JPS61287438A - Dispersing device for three phase fluidized bed reactor - Google Patents

Dispersing device for three phase fluidized bed reactor

Info

Publication number
JPS61287438A
JPS61287438A JP12797485A JP12797485A JPS61287438A JP S61287438 A JPS61287438 A JP S61287438A JP 12797485 A JP12797485 A JP 12797485A JP 12797485 A JP12797485 A JP 12797485A JP S61287438 A JPS61287438 A JP S61287438A
Authority
JP
Japan
Prior art keywords
gas
dispersion
fluidized bed
liquid
dispersing cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12797485A
Other languages
Japanese (ja)
Inventor
Shigeo Makino
牧野 重男
Takafumi Shimada
嶋田 隆文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12797485A priority Critical patent/JPS61287438A/en
Publication of JPS61287438A publication Critical patent/JPS61287438A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To improve dispersing performance and reaction efficiency of a three phase fluidized bed reactor providing plural gas introducing holes around the bottom of a dispersing cylinder, and providing simultaneously plural ejecting orifices around caps with a distance at an outlet at the top of the dispersing cylinder. CONSTITUTION:Plural gas introducing holes 15 are provided around the bottom of a dispersing cylinder 11 for passing gas liquid mixed phase stream (b, c) installed to penetrate through an attaching plate 2 at the bottom of a main body 1. Further, plural ejecting orifices 16 are provided around caps 12 provided with a distance to an outlet at the top of the dispersing cylinder 11. Therefore, introduction of gas from a mixing bed at the bottom of the attaching plates 12 into the dispersing cylinder 11 is controlled and variation of introduced amt. is reduced remarkably, and fluidization in a fluidized bed above the attaching plate 2 is stabilized due to reduction of variation of internal pressure. Furthermore, gas/liquid mixed phase stream introduced into the caps 12 from the dispersing cylinder 11 is dispersed and ejected from the ejecting orifices 16 to atomize the gas remarkably finely.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体、液体、気体を同時に接触させ流動状に
して反応させる三相流動反応器における気・液混相流の
分散装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a gas/liquid multiphase flow dispersion device in a three-phase fluid reactor that simultaneously brings solids, liquids, and gases into contact with each other, converts them into fluidized forms, and reacts them. be.

(従来の技術) 前記三相流動反応器は、固体、液体、気体の接触効率が
良くまた流動状態にあることから、生起する反応が著し
い発熱反応の場合に有効であることが知られており、例
えば、原油から分離された重、中油留分に触媒の存在下
で水素を供給して反応せしめる水素化脱硫反応装置、ま
たは、水素化分解反応装置等の接触反応器があり、三相
流動反応器による石油系型、中質油留分の水素化脱硫の
具体例は、圧力50〜150kg/cIIL2G1温度
350〜420℃の条件下、0.5〜5m+1φの円柱
上で、球状のニッケルーモリブデン系、コバルト−モリ
ブデン系またはタンクステンーモリノプン系の触媒と、
供給油およびガス状水素を接触させて三相の流動層とし
水素化反応が達成されている。
(Prior Art) The three-phase fluidized reactor is known to be effective when the reaction that occurs is a significantly exothermic reaction because it has good contact efficiency between solid, liquid, and gas and is in a fluid state. For example, there are catalytic reactors such as hydrodesulfurization reactors, which supply hydrogen to heavy and medium oil fractions separated from crude oil in the presence of a catalyst, and hydrocracking reactors, which react with three-phase flow. A specific example of hydrodesulfurization of petroleum-based and medium oil fractions using a reactor is to desulfurize spherical nickel on a cylinder of 0.5 to 5 m + 1φ under conditions of a pressure of 50 to 150 kg/cIIL2G1 and a temperature of 350 to 420°C. a molybdenum-based, cobalt-molybdenum-based or tanksten-molinopone-based catalyst;
The hydrogenation reaction has been achieved by bringing the feed oil and gaseous hydrogen into contact in a three-phase fluidized bed.

