold up) was 12 to 15
Vol %, and there are many large bubbles exceeding several mmK.
I was caught. In addition, intrusion of catalyst (solid) into the mixed layer was also observed, especially when the supply of liquid or gas (nitrogen) was stopped, and a large number of catalysts entered, causing uneven flow during recirculation.

一方、第1図tA)(B)に示す本発明の分散装WOO
を前記試験と同様な配置としく分散プレー)(14の厚
さは0.2および(14rsmのステンレス板)、同様
な条件で試験した結果、気体の滞留量は23優に達し、
数龍を越える気泡は殆んどなくなり全体的に微細気泡で
占められ、分散効果が明らかに良くなシス−液接触効率
が著しく向上されているのが認められた。また、触媒(
固体)の混合層(6、C)への逆流、侵入も完全に防止
されておシ、優れた分散機能であることが確認された。
On the other hand, the distributed device WOO of the present invention shown in FIGS.
As a result of the test under the same conditions as the dispersion plate (14 with a thickness of 0.2 and (14 rsm stainless steel plate) with the same arrangement as in the above test, the amount of gas retained reached 23 well,
It was observed that there were almost no bubbles larger than a few bubbles, and the entire structure was occupied by fine bubbles, and that the dispersion effect was clearly improved and the cis-liquid contact efficiency was significantly improved. In addition, the catalyst (
It was confirmed that the backflow and intrusion of solid) into the mixed layer (6, C) was completely prevented, and that it had an excellent dispersion function.

(発明の効果) 前述のように本発明は、三相流動反応器本体(1)内の
下部に配設され液・気温相流(ζ6)を光通させて分散
する分散装置において、前記本体内下部の取付板(2)
に貫設され気・液晶相流(61c)が流通される分散筒
(111の上部に、気・液晶相流(b、c)f水平方向
に噴出する複数の噴出孔(12+を配設するとともに、
各噴出孔04の噴出口(12a)に、噴出流体で噴出口
(12α)全下向きに開口させる可撓性の分散プレート
(14G)を付設して覆った構成にしているので、気・
敵混相流Ch、c)が各噴出孔から噴出され分散プレー
トに衝突して下方開口へ向は噴出され、気体が著しく微
細化され気−液接触界面積が著し7く高められるととも
に、固体への分散効果も高まり分散性能、反応性能が大
幅に向上され、さらに、噴出流体の減少とともに各噴出
口が分散プレートで完全に閉じられるため、固体の気・
液体供給系への侵入が完全に防止され、気体の節減とと
もに運転性能、信頼性が著しく向上されている。
(Effects of the Invention) As described above, the present invention provides a dispersion device that is disposed at the lower part of the three-phase fluid reactor body (1) and disperses the liquid/temperature phase flow (ζ6) by transmitting light. Lower inner mounting plate (2)
At the top of the dispersion tube (111) through which the gas/liquid crystal phase flow (61c) flows, a plurality of ejection holes (12+) that eject the gas/liquid crystal phase flow (b, c) and f in the horizontal direction are arranged. With,
The ejection port (12a) of each ejection hole 04 is covered with a flexible dispersion plate (14G) that allows the ejection fluid to open the ejection port (12α) completely downward.
The enemy multiphase flow Ch, c) is ejected from each ejection hole, collides with the dispersion plate, and is ejected toward the downward opening, making the gas significantly finer and significantly increasing the gas-liquid contact area. The dispersion effect is also increased, and the dispersion performance and reaction performance are greatly improved.Furthermore, as the amount of ejected fluid is reduced and each ejection port is completely closed by the dispersion plate, solid gas and
Intrusion into the liquid supply system is completely prevented, saving gas and significantly improving operating performance and reliability.

以上本発明全実施例について説明したが、勿酷本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で櫨々の設計の改変を施し
うるものである。
Although all the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and the design may be modified in any way without departing from the spirit of the present invention. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明の一実施例を示す分散装置の縦断
面図、第1図fBlは第1図(A)の平面図、第2図は
従来例を示す縦断面図、第3図は第2図の分散装置の拡
大縦断面図である。 1:三相流動反応器本体 2:取付板 10:分散装置
 11:分散局12:1IJj出孔 12a:噴出口 
14a二分散プレート 復代理人 弁理士開本重文 外2名
FIG. 1(A) is a longitudinal sectional view of a dispersion device showing an embodiment of the present invention, FIG. 1 fBl is a plan view of FIG. 1(A), and FIG. FIG. 3 is an enlarged longitudinal sectional view of the dispersion device of FIG. 2. 1: Three-phase flow reactor main body 2: Mounting plate 10: Dispersion device 11: Dispersion station 12: 1IJj outlet 12a: Outlet
14a Bidispersion Plate Sub-Agents Patent Attorneys 2 people outside of Kaimoto Important Literature

