JPS63252540A - Three-phase fluidized reaction apparatus - Google Patents

Three-phase fluidized reaction apparatus

Info

Publication number
JPS63252540A
JPS63252540A JP8569087A JP8569087A JPS63252540A JP S63252540 A JPS63252540 A JP S63252540A JP 8569087 A JP8569087 A JP 8569087A JP 8569087 A JP8569087 A JP 8569087A JP S63252540 A JPS63252540 A JP S63252540A
Authority
JP
Japan
Prior art keywords
gas
float
dispersion
pedestal
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8569087A
Other languages
Japanese (ja)
Inventor
Masahito Kaneko
雅人 金子
Kazuto Kobayashi
一登 小林
Haruyoshi Fujita
藤田 晴義
Setsuo Omoto
大本 節夫
Masahiro Hayashi
雅博 林
Fumihiro Kono
河野 文広
Toshihiko Masuda
増田 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP8569087A priority Critical patent/JPS63252540A/en
Publication of JPS63252540A publication Critical patent/JPS63252540A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas

Abstract

PURPOSE:To enhance not only gas-liquid contact efficiency by improving the dispersion of supply gas but also economical efficiency by reducing the supply amount of gas, by providing a float pedestal in a bubble cap type dispersing device and inserting a float in said pedestal. CONSTITUTION:A float 24 is composed of a cone-shaped metal and the center thereof is arranged on the central axis of a float pedestal 5 and, when the float 24 is raised upwardly by the gas-liquid fluid mixture 23 flowing through a dispersing device 20, the fluid mixture 23 is allowed to pass through the narrow gap between the float 24 and the pedestal 25. The fluid mixture after passage is injected from a plurality of the jet nozzles 21 provided to the side surface of the upper part of the dispersing device 20 in the lateral direction and is bent in its flow downwardly by a catalyst shielding cylinder 28 to be again injected from the falling preventing cap 18 and a dispersing plate 4 in the lateral direction. By this method, the float 24 and the float pedestal 25 generate proper pressure drop to act in order to uniformize the dispersion of the gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気体、液体、固体の三相流動反応装置に関する
ものであシ、さらに詳しくは、固体層を一定しベpに膨
張するように!!c体、液体を上方に流通させ得る気体
、液体の分散機構をその下部に備えた流動反応装置に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a three-phase flow reactor for gas, liquid, and solid. ! ! This invention relates to a flow reactor equipped with a dispersion mechanism for gas and liquid at its lower part, which allows gas and liquid to flow upward.

〔従来の技術〕[Conventional technology]

気体、液体、固体の三相流動反応装置は、三相の接触効
率が良好であり、かつ反応器内部の混合が良好であるこ
とから度広装置、特に触媒を用い多量の反応熱を発生す
る発熱反応系に対し有効であることが知られている。
A three-phase flow reactor for gas, liquid, and solid has good contact efficiency among the three phases and good mixing inside the reactor, so it uses a gas expansion device, especially a catalyst, to generate a large amount of reaction heat. It is known to be effective against exothermic reaction systems.

その例としては、原油から分留された重、中質留分を触
媒の存在下で、水素ガスを供給しながら脱硫又は分解を
行う水素化脱硫反応装置又は水素化分解反応装置である
An example thereof is a hydrodesulfurization reactor or a hydrocracking reactor that desulfurizes or decomposes heavy and medium fractions fractionated from crude oil in the presence of a catalyst while supplying hydrogen gas.

また、−酸化炭素と水素を主成分とする混合ガスを溶媒
と触媒の混合物の中に供給し、メチルアルコ−〜を合成
させるための合成反応装置である。
It is also a synthesis reaction apparatus for synthesizing methyl alcohol by supplying a mixed gas containing carbon oxide and hydrogen as main components into a mixture of a solvent and a catalyst.

三相反応流動装置の一般的流動状態は田中栄−著「化学
工学」第34巻、第12号1265頁(1970年)等
に詳しく述べられている通りであシ、竪形円筒状容器内
の1/2〜2/3程度に充填された触媒等の固体粒子を
流動化させるに充分であシ、かつ固体粒子が同伴上昇し
ない速度で液体および気体を容器の下部から上方に流通
させることにより安定した固体粒子の流動層を形成させ
るものである。
The general flow state of a three-phase reactive flow device is as described in detail in Sakae Tanaka's "Chemical Engineering" Vol. 34, No. 12, p. 1265 (1970). To flow liquid and gas upward from the bottom of the container at a speed sufficient to fluidize solid particles such as catalysts filled to about 1/2 to 2/3 of the container and at a rate that does not cause the solid particles to rise along with the container. This results in the formation of a more stable fluidized bed of solid particles.

この流動状態を実現させるためには、膨張した触媒層の
上部から液を抜き出し、ポンプを用いて円筒状容器下部
に供給する液の循環が不可欠となる。これは、触媒の流
動化に必要な液流速を循環により維持するために行なう
In order to achieve this fluid state, it is essential to extract the liquid from the upper part of the expanded catalyst layer and to circulate the liquid by using a pump to supply it to the lower part of the cylindrical container. This is done in order to maintain the liquid flow rate required for catalyst fluidization through circulation.