前記三相流動反応器は、田中栄−;化学工学第34巻、
第12号(1970年)等によってその一般的な流動状
態が詳しく述べられており、立型円筒状容器に充填され
た触媒等の固体粒子を、静止状態に比し少なくとも10
%以−Fの大きい容積を占める膨張状態にすることによ
り所望の流動化が得られ、かつ、固体粒子が同伴上昇さ
れない程度の速度で液体および気体を前記容器内の下部
から供給、分散流通させることにより、前記固体粒子を
安定された流動層にでき、前記流動を継続するためには
、液・気体が流入されて固・液・気体の三相からなる前
記流動層の上部側からポンプで流入液体、流入気体を抜
出して、前記容器の下部側へ供給する液体、気体の循環
が不可欠な要素となり、固体粒子(触媒)の流動に必要
な流速を確保して固・液・気体の接触効率を高めるため
に、三相流動反応器の下部に液体と気体の気・液混相流
を流通、分散する分散装置が配設されている。
The three-phase flow reactor is described in Sakae Tanaka, Chemical Engineering Vol. 34,
12 (1970) etc., the general flow state is described in detail, and solid particles such as catalyst packed in a vertical cylindrical container are at least 10
The liquid and gas are supplied from the lower part of the container and distributed in a dispersed manner so that the desired fluidization can be obtained by creating an expanded state that occupies a large volume of % or more, and the liquid and gas are supplied from the lower part of the container at a speed that does not raise the solid particles. By this, the solid particles can be made into a stable fluidized bed, and in order to continue the fluidization, liquid and gas are introduced and pumped from the upper side of the fluidized bed consisting of three phases of solid, liquid and gas. Circulating the inflowing liquid and gas by extracting them and supplying them to the lower part of the container is an essential element, ensuring the flow rate necessary for the flow of solid particles (catalyst) and contacting the solid, liquid, and gas. In order to increase efficiency, a dispersion device is installed at the bottom of the three-phase flow reactor to distribute and disperse the gas-liquid mixed phase flow of liquid and gas.

前記三相流動反応器の従来例は、第3図に示すように反
応器本体(11内の下部に取付板(2)を固設して内部
を上、下部に区画し、該取付板(2)に複数の分散装置
(5)を配設して、該分散装置(5)によって、取付板
(2)下部の混合層中の気体と液体を気・液混合相流(
b、 c )にして流通、分散し取付板(2)上部の固
体中に供給・流通せしめ、取付板(2)上部を固・液・
気体の三相からなる流動層(a)とし、流動層(α)か
ら抜出された液体(A)は循環口(1h)から、同じく
抜出された気体<A>は循環口(1o)から取付板(2
)下部の混合層へ循環される構造になっており、また、
前記分散装置(5)は、取付板(2)に貫通させて設け
られた分散筒(5α)と、分散筒(5α)の上部に間隔
をおいて配設されたキャップ(5b)とからなり、取付
板(2)下部の混合層から気・液涛、相流(h、c)と
して分散筒(5α)内を流通し、分散筒(5α)の上部
に設けた流出口から取付板(2)土部の前記流動層(a
)に供給される構造になつ゛(いて、該分散装置(5)
によって気体−液体の分散が行われかつ流動層(α)内
への分散、流通が助長され、流動層(α)の膨張状態即
ち流動化が確保され固・液・気体三相の接触効率が高め
られて反応が促進される構造になっている。
In the conventional three-phase flow reactor, as shown in FIG. 2) is provided with a plurality of dispersion devices (5), and the dispersion devices (5) convert the gas and liquid in the mixed layer at the bottom of the mounting plate (2) into a gas/liquid mixed phase flow (
b, c) to distribute and disperse the solids on the top of the mounting plate (2).
The fluidized bed (a) is made up of three phases of gas, and the liquid (A) extracted from the fluidized bed (α) is extracted from the circulation port (1h), and the gas <A> that is also extracted is transferred to the circulation port (1o). From the mounting plate (2
) has a structure in which it is circulated to the mixed layer at the bottom, and
The dispersion device (5) consists of a dispersion tube (5α) provided through the mounting plate (2), and a cap (5b) disposed at a distance above the dispersion tube (5α). , from the mixed layer at the bottom of the mounting plate (2), gas/liquid and phase flows (h, c) flow through the dispersion tube (5α), and flow from the outlet provided at the top of the dispersion tube (5α) to the mounting plate ( 2) The fluidized bed (a
), and the dispersing device (5)
The gas-liquid dispersion is carried out, and the dispersion and circulation within the fluidized bed (α) is promoted, the expansion state of the fluidized bed (α), that is, fluidization is ensured, and the contact efficiency of the three phases of solid, liquid, and gas is improved. The structure is such that the reaction is accelerated.