Claims (1)

【特許請求の範囲】[Claims] 三相流動反応器本体内の下部に設配され気・液混相流を
流通させて分散する分散装置において、前記本体内下部
の取付板に貫設され前記気・液混相流が流通される分散
筒の上部に、前記気・液混相流を水平方向に噴出する複
数の噴出孔を配設し、前記各噴出孔の噴出口に、噴出流
体で前記噴出口を下向きに開口させる可撓性の分散プレ
ートを付設して覆つたことを特徴とする三相流動反応器
の分散装置。
In a dispersion device installed at the lower part of the three-phase fluid reactor main body for circulating and dispersing the gas/liquid multiphase flow, a dispersion device installed through a mounting plate at the lower part of the main body for distributing the gas/liquid multiphase flow. A plurality of ejection holes for ejecting the gas/liquid mixed phase flow in a horizontal direction are arranged in the upper part of the cylinder, and a flexible material is provided at the ejection port of each of the ejection holes to open the ejection port downward with the ejected fluid. A dispersion device for a three-phase flow reactor, characterized in that it is covered with a dispersion plate.
JP12797385A 1985-06-14 1985-06-14 Dispersing device for three phase fluidized bed reactor Pending JPS61287437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12797385A JPS61287437A (en) 1985-06-14 1985-06-14 Dispersing device for three phase fluidized bed reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12797385A JPS61287437A (en) 1985-06-14 1985-06-14 Dispersing device for three phase fluidized bed reactor

Publications (1)

Publication Number Publication Date
JPS61287437A true JPS61287437A (en) 1986-12-17

Family

ID=14973273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12797385A Pending JPS61287437A (en) 1985-06-14 1985-06-14 Dispersing device for three phase fluidized bed reactor

Country Status (1)

Country Link
JP (1) JPS61287437A (en)

Similar Documents

Publication Publication Date Title
JP5336025B2 (en) Apparatus for distributing multiphase mixtures onto a granular solid bed with porous jet disturbing elements
US5462719A (en) Method and apparatus for mixing and distributing fluids in a reactor
US3502445A (en) Apparatus for mixing fluids in concurrent downflow relationship
US4140625A (en) Mixed-phase distributor for fixed-bed catalytic reaction chambers
US4639354A (en) Apparatus for the liquid phase hydrotreatment of hydrocarbons in the presence of an expanded or ebullated catalyst bed
US3592612A (en) Two-stage apparatus for mixing fluids in concurrent downflow relationship
US7112312B2 (en) Quench box for a multi-bed, mixed-phase cocurrent downflow fixed-bed reactor
US2944009A (en) Fluidized solids technique
US8597586B2 (en) Shell-and-tube reactor having a distribution device for a gas-liquid phase mixture
JP5270056B2 (en) Multifunctional subassembly for contact of at least one gas phase and at least one liquid phase, material distribution and heat and / or material exchange
KR20070008680A (en) Slurry bubble column reactor
KR101608988B1 (en) Treatment or hydrotreatment reactor with a granular bed and an essentially liquid phase and an essentially gaseous phase flowing through the bed
JP2014223610A (en) Mixing device with tangential inflows for two-phase concurrent containers
JP4702660B2 (en) Improved mixing and distribution apparatus for gas and liquid phases fed to a granular bed
US4874583A (en) Bubble cap assembly in an ebullated bed reactor
KR102532376B1 (en) A novel device for dispensing a multiphase mixture in a chamber containing a fluidizing medium
KR101574356B1 (en) Enclosure containing a granular bed and a distribution of a gas phase and of a liquid phase circulating in an ascending flow in this enclosure
US4087252A (en) Fluids mixing and distributing apparatus
JPS61287437A (en) Dispersing device for three phase fluidized bed reactor
JPS61287438A (en) Dispersing device for three phase fluidized bed reactor
CN201042663Y (en) Gas-liquid cocurrent flow inlet diffuser
JPS63252540A (en) Three-phase fluidized reaction apparatus
JPH0133153Y2 (en)
CN1008146B (en) Process and apparatus for contacting gas, liquid and solid particles
JPH07222921A (en) Liquid gathering method and plate, liquid gathering and distributing method and mechanism, gas-liquid or liquid-liquid contact method and mechanism and gas-liquid or liquid-liquid contact gathering and distributing mechanism and apparatus containing those mechanisms