また、この三相流動反応器を用いた具体例をより詳細に
説明すれば、石油系型、中質留分の水素化脱硫を行なう
場合は100〜150に9/c!n”G、 350〜4
00℃の条件下で、15〜2−φの円柱状もしくは球状
のニッケルーモリブデン系、コバルト−モリブデン系又
はタングステン−モリブデン系の触媒と供給油とガス状
水素を接触させることにより水素化反応が達成される。
Further, to explain in more detail a specific example using this three-phase fluidized reactor, when performing hydrodesulfurization of petroleum type and medium distillates, 9/c! n”G, 350~4
A hydrogenation reaction is carried out by bringing the supplied oil and gaseous hydrogen into contact with a 15 to 2-φ cylindrical or spherical nickel-molybdenum, cobalt-molybdenum, or tungsten-molybdenum catalyst under 00°C conditions. achieved.

第4図は従来の典型的な三相流動反応装置の構造を示す
ものである。反応器本体1内部に触媒が充填されておシ
、この触V&層17の上面2は液、ガスの上昇流により
流動化し、膨張触媒層17上面3まで膨張する。触媒層
17の下部には分散板4が設けられており、下部から供
給されるガス、液の分散を良好にすると共に触媒が容器
下部に堆積しないようになっている。供給ガス5は循環
液7と別々に反応器本体1の下部より供給され、分散板
4を通過し、触媒層17を通過する間に反応する。触媒
層17を通過した後、ガス及び液は触媒を分離するため
の清澄層8を通シ、反応ガス及び反応液の一部である反
応生成液は反応器本体1の上部の抜出し管9から抜き出
される。反応液の大部分6は吸引部10及び吸引管11
を経て抜出され、供液管16から循環液7として図示省
略のポンプを介して反応器本体1に循環される。
FIG. 4 shows the structure of a typical conventional three-phase fluidized reactor. The inside of the reactor body 1 is filled with a catalyst, and the upper surface 2 of the catalyst layer 17 is fluidized by the upward flow of liquid and gas, and expands to the upper surface 3 of the expanded catalyst layer 17. A dispersion plate 4 is provided at the bottom of the catalyst layer 17 to improve the dispersion of gas and liquid supplied from the bottom and to prevent the catalyst from accumulating at the bottom of the container. The supply gas 5 is supplied separately from the circulating liquid 7 from the lower part of the reactor main body 1, passes through the distribution plate 4, and reacts while passing through the catalyst layer 17. After passing through the catalyst layer 17, the gas and liquid pass through a clarification layer 8 for separating the catalyst, and the reaction product liquid, which is a part of the reaction gas and reaction liquid, is discharged from the extraction pipe 9 at the top of the reactor body 1. being extracted. Most of the reaction liquid 6 is transferred to the suction section 10 and the suction tube 11
The liquid is extracted from the liquid supply pipe 16 and circulated as a circulating liquid 7 to the reactor main body 1 via a pump (not shown).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記のような反応装置において、供給されたガスの分散
が充分でないと、ガス−液の接触効率が悪くなり、反応
に必要な量のガスを液中に溶解させるためには極度に過
剰なガスを供給し、ガス−液の接触界面積を確保するこ
とが必要となる。そうなれば、高圧の反応系に供給する
ためのガスの圧縮機の動力は大きくなり、またガス供給
系の機器も大型化することとなる。
In the above-mentioned reactor, if the supplied gas is not sufficiently dispersed, the gas-liquid contact efficiency will deteriorate, and an extremely excessive amount of gas must be used to dissolve the amount of gas necessary for the reaction into the liquid. It is necessary to supply the gas and liquid to ensure the gas-liquid contact interface area. If this happens, the power of the gas compressor for supplying the gas to the high-pressure reaction system will increase, and the equipment for the gas supply system will also become larger.

また、ガス分散が不均一であると、反応の生起する個所
が不均一となシ、反応温度分布の不均一化や異常反応と
いった問題が発生する虞れがあり、ガス及び液の分散を
できる限シ均一とすることが不可欠である。
In addition, if gas dispersion is uneven, there is a risk that the reaction will occur at uneven locations, causing problems such as uneven reaction temperature distribution and abnormal reactions. It is essential that the limits are uniform.

このような点から、従来、種々の分散手段が提案されて
いる。
From this point of view, various dispersion means have been proposed in the past.

第5図はその一例で、第4図の三相流動反応装置に用い
られている分散装置である。
FIG. 5 is an example of the dispersion device used in the three-phase fluidized reactor shown in FIG.

第5図において、循環液7は給液管16を経て衝突板1
2に衝突後、反応器本体1下部のデVナムチャンパ27
内を上昇し、分散器20の下部に1乃至複数個設けられ
たスリット14より供給ガス5と一緒に供給され、触媒
層17に流入し、触媒層17を一定高さに膨張させる。
In FIG. 5, the circulating fluid 7 passes through the liquid supply pipe 16 to the collision plate 1.
After colliding with 2, the Denam Champer 27 at the bottom of the reactor main body 1
The gas rises inside the distributor 20, is supplied together with the supply gas 5 through one or more slits 14 provided at the bottom of the distributor 20, flows into the catalyst layer 17, and expands the catalyst layer 17 to a certain height.