(従来技術の問題点) 従来の前記分散装置においては、気体(気泡)の微細化
が十分に達成されず気体供給量当りの気・液接触界面積
が少ないため、反応に必要な気体を液体に溶解させるた
めに必要以上の気体を供給する必要があり、気体の浪費
、反応効率の低下などの問題点があるとともに、取付板
下部の混合層における液位低下の際に、分散筒下端口へ
の気体の吹抜は現象が生じ、内部の圧力が変動し流動層
の形成、反応に悪影響を及ぼすなどの問題点がある。
(Problems with the prior art) In the conventional dispersion device, the gas (bubbles) cannot be made sufficiently fine and the gas-liquid contact interface area per amount of gas supplied is small. It is necessary to supply more gas than necessary to dissolve the dispersion tube, which causes problems such as wasted gas and reduced reaction efficiency. There are problems with the blowing of gas into the reactor, such as fluctuations in the internal pressure, which can adversely affect the formation of a fluidized bed and the reaction.

(発明の目的、問題点の解決手段) 本発明は、前記のような問題点に対処するために開発さ
れたものであって、三相流動反応器本体内の下部に配設
され気・液混相流を流通させて分散する分散装置におい
て、前記本体内下部の取付板に貫設され前記録・液混相
流が流通される分散筒の下部周囲に、複数の気体流入孔
を設けるとともに、前記分散筒上部の流出部に間隔をお
いて配設されたキャップの周囲に、複数の噴出孔を配設
した構成に特徴を有し、取付板に貫通させて設けられて
いる分散筒の下部周囲に複数の気体流入孔を設けること
により、分散筒への気体の流入速度を制御しその流入量
の、<ラツキを著しく少なくし内部の圧力変動低減によ
り流動層の流動を安定せしめるとともに、分散筒の上部
に配設されたキャップの周囲に複数の噴出孔を設けるこ
とにより、気体の微細化とともに気−液接触界面積を高
めて分散性能、反応効率を向上させ前記のような問題点
を解消した三相流動反応器の分散装置を提供するにある
(Objective of the Invention, Means for Solving Problems) The present invention was developed to solve the above-mentioned problems. In a dispersion device that circulates and disperses a multiphase flow, a plurality of gas inflow holes are provided around the lower part of a dispersion cylinder that is installed through a mounting plate at the lower part of the main body and through which the prerecorded liquid multiphase flow flows; The area around the lower part of the dispersion cylinder is characterized by a plurality of ejection holes arranged around a cap placed at intervals on the outflow part of the upper part of the dispersion cylinder, and is provided through the mounting plate. By providing multiple gas inflow holes in the dispersion tube, it is possible to control the speed of gas inflow into the dispersion tube, significantly reduce fluctuations in the amount of gas flowing into the dispersion tube, and stabilize the flow of the fluidized bed by reducing internal pressure fluctuations. By providing multiple ejection holes around the cap placed on the top of the cap, the gas is made finer and the gas-liquid contact area is increased, improving dispersion performance and reaction efficiency, and solving the above problems. The object of the present invention is to provide a dispersion device for a three-phase flow reactor.

(実施例) 第1図に本発明の一実施例を示しており、図中(2)は
三相流動反応器本体(1)内の下部に固設され同本体の
内部を上、下部に区画した取付板であって、該取付板(
2)には複数の分散装置(1のが配設され、該分散装置
(10)によって取付板(2)下部の混合層における気
体(C)と液体(b)を気・液混相流(b、 c)にし
て取付板(2)上部の固体中に、流通、分散させて供給
し、取付板(2)上部に固・気・液体三相の流動層(α
)を形成する構成になっている。
(Example) Figure 1 shows an example of the present invention. In the figure, (2) is fixedly installed at the lower part of the three-phase fluid reactor body (1), and the inside of the body is connected to the upper and lower parts. A partitioned mounting plate, the mounting plate (
2) is equipped with a plurality of dispersion devices (1), and the dispersion device (10) converts the gas (C) and liquid (b) in the mixed layer at the bottom of the mounting plate (2) into a gas-liquid multiphase flow (b). , c) is distributed and distributed in the solid above the mounting plate (2), and a three-phase fluidized bed (α
).

前記分散装置(lO)についてさらに詳述すると、前記
取付板(2)に貫通させて設けた分散筒(11)と、該
分散筒(11)の上部に間隔をおいて嵌装状にポル) 
(13)で固設されたキャップ(12)とからなり、前
記分散筒(11)の上部局Hに複数の流出口(14)が
設けられ、さらに、分散筒(11)の下部周囲に複数の
気体流入孔(15)を周方向および軸方向(上下方向)
に適宜間隔をおいて配設するとともに、前記キャップ(
12)の側面の下部周囲に、複数の噴出孔(16)を配
設した構成になっており、前記気体流入孔0ωは、口径
数關に形成され周方向間隔をおいてかつ上下方向間隔を
おいて4〜5段に配設され、取付板(2)下部の混合層
では、図示のように液相と気相とに分離し勝ちであって
、液体(A)は分散筒(11)の下端口から流入、気体
(C)は気体流入孔(15)から流入し気・液混相流(
b、c)になって分散筒(11)内で上向きに流通する
とともに、前記録・液混相流(,6,c)は各流出口(
14)からキャップ(12)内に流出し、さらに各噴出
孔(16)から噴出、分散され取付板(2)上部の固体
(触媒)つまり流動層(α)中へ分散供給されて上昇流
となる構成になっている。
To explain the dispersion device (lO) in more detail, there is a dispersion tube (11) provided through the mounting plate (2), and a dispersion tube (11) fitted at intervals on the top of the dispersion tube (11).
(13), and a plurality of outlets (14) are provided at the upper station H of the dispersion tube (11), and a plurality of outlets (14) are provided around the lower part of the dispersion tube (11). The gas inlet hole (15) of
The caps (
12) has a configuration in which a plurality of jet holes (16) are arranged around the lower part of the side surface, and the gas inflow holes 0ω are formed at several diameters and spaced apart in the circumferential direction and vertically spaced apart. In the mixing layer at the bottom of the mounting plate (2), the liquid (A) tends to separate into a liquid phase and a gas phase as shown in the figure, and the liquid (A) is disposed in the dispersion cylinder (11). The gas (C) flows in through the gas inlet hole (15) and the gas/liquid multiphase flow (
b, c) and flows upward in the dispersion tube (11), and the prerecorded liquid multiphase flow (, 6, c) flows through each outlet (
14) into the cap (12), is further ejected from each ejection hole (16), is dispersed, and is dispersed and supplied into the solid (catalyst), that is, the fluidized bed (α) on the upper part of the mounting plate (2), forming an upward flow. The structure is as follows.

なお、前記液体(b)は主としてキャップ(12)の下
縁部から取付板(2)上部へ流出される。
Note that the liquid (b) mainly flows out from the lower edge of the cap (12) to the upper part of the mounting plate (2).