上記の分散器20は液の分散及び供給ガスの分散を助け
るためのもので、例えば蒸留塔に多用されるパブμキャ
ップと類似の形状を有し、分散器20上部側面に噴出ノ
ズ/%/(開口部)21を複数個備え、分散板4に設け
られている。
The above-mentioned disperser 20 is used to help disperse the liquid and the supplied gas, and has a shape similar to a pub μ cap often used in distillation columns, for example, and has a jet nozzle on the upper side of the disperser 20. A plurality of (openings) 21 are provided in the dispersion plate 4 .

しかし、この形状の分散器20は、供給ガス及び液の流
通時の流動圧力損失が小さいため、プVナムチャンパ2
7内に形成される気液界面15の微少な変動が個々の分
散器20への供給ガスの供給量に大きく影響する。すな
わち、第5図の一部分を拡大する第6図に示すように、
気液界面15が分散器20aのスリット14aの付近で
下方に変動すると供給ガス5はスリット14aより流入
するが、他方14t)ではまったく流入していないこと
となり、気液界面15の変動が供給ガスの分散に大きく
影響を与えることとなる。
However, this shape of the disperser 20 has a small flow pressure loss during the flow of supply gas and liquid.
Slight fluctuations in the gas-liquid interface 15 formed within the disperser 7 greatly affect the amount of supply gas supplied to each disperser 20 . That is, as shown in FIG. 6, which is a partial enlargement of FIG. 5,
When the gas-liquid interface 15 fluctuates downward near the slit 14a of the disperser 20a, the supply gas 5 flows in through the slit 14a, but it does not flow in at all in the other slit 14t), and the fluctuation in the gas-liquid interface 15 causes the supply gas to This will have a significant impact on the dispersion of

更に、触[一層17の触媒がプレナムチャンバ27内に
落下することを防止するために設けられた触媒落下防止
キャップ18が分散器20に設けられているとは言うも
のの、本反応器の停止時に触媒の落下を完全に防止でき
るとは言い難い。この触媒粒子がプレナムチャンバ27
を経て、図示省略のポンプに入るとポンプ故障の原因と
なり、本三相流動層の運転に多大な支障をきたす。
Furthermore, although the catalyst drop prevention cap 18 is provided on the disperser 20 to prevent the catalyst layer 17 from falling into the plenum chamber 27, when the reactor is stopped, It is difficult to say that it is possible to completely prevent the catalyst from falling. These catalyst particles enter the plenum chamber 27.
If it enters a pump (not shown) through this process, it will cause a pump failure and cause a great deal of trouble in the operation of the three-phase fluidized bed.

また、このバブルキャップ類似の分散器20の欠点であ
る低圧損及び触媒の落下防止を改良するものとして、第
7図(4)CB)に示す分散装置が提案されている。こ
の装置では気液混相流体25が分散キャップ18のかわ
りに取付けられた分散プレート19を押しのけながら噴
出ノズル21より触媒層へ分散される。
In addition, a dispersion device shown in FIG. 7 (4) CB) has been proposed to improve the low pressure loss and prevention of falling of the catalyst, which are the drawbacks of the bubble cap-like dispersion device 20. In this device, a gas-liquid multiphase fluid 25 is dispersed into the catalyst layer from the jet nozzle 21 while pushing aside a dispersion plate 19 attached in place of the dispersion cap 18.

噴出ノズ71/21は、分散プレート19部分の平面図
である@7図03)に示すように、分散器20の周囲例
えばへ方向に同形状で貫通しており、外面端部はシーμ
を目的とする弁座構造を呈している。また分散プレート
19は柔軟な一体構造で、上記噴出ノズ/I/21のへ
面をそれぞれ塞ぎ外部よりの逆流を防止する弁構造であ
る。分散プレート19は分散器20の上部に固定ポルト
22により固定されている。
As shown in Fig. 03), which is a plan view of the dispersion plate 19 portion, the ejection nozzles 71/21 penetrate around the disperser 20 in the same shape, for example, in the direction, and the outer end thereof is connected to the sea μ
The valve seat structure is designed for the purpose of Further, the dispersion plate 19 has a flexible integral structure, and has a valve structure that closes each side of the jet nozzle/I/21 to prevent backflow from the outside. The distribution plate 19 is fixed to the upper part of the distributor 20 by a fixing port 22.

気液混相流体23の流入により、この分散プレート19
は押しのけられ、噴出ノズ/I/21より流動層内へ分
散する。分散プレート19は、一種のバネ構造を有して
おシ、流体の流入停止により再び噴出ノズfi/21の
弁座部と密着し、流動層内の主として触媒粒子の分散器
20内への侵入を防止する役目を果す。
Due to the inflow of the gas-liquid multiphase fluid 23, this distribution plate 19
is pushed away and dispersed into the fluidized bed through the jet nozzle /I/21. The dispersion plate 19 has a kind of spring structure, and when the inflow of fluid is stopped, the dispersion plate 19 comes into close contact with the valve seat of the jet nozzle fi/21 again, and prevents mainly the catalyst particles in the fluidized bed from entering the dispersion device 20. It plays a role in preventing

分散状態は、いわゆる流体噴出時に分散プレート19が
振動状頗を呈することにより小きざみにふるえガス−液
を細かく切ることになり、特にガスは細胞化され、良好
な分散状態を現出するとされている。
In the dispersion state, the dispersion plate 19 exhibits a vibrating shape during so-called fluid jetting, which causes the dispersion plate 19 to vibrate in small increments, cutting the gas-liquid into small pieces.In particular, the gas is made into cells, and it is said that a good dispersion state is achieved. There is.

従って、分散プレート19の強度の均一性が非常に厳し
く要求され、分散器が1個の場合はもとより、複数個、
実際の商業機では数百側にも及ぶ場合があり、この分散
デV−ト19の品質管理が実際上不可能に近く、かつこ
の分散プレート19が高温下で振動する丸めに疲労破壊
の問題も指摘される。
Therefore, the uniformity of the strength of the dispersion plate 19 is very strictly required, and not only when there is one dispersion plate, but also when there is a plurality of dispersion plates,
In an actual commercial machine, there may be hundreds of pieces, making it virtually impossible to control the quality of the dispersed plate 19, and causing fatigue fracture due to the rounding of the dispersed plate 19 as it vibrates under high temperatures. is also pointed out.

万一、この分散プレート19が疲労破壊すると、この疲
労破壊した個所からガスが多量に触媒層に流れ込み、ガ
スの流入部での異常反応が生起し、非常に危険な状部と
なるため、この疲労破壊の防止は必須である。疲労破壊
を防止する丸めには、この分散プレート15’の耐久信
頼性をいかにコントロールし、向上させ得るかにかかつ
ておシ、定期点検時の点検はもちろんのこと、不測の事
態に備えて分散プレート19を全数交換する等の必要が
生じ、工事施工等の観点より実際的でない。
In the unlikely event that the dispersion plate 19 suffers fatigue failure, a large amount of gas will flow into the catalyst layer from the fatigue failure point, and an abnormal reaction will occur at the gas inlet, creating a very dangerous situation. Prevention of fatigue failure is essential. In order to prevent fatigue failure, we have focused on how to control and improve the durability and reliability of the dispersion plate 15'.In addition to regular inspections, we also need to round the dispersion plate 15' in preparation for unexpected situations. It becomes necessary to replace all the plates 19, which is impractical from the viewpoint of construction work.

本発明は、以上のような従来の分散手段にみられる問題
点を悉く解消し、供給ガスの分散を良好にして気−液接
触効率を上げ、供給ガス量を低減して経済性を上げるこ
とのできる分散機構を備えた三相流動反応装置を提案す
るものである。
The present invention solves all the problems seen in the conventional dispersion means as described above, improves the dispersion of the supplied gas, increases the gas-liquid contact efficiency, and improves economic efficiency by reducing the amount of supplied gas. This paper proposes a three-phase flow reactor equipped with a dispersion mechanism that allows for

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を、パブμキャップタイプの分散
器内に、フロート台座と、該台座にフロートを内挿する
ことにより解決するものである。
The present invention solves the above-mentioned problems by providing a float pedestal in a Pub μ-cap type disperser and inserting a float into the pedestal.

すなわち本発明は、三相流動反応装置本体の下部に多数
の分散筒を植設した分散筒取付は板を設け、該取付は板
の下層の気液混合層から上層の固体粒子層に前記分散筒
を介して気液混相流体を誘導して該固体粒子層を流動化
する三相流動層反応装置において、前記分散筒の内部に
フロート台座を設け、該フロート台座軸芯と軸芯を等し
くするフロートを当該フロート台座上に設置し、該分散
筒上部に単数もしくは複数個の開口部を設け、該分散筒
の頂部に該分散筒と軸芯を同じにしてかつ分散筒外径よ
り大きい内径を有する上端を封じた触媒遮蔽用円筒を前
記分散器取付は板との間に隙間をもたせて設置したこと
を特徴とする三相流動反応装置に関する。
That is, in the present invention, a plate is provided for mounting a dispersion cylinder in which a large number of dispersion cylinders are installed in the lower part of a three-phase fluid reaction apparatus main body, and the dispersion cylinder is mounted from a gas-liquid mixed layer in the lower layer of the plate to a solid particle layer in the upper layer. In a three-phase fluidized bed reactor that fluidizes the solid particle layer by guiding a gas-liquid mixed phase fluid through a cylinder, a float pedestal is provided inside the dispersion cylinder, and the axis of the float pedestal is made equal to the axis. A float is installed on the float pedestal, one or more openings are provided at the top of the dispersion cylinder, and the top of the dispersion cylinder has an inner diameter that is aligned with the axis of the dispersion cylinder and that is larger than the outer diameter of the dispersion cylinder. The present invention relates to a three-phase flow reactor, characterized in that a catalyst shielding cylinder having a sealed upper end is installed with a gap between the distributor and the plate.

〔実施例及び作用〕[Examples and effects]

第1図は本発明装置に係る分散機構の一例を示す図であ
る。
FIG. 1 is a diagram showing an example of a dispersion mechanism according to the apparatus of the present invention.

第1図中、第4〜7図と同一符号は第4〜7図と同様の
ものを示す。
In FIG. 1, the same reference numerals as in FIGS. 4-7 indicate the same parts as in FIGS. 4-7.