(性能試験) 三相流動反応器本体(1)の内径は300mm、高さは
3000in、供給液体はJIS規定の白灯油、気体は
窒素、固体(触媒)は見掛は比重1.35、直径1,5
關の押出し成形品、操作は常温、常圧、気体の空塔速度
が4 cm/sθCになるようにし、また、固体(触媒
)の充填量は静止状態において17001mになるよう
にし、液体の空塔速度を1〜10 crfL/ sθC
の範囲とする条件とし、取付板(2)に第3図に示す従
来の分散装置(5)を4個配置して(分散筒(5α)の
内径は20關、キャップ(5h)の内径は30iii)
、試験した結果、数1mlを越える大きい気泡が多数認
められ、また、第2図に示すように分散筒(11)の下
部に巾3111のスリン) (25)を設け、キャップ
(12)の周囲に長さl Oxx1間隔3朋の分散スリ
ット(26)を設けて試験した結果、気体の滞留量(ガ
スホールドアツプ)は14〜16■O1%であり、数關
を越える大きい気泡が多く認められた。
(Performance test) The inner diameter of the three-phase fluid reactor body (1) is 300 mm, the height is 3000 inches, the supplied liquid is white kerosene specified by JIS, the gas is nitrogen, the solid (catalyst) has an apparent specific gravity of 1.35, and a diameter 1,5
The related extrusion molded product was operated at room temperature and pressure, the superficial velocity of the gas was 4 cm/sθC, the amount of solid (catalyst) packed was 17001 m in a static state, and the liquid void Increase the column speed from 1 to 10 crfL/sθC
The conditions were as follows: four conventional dispersion devices (5) shown in Fig. 3 were arranged on the mounting plate (2) (the inner diameter of the dispersion cylinder (5α) was 20mm, the inner diameter of the cap (5h) was 30iii)
As a result of the test, many large bubbles exceeding several 1 ml were observed, and as shown in Fig. 2, a sulin (25) with a width of 3111 mm was provided at the bottom of the dispersion cylinder (11), and a sulin (25) was installed around the cap (12). As a result of testing by providing a dispersion slit (26) with a length of l Oxx1 and an interval of 3 mm, the amount of gas retained (gas hold up) was 14 to 16 mm O1%, and many large bubbles exceeding several sizes were observed. Ta.

一方、第1図に示した本発明の分散装置(lO)を前記
試験と同様な配置、同様な条件下で試験した結果、気体
の滞留量は20 Vol %となり数龍以上の径を有す
る気泡は殆んどなくなり、全体的に微細気泡で占められ
、明らかに気−液接触効率の向上が認められ、第2図に
示す参考例よりもさらに優れている。
On the other hand, as a result of testing the dispersion device (lO) of the present invention shown in FIG. 1 in the same arrangement and under the same conditions as the above test, the amount of gas retained was 20 Vol %, and bubbles with a diameter of several dragons or more were found. There were almost no bubbles, and the entire structure was occupied by fine bubbles, clearly improving the gas-liquid contact efficiency, which was even better than the reference example shown in FIG.

(発明の効果) 前述のように本発明は、三相流動反応器本体(1)内の
下部に配設され気・液混相流(b、C)を流通させて分
散する分散装置において、前記本体(1)内下部の取付
板(2)に貫設され気・液混相流(h、c)が流通され
る分散筒(11)の下部周囲に、複数の気体流入孔(1
5)を設けるとともに、前記分散筒(11)上部の流出
部に間隔をおいて配設されたキャップ(12)の周囲に
、複数の噴出孔(]6)を配設しているので、取付板下
部の混合層から分散筒への気体の流入が制御され流入量
のバラツキが著しく少なくなり、内部の圧力変動が低減
されて取付板上部の流動層の流動が安定されるとともに
、分散筒からキャップ内に流通した気・液混相流が噴出
孔から分散噴出され、気体が著しく微細化されるととも
に気−液接触界面積が著しく増大されて、気体節減とと
、もに分散性能、反応性能が著しく向上され、かつ運転
が安定されるなどの効果を有している。
(Effects of the Invention) As described above, the present invention provides a dispersion device disposed at the lower part of the three-phase fluid reactor main body (1) for circulating and dispersing the gas/liquid multiphase flow (b, C). A plurality of gas inflow holes (1
5), and a plurality of ejection holes (]6) are arranged around the cap (12) arranged at intervals on the outflow part of the upper part of the dispersion cylinder (11), so that the installation is easy. The inflow of gas from the mixing layer at the bottom of the plate to the dispersion tube is controlled, and variations in the inflow amount are significantly reduced, internal pressure fluctuations are reduced, and the flow in the fluidized bed at the top of the mounting plate is stabilized. The gas-liquid mixed phase flow that circulated inside the cap is dispersed and ejected from the nozzle hole, making the gas significantly finer and significantly increasing the gas-liquid contact area, which saves gas and improves both dispersion performance and reaction performance. This has the effect of significantly improving performance and stabilizing operation.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す分散装置の縦断面図、
第2図は参考例を示す縦断面図、第3図は従来例を示す
三相流動反応器の縦断面図である。 に三相流動反応器本体、2:取付板、11:分散筒、1
2:キャップ、15:気体流入孔、16:噴出孔 複代理人 弁理士 岡 本 重 文 外2名
FIG. 1 is a longitudinal sectional view of a dispersion device showing an embodiment of the present invention;
FIG. 2 is a longitudinal sectional view showing a reference example, and FIG. 3 is a longitudinal sectional view of a three-phase fluidized reactor showing a conventional example. 3-phase flow reactor main body, 2: mounting plate, 11: dispersion cylinder, 1
2: Cap, 15: Gas inflow hole, 16: Outlet hole Multiple attorneys: Shige Okamoto, patent attorney, 2 other people

Claims (1)

【特許請求の範囲】[Claims] 三相流動反応器本体内の下部に配設され気・液混相流を
流通させて分散する分散装置において、前記本体内下部
の取付板に貫設され前記気・液混相流が流通される分散
筒の下部周囲に、複数の気体流入孔を設けるとともに、
前記分散筒上部の流出部に間隔をおいて配設されたキャ
ップの周囲に、複数の噴出孔を配設したことを特徴とす
る三相流動反応器の分散装置。
In a dispersion device disposed at the lower part of a three-phase fluid reactor main body for circulating and dispersing a gas/liquid multiphase flow, a dispersion device installed through a mounting plate at the lower part of the main body for distributing the gas/liquid multiphase flow. Along with providing multiple gas inflow holes around the bottom of the cylinder,
A dispersion device for a three-phase flow reactor, characterized in that a plurality of ejection holes are disposed around a cap disposed at intervals at an outflow portion of the upper part of the dispersion cylinder.
JP12797485A 1985-06-14 1985-06-14 Dispersing device for three phase fluidized bed reactor Pending JPS61287438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12797485A JPS61287438A (en) 1985-06-14 1985-06-14 Dispersing device for three phase fluidized bed reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12797485A JPS61287438A (en) 1985-06-14 1985-06-14 Dispersing device for three phase fluidized bed reactor

Publications (1)

Publication Number Publication Date
JPS61287438A true JPS61287438A (en) 1986-12-17

Family

ID=14973299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12797485A Pending JPS61287438A (en) 1985-06-14 1985-06-14 Dispersing device for three phase fluidized bed reactor

Country Status (1)