第1図において、パブμキャップタイプの分散器(分散
筒)20内に、フロート台座25と、該台座25内にフ
ロート24が内部挿入されている。
In FIG. 1, a float pedestal 25 and a float 24 are inserted into the pedestal 25 in a pub μ-cap type disperser (dispersion cylinder) 20.

フロート24は円錐型の金属で製作されており、その中
心軸がフロート台座25の中心軸の軸心上に設置され、
分散器20を流れる気液混相流体23により上方に持上
げられ、気液混相流体23はフロート24とフロート台
座25間の狭い隙間を通過後、分散器20上部側面に複
数個設けられた噴出ノズ/I/(開口部)21より槓方
向に噴出し、触媒防止キャップ(触媒遮蔽用円筒)18
によりその流れを下方に曲げられた後、再度触媒防止キ
ャップ18と分散板(分散筒取付は板)4の狭い隙間よ
り横方向に噴出される。この隙間は三相流動層で使用さ
れる触媒粒子径より僅かに小さい方が、触媒粒子のプレ
ナムチャンバ27内への逆流防止を図る上で好ましい。
The float 24 is made of conical metal, and its center axis is placed on the center axis of the float pedestal 25.
The gas-liquid multiphase fluid 23 flowing through the disperser 20 lifts the gas-liquid multiphase fluid 23 upward, and after passing through the narrow gap between the float 24 and the float pedestal 25, the gas-liquid multiphase fluid 23 passes through the narrow gap between the float 24 and the float pedestal 25. It is ejected from the I/(opening) 21 in the direction of the shell, and the catalyst prevention cap (catalyst shielding cylinder) 18
After the flow is bent downward, it is ejected laterally again from the narrow gap between the catalyst prevention cap 18 and the dispersion plate (the dispersion cylinder is attached to a plate) 4. It is preferable that this gap is slightly smaller than the diameter of the catalyst particles used in the three-phase fluidized bed in order to prevent backflow of the catalyst particles into the plenum chamber 27.

また、本発明におけるフロート24は、その自重により
気液混相流体23の流入時に圧力損失が発生するため、
気体の分散を均一化させることができると共に、万一の
運転停止時にはこのフロート24がフロート台座25に
セットされるため、流体の逆流に伴なって触媒粒子がプ
レナムチャンバ27に入ることを防止することができる
In addition, since the float 24 in the present invention causes a pressure loss when the gas-liquid multiphase fluid 23 flows in due to its own weight,
Not only can the gas be uniformly dispersed, but also in the event of an operational stop, this float 24 is set on the float pedestal 25, which prevents catalyst particles from entering the plenum chamber 27 due to backflow of fluid. be able to.

更に、本発明における分散機構は、通常の蒸留塔で使用
されるパブμキャップに類似し、かつフロート24やフ
ロート台座25は容易に機械加工できるし、これらの取
換えも簡単である。
Furthermore, the dispersion mechanism in the present invention is similar to the Pub μ cap used in ordinary distillation columns, and the float 24 and float pedestal 25 can be easily machined and replaced.

また、フロート24の形状も第1図に示す円錐状のみな
らず、球状あるいは円柱状等に目的に応じて変更できる
。なか、円柱状フロートの場合は、第2国内とそのA−
A線断面矢視図である第2図CB)に示すように、下部
にテーパを設けると共に、フロート台座25の軸芯と円
柱状フロート24の軸心とが同一芯上にのるようにフロ
ートガイド26を設ける。
Further, the shape of the float 24 is not limited to the conical shape shown in FIG. 1, but can be changed to a spherical shape, a cylindrical shape, etc. depending on the purpose. Among them, in the case of cylindrical floats, the second country and its A-
As shown in FIG. 2 CB), which is a cross-sectional view taken along the line A, the lower part is tapered, and the float is arranged so that the axis of the float pedestal 25 and the axis of the cylindrical float 24 are aligned on the same axis. A guide 26 is provided.

上記のような本発明の分散機構により、気液の分散性は
著しく同上すると共に、固体粒子のプレナムチャンバ2
7への落下防止ができる。
Due to the dispersion mechanism of the present invention as described above, the dispersibility of gas and liquid is significantly improved, and the dispersibility of solid particles in the plenum chamber 2 is improved.
7 can be prevented from falling.

次に、本発明による具体例と従来のものによる比較例を
あげて、本発明による効果を具体的に示す。
Next, specific examples according to the present invention and comparative examples using conventional ones will be given to concretely demonstrate the effects of the present invention.

比較例1 第4図と第5図に示す形状のプラスチック製コールドフ
ローモデルを用い、従来方式の性能を確認した。反応器
本体1の内径は500■であシ、高さは3000msで
ある。
Comparative Example 1 The performance of the conventional method was confirmed using a plastic cold flow model having the shape shown in FIGS. 4 and 5. The reactor body 1 has an inner diameter of 500 mm and a height of 3000 ms.

分散装置は、分散器20径が50+m、噴出ノズ/I/
21は13X29−の長円形のものを周囲に4ケ所設け
、キャップ1B径は75mであり、キャップ18と、分
散板4との隙間は2mである。このような分散器20を
4個取り付けた。
The dispersion device has a diameter of the disperser 20 of 50+m, a jet nozzle/I/
The cap 21 has a 13×29- oval shape at four locations around the circumference, the diameter of the cap 1B is 75 m, and the gap between the cap 18 and the dispersion plate 4 is 2 m. Four such dispersers 20 were attached.

供給液はJI8規定の白灯油を用い、ガスは窒素を、触
媒は見掛は比重1.55で、直径t5■、長さ約5−の
押出し成型品を用いた。操作温度は常温、操作圧力は常
圧である。ガスは空塔速度が4 cs / secとな
るように供給した。また、液は空塔速度1〜10 ty
m / seeの範囲で供給した。
White kerosene according to JI8 standards was used as the feed liquid, nitrogen was used as the gas, and an extrusion molded product with an apparent specific gravity of 1.55 and a diameter of t5cm and a length of about 5cm was used as the catalyst. The operating temperature is normal temperature and the operating pressure is normal pressure. The gas was supplied at a superficial velocity of 4 cs/sec. In addition, the liquid has a superficial velocity of 1 to 10 ty
It was supplied in the range of m/see.

このような条件下で試験し、ガスの滞留量(ガスホーμ
ドアツブ)を測定したところ12〜15 vol %で
ibb、直径数lを越える大きな気泡が多数認められた
Tests were conducted under these conditions to determine the amount of gas retained (gas hole μ).
When measuring the amount of air bubbles (door bubbles), it was found that the concentration was 12 to 15 vol %, ibb, and many large bubbles with diameters exceeding several liters were observed.

また、触媒の分散器20内への浸入も見られ、特に液、
ガスを止めた時など、多数の触媒が侵入し、再流通時に
偏流を生じた。
In addition, infiltration of the catalyst into the disperser 20 was also observed, especially when the liquid
When the gas was turned off, a large number of catalysts entered the system, causing uneven flow during recirculation.

比較例2 比較例1に記載した試験装置の分散器を第7国内(ロ)
に示す分散器に変更し、比較例1と同様の試験を実施し
た。
Comparative Example 2 The disperser of the test device described in Comparative Example 1 was used in the 7th country (Russia).
The same test as in Comparative Example 1 was conducted using the disperser shown in FIG.

分散プレート19は厚さCL2■及びα4■のステンレ
ス板を用いた。
As the dispersion plate 19, a stainless steel plate with a thickness of CL2 and α4 was used.

この条件下において、ガスの滞留量は、分散プレート1
9の厚さくL2■、Q、4■いずれの場合も25 vo
l %に達し、直径数−を越える気泡は殆んどなくなり
、全体的に微細気泡で占められ、明らかに分散効果が良
くなり、気−液接触効率の向上が認められた。
Under this condition, the amount of gas retained at the distribution plate 1
9 thickness L2■, Q, 4■ 25 vo
1%, there were almost no bubbles larger than a few centimeters in diameter, and the entire structure was occupied by fine bubbles, clearly improving the dispersion effect and improving the gas-liquid contact efficiency.

また、触媒の逆流、侵入も完全に防止されたが、厚さユ
2■のステンレス板の分散プレート19の場合の実験で
は2000時間運転し、運転終了後、分散プV−)19
の1枚の固定ボルト22周辺にクラックが発見されたの
で、その他の全ての分散プレート19について検査した
ところ、cL2■厚さのものでは5枚に、14箇厚さの
ものでは2枚にヘアークツツクが発見され、その耐久性
に問題があることが判つ泥。
In addition, backflow and intrusion of the catalyst were completely prevented, but in an experiment using the dispersion plate 19 made of a stainless steel plate with a thickness of 2 mm, the operation was carried out for 2000 hours, and after the end of the operation, the dispersion plate V-)19
A crack was found around one of the fixing bolts 22, so we inspected all the other dispersion plates 19 and found that there were hair cracks in 5 of the plates 2cm thick and 2 of the plates 14mm thick. mud was discovered and it was determined that there was a problem with its durability.

本発明例 比較例1.2に示した分散器を第1図に示す本発明に係
る分散機構に変更し、比較例1.2と同様の試験を実施
した。主要部材の寸法は第3図囚CB)に示す通りであ
夛、第5国内は全体の、第3図但)はフロート台座25
の寸法(単位はm)であり、フロート24の材質として
は 5VS504を使用した。
EXAMPLE OF THE INVENTION The disperser shown in Comparative Example 1.2 was changed to the dispersion mechanism according to the present invention shown in FIG. 1, and the same test as in Comparative Example 1.2 was conducted. The dimensions of the main parts are as shown in Figure 3 CB).The 5th country is for the whole, and Figure 3) is for the float pedestal 25.
(unit: m), and 5VS504 was used as the material for the float 24.

この条件下におけるガスの滞留量は25 volチであ
υ、気泡の直径も非常に微細であった。
Under these conditions, the amount of gas retained was 25 vol, and the diameter of the bubbles was also very small.

また、ガスの分散も非常に均一化した。2000時間、
5000時間運転し、運転終了後の開放点検結果でも何
ら異常は認められず、本発明の優秀性が確認された。
In addition, the gas distribution was also very uniform. 2000 hours,
After 5,000 hours of operation, no abnormality was found in the open inspection after the end of operation, confirming the superiority of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明装置によれば、=相流動層反応器本体の下部に設
けられた分散機構のフロートとフロート台座が適度の圧
力損失を発生し、ガスの分散を均一にし、少ないガス量
で高い気−液接触効率を得ることができる。
According to the device of the present invention, the float of the dispersion mechanism and the float pedestal provided at the bottom of the phase fluidized bed reactor main body generate an appropriate pressure loss, uniformly dispersing the gas, and achieving high air flow with a small amount of gas. Liquid contact efficiency can be obtained.