Country Link
JP (1) JPS61287438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515568A (en) * 2000-06-19 2004-05-27 アンスティテュ フランセ デュ ペトロール Catalytic hydrogenation using a multi-stage boiling bed reactor
JP2007514514A (en) * 2003-07-10 2007-06-07 アンスティテュ フランセ デュ ペトロール Enclosed space for mixing and distributing the gas and liquid phases circulating in the upward flow
JP2009512547A (en) * 2005-10-20 2009-03-26 ビーエーエスエフ ソシエタス・ヨーロピア Distributor for gas-liquid phase mixture used in equipment
JP2010530296A (en) * 2007-06-12 2010-09-09 イエフペ Inclusion body containing a granular layer and distribution of gas phase and liquid phase circulating as an upward flow in the inclusion body
CN109985571A (en) * 2017-12-29 2019-07-09 中国石油化工股份有限公司 It is a kind of with subtracting the hydrogenator for rushing component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004515568A (en) * 2000-06-19 2004-05-27 アンスティテュ フランセ デュ ペトロール Catalytic hydrogenation using a multi-stage boiling bed reactor
JP4834875B2 (en) * 2000-06-19 2011-12-14 アンスティテュ フランセ デュ ペトロール Catalytic hydrogenation using a multi-stage boiling bed reactor
JP2007514514A (en) * 2003-07-10 2007-06-07 アンスティテュ フランセ デュ ペトロール Enclosed space for mixing and distributing the gas and liquid phases circulating in the upward flow
JP4834879B2 (en) * 2003-07-10 2011-12-14 アンスティテュ フランセ デュ ペトロール Enclosed space for mixing and distributing the gas and liquid phases circulating in the upward flow
JP2009512547A (en) * 2005-10-20 2009-03-26 ビーエーエスエフ ソシエタス・ヨーロピア Distributor for gas-liquid phase mixture used in equipment
JP2010530296A (en) * 2007-06-12 2010-09-09 イエフペ Inclusion body containing a granular layer and distribution of gas phase and liquid phase circulating as an upward flow in the inclusion body
CN109985571A (en) * 2017-12-29 2019-07-09 中国石油化工股份有限公司 It is a kind of with subtracting the hydrogenator for rushing component
CN109985571B (en) * 2017-12-29 2021-08-31 中国石油化工股份有限公司 Hydrogenation reactor with subtract towards subassembly

Similar Documents

Publication Publication Date Title
KR101129714B1 (en) Slurry bubble column reactor
US8597586B2 (en) Shell-and-tube reactor having a distribution device for a gas-liquid phase mixture
KR101608988B1 (en) Treatment or hydrotreatment reactor with a granular bed and an essentially liquid phase and an essentially gaseous phase flowing through the bed
JP2008532755A (en) Apparatus for mixing and distributing gas and liquid upstream from a particle packed bed
US3414386A (en) Reaction vessel for improved temperature regulation in exothermic reactions
KR102532376B1 (en) A novel device for dispensing a multiphase mixture in a chamber containing a fluidizing medium
US4707340A (en) Staged guide plate and vessel assembly
KR101574356B1 (en) Enclosure containing a granular bed and a distribution of a gas phase and of a liquid phase circulating in an ascending flow in this enclosure
CN115090220B (en) Down-flow type mixed bubble flow hydrogenation reactor
US4705621A (en) Catalytic reactor system with crosscurrent liquid and gasflow
EP0711331A1 (en) Catalyst, method and apparatus for a particle replacement system for countercurrent feed-packed bed contact
JPS61287438A (en) Dispersing device for three phase fluidized bed reactor
CN213644075U (en) Microbubble generator and hydrocarbon oil hydrogenation reactor
CA1177385A (en) Gas-pocket distributor for an upflow reactor
CN101618305B (en) Fluidized bed reactor
CA1237874A (en) Staged flow distribution grid assembly and method for ebullated bed reactor
US4961882A (en) Fine bubble generator and method
RU2369432C2 (en) Reactor for solid/fluid/gaseous substances
CN111790319A (en) Slurry bed reactor, system and application thereof and Fischer-Tropsch synthesis method
JPS61287437A (en) Dispersing device for three phase fluidized bed reactor
JP4834879B2 (en) Enclosed space for mixing and distributing the gas and liquid phases circulating in the upward flow
JPH0133153Y2 (en)
JPS60153937A (en) Three-phase fluidized reactor
JPS61287439A (en) Dispersing device for three phase fluidized bed reactor
JPS627436A (en) Dispersing mechanism of three-phase fluidized reactor