また、この分散機構の部材の疲労破壊といった問題もな
くなり、品質管理上の煩雑さも、また異常反応による危
険も解消される。
Furthermore, problems such as fatigue failure of the members of the dispersion mechanism are eliminated, and the complexity of quality control and the risk of abnormal reactions are also eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る分散機構の一例を示す図、第2国
内03)は本発明に係る分散機構の他の例を示す図で、
第2図の)は第2図へ)のA−A線断面矢視図、第3国
内の)は本発明の具体例に用いた分散機構の主要部材の
寸法を示す図、第4図は一般の三相流動層反応装置を示
す図、t45図は従来の分散装置を示す図、第6図は第
5図の一部拡大図、第7図囚ノ)は従来の他の分散装置
を示す図で、第7図CB)は第7図(ト)の一部分の平
面図である。 1:反応器本体 2:静止時の触媒層高 3:沸騰時の触媒層高 4:分散板 5:供給ガス 6:反応液 7:循環液 8:清澄層 9:反応ガス及び反応液坂出管 10:吸引部 11:吸引管 12:衝突板 14ニスリツト 15:気液界面 16:供給管 17:触媒層 18:触媒落下防止キャップ 19:分散プレート 20:分散器 21:噴出ノズμ 22:固定ボルト 25:気液混相流体 24:フロート 25:フロート台座 26:フロートガイド 27:プVナムチャンパ 第2図 (A) 第3図(A) 第4図 第7図 L乙
Fig. 1 is a diagram showing an example of the dispersion mechanism according to the present invention, and Fig. 2 is a diagram showing another example of the dispersion mechanism according to the present invention.
) in Figure 2 is a cross-sectional view taken along the line A-A in Figure 2), Figure 3) is a diagram showing the dimensions of the main components of the dispersion mechanism used in the specific example of the present invention, and Figure 4 is A diagram showing a general three-phase fluidized bed reactor, Figure t45 is a diagram showing a conventional dispersion equipment, Figure 6 is a partially enlarged view of Figure 5, and Figure 7) is a diagram showing another conventional dispersion equipment. 7(CB) is a plan view of a portion of FIG. 7(G). 1: Reactor body 2: Catalyst layer height when stationary 3: Catalyst layer height when boiling 4: Dispersion plate 5: Supply gas 6: Reaction liquid 7: Circulating liquid 8: Clarifying layer 9: Reaction gas and reaction liquid slope pipe 10: Suction part 11: Suction pipe 12: Collision plate 14 Nislit 15: Gas-liquid interface 16: Supply pipe 17: Catalyst layer 18: Catalyst fall prevention cap 19: Dispersion plate 20: Dispersion device 21: Ejection nozzle μ 22: Fixing bolt 25: Gas-liquid mixed phase fluid 24: Float 25: Float pedestal 26: Float guide 27: Punam Champa Figure 2 (A) Figure 3 (A) Figure 4 Figure 7 L B

Claims (1)

【特許請求の範囲】[Claims] 三相流動反応装置本体の下部に多数の分散筒を植設した
分散筒取付け板を設け、該取付け板の下層の気液混合層
から上層の固体粒子層に前記分散筒を介して気液混相流
体を誘導して該固体粒子層を流動化する三相流動層反応
装置において、前記分散筒の内部にフロート台座を設け
、該フロート台座軸芯と軸芯を等しくするフロートを当
該フロート台座上に設置し、該分散筒上部に単数もしく
は複数個の開口部を設け、該分散筒の頂部に該分散筒と
軸芯を同じにしてかつ分散筒外径より大きい内径を有す
る上端を封じた触媒遮蔽用円筒を前記分散器取付け板と
の間に隙間をもたせて設置したことを特徴とする三相流
動反応装置
A dispersion cylinder mounting plate with a large number of dispersion cylinders installed is provided at the bottom of the main body of the three-phase flow reactor, and the gas-liquid mixed phase is passed from the gas-liquid mixed layer at the bottom of the mounting plate to the solid particle layer at the upper layer via the dispersion cylinders. In a three-phase fluidized bed reactor that fluidizes the solid particle layer by guiding a fluid, a float pedestal is provided inside the dispersion cylinder, and a float whose axis is equal to the axis of the float pedestal is mounted on the float pedestal. a catalyst shield having one or more openings at the top of the dispersion cylinder, the top of the dispersion cylinder having the same axis as the dispersion cylinder and having an inner diameter larger than the outer diameter of the dispersion cylinder and sealing the upper end thereof; A three-phase fluid reaction device, characterized in that the cylinder is installed with a gap between it and the distributor mounting plate.
JP8569087A 1987-04-09 1987-04-09 Three-phase fluidized reaction apparatus Pending JPS63252540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8569087A JPS63252540A (en) 1987-04-09 1987-04-09 Three-phase fluidized reaction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8569087A JPS63252540A (en) 1987-04-09 1987-04-09 Three-phase fluidized reaction apparatus

Publications (1)

Publication Number Publication Date
JPS63252540A true JPS63252540A (en) 1988-10-19

Family

ID=13865838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8569087A Pending JPS63252540A (en) 1987-04-09 1987-04-09 Three-phase fluidized reaction apparatus

Country Status (1)

Country Link
JP (1) JPS63252540A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824961A1 (en) * 1996-08-23 1998-02-25 Shell Internationale Researchmaatschappij B.V. Gas sparger for a suspension reactor and use thereof
NL1004621C2 (en) * 1996-11-27 1998-05-28 Ind Tech Res Inst Distribution of fluids into industrial reaction vessel
JP2009520060A (en) * 2005-12-16 2009-05-21 シェブロン ユー.エス.エー. インコーポレイテッド Reactor for reforming heavy oil mixed with slurry-like highly active catalyst composition
CN103240039A (en) * 2012-02-03 2013-08-14 中国石油化工股份有限公司 Gas distributor for slurry bed reactor
CN104338494A (en) * 2013-08-03 2015-02-11 中石化洛阳工程有限公司 Gas distributor for slurry bed reactor
CN104338493A (en) * 2013-08-03 2015-02-11 中石化洛阳工程有限公司 Gas-liquid distributor for fluidized bed reactor
EP2881169A1 (en) * 2013-12-04 2015-06-10 Basf Se Gas distributor nozzle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824961A1 (en) * 1996-08-23 1998-02-25 Shell Internationale Researchmaatschappij B.V. Gas sparger for a suspension reactor and use thereof
WO1998007511A1 (en) * 1996-08-23 1998-02-26 Shell Internationale Research Maatschappij B.V. Gas sparger for a suspension reactor and use thereof
NL1004621C2 (en) * 1996-11-27 1998-05-28 Ind Tech Res Inst Distribution of fluids into industrial reaction vessel
JP2009520060A (en) * 2005-12-16 2009-05-21 シェブロン ユー.エス.エー. インコーポレイテッド Reactor for reforming heavy oil mixed with slurry-like highly active catalyst composition
CN103240039A (en) * 2012-02-03 2013-08-14 中国石油化工股份有限公司 Gas distributor for slurry bed reactor
CN104338494A (en) * 2013-08-03 2015-02-11 中石化洛阳工程有限公司 Gas distributor for slurry bed reactor
CN104338493A (en) * 2013-08-03 2015-02-11 中石化洛阳工程有限公司 Gas-liquid distributor for fluidized bed reactor
CN104338494B (en) * 2013-08-03 2016-09-14 中石化洛阳工程有限公司 Gas distributor for paste state bed reactor
EP2881169A1 (en) * 2013-12-04 2015-06-10 Basf Se Gas distributor nozzle
WO2015082506A1 (en) * 2013-12-04 2015-06-11 Basf Se Gas distribution nozzle
CN105960278A (en) * 2013-12-04 2016-09-21 巴斯夫欧洲公司 Gas distribution nozzle
US9993792B2 (en) 2013-12-04 2018-06-12 Basf Se Gas distribution nozzle

Similar Documents

Publication Publication Date Title
US5462719A (en) Method and apparatus for mixing and distributing fluids in a reactor
EP0546739B1 (en) Heavy hydrocarbon feed atomization
EP0241966B1 (en) Apparatus for contacting particulate solids with a fluid
KR20070008680A (en) Slurry bubble column reactor
JPS61223089A (en) Bag mixing hydrogenation treatment reactor
US3617524A (en) Ebullated bed hydrocracking
MX2013009813A (en) Apparatus and method for hydroconversion.
JPS63252540A (en) Three-phase fluidized reaction apparatus
AU9801398A (en) Throat and cone gas injector and gas distribution grid for slurry reactor
US7332138B2 (en) Jet mixing of process fluids in fixed bed reactor
US2786742A (en) Reactor adapted for containing fluidized particles
US11000820B2 (en) Device for distributing a polyphase mixture in a chamber containing a fluidized medium
US5308476A (en) Reduced gas holdup in an ebullated bed reactor
JP4329313B2 (en) Apparatus for internal separation of a mixture comprising at least one gas phase and liquid phase
RU2596828C1 (en) Hydrocarbon oil hydrotreating method and device
US4686089A (en) Sieve-plate column for counterflow extraction
JPS63291638A (en) Gas/liquid dispersing device of three-phase fluid reactor
US3775302A (en) Prevention of efflux of hydrodesulfurization catalyst particles
JPH04156937A (en) Gas-liquid disperser in three-phase fluidized reactor
US20030027876A1 (en) Throat and cone gas injector and gas distribution grid for slurry reactor (CJB-0004)
JPS61287438A (en) Dispersing device for three phase fluidized bed reactor
DE4041976C2 (en) Process for coke burning of catalysts in the recirculating fluidized bed and device for carrying out the process
JPS61259749A (en) Gas-liquid dispersing device of three-phase fluidized reaction apparatus
JPS61259748A (en) Gas-liquid dispersing device of three-phase fluidized reaction apparatus
US6486217B2 (en) Throat and cone gas injector and gas distribution grid for slurry reactor (CJB-0004)