JPS61286633A - Fluid seal type vibration suppressing body - Google Patents

Fluid seal type vibration suppressing body

Info

Publication number
JPS61286633A
JPS61286633A JP12964485A JP12964485A JPS61286633A JP S61286633 A JPS61286633 A JP S61286633A JP 12964485 A JP12964485 A JP 12964485A JP 12964485 A JP12964485 A JP 12964485A JP S61286633 A JPS61286633 A JP S61286633A
Authority
JP
Japan
Prior art keywords
vibration
fluid
vibration damping
orifice
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12964485A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamahata
山端 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12964485A priority Critical patent/JPS61286633A/en
Publication of JPS61286633A publication Critical patent/JPS61286633A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially
    • F16F13/1418Units of the bushing type, i.e. loaded predominantly radially characterised by the location or shape of the equilibration chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To suppress the vibration in the frequency range corresponding to the number of vibration damping parts at a same time by one vibration suppressing body by installing a plurality of vibration damping parts having different vibration suppressing object frequency onto one vibration suppressing body. CONSTITUTION:A plurality of vibration damping parts 26 and 27 having different vibration suppressing object frequency are installed onto a fluid seal type vibration suppressing body 10. Said vibration damping parts 26 and 27 are constituted of a pair of fluid chambers 20, 21 and 22, 23 which can be elastically deformed and communicate each other through orifices 24 and 25. Therefore, the vibration attenuation in a plurality of vibration frequency ranges is permitted by one vibration suppressing body by previously tuning each vibration suppressing object frequency in a plurality of vibration damping parts to each vibration frequency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は流体封入式防振体に関する。[Detailed description of the invention] Industrial applications The present invention relates to a fluid-filled vibration isolator.

従来の技術 近年、自動車にはエンジン振動とか路面振動等を効果的
に吸収するために流体封入式防振体が多く用いられてい
る。たとえば、ニラサンサービス周報第486号(昭和
58年8月1日産自動車株式会社発行)第1II−21
頁に示されているようなものがある。この流体封入式防
振体lは、第8図にも示すように、4リンク式サスペン
ションのロアリンクの片側ゴムブツシュ2に設けられ、
内筒3を挾んでアーム延設方向に1対の流体室4.4a
が前記ブツシュ2のゴム体5内に形成され、かつ両流体
室4.43はオリフィス6を介して連通されるようにな
っており、これら流体室4.4aおよびオリフィス6に
よって振動減衰部7が構成されている。そして、リンク
に入力される駆動装置やタイヤ等からの振動は、この振
動が振動減衰部7に伝達された時、流体室4,4aの一
方が容積変化して流体がオリフィス6を通過することに
より減衰されるようになっている。
BACKGROUND OF THE INVENTION In recent years, fluid-filled vibration isolators have been widely used in automobiles to effectively absorb engine vibrations, road vibrations, and the like. For example, Nirasan Service Bulletin No. 486 (published by Nissan Motor Co., Ltd. on August 1, 1981) No. 1II-21
There is something like the one shown on the page. As shown in FIG. 8, this fluid-filled vibration isolator l is provided on one side rubber bushing 2 of the lower link of a four-link suspension.
A pair of fluid chambers 4.4a sandwich the inner cylinder 3 in the direction in which the arm extends.
is formed in the rubber body 5 of the bushing 2, and both fluid chambers 4.43 are communicated via an orifice 6. Vibration damping section 7 is It is configured. When the vibration from the drive device, tires, etc. input to the link is transmitted to the vibration damping section 7, the volume of one of the fluid chambers 4, 4a changes and the fluid passes through the orifice 6. It is designed to be attenuated by

ところで、従来は流体封入式防振体は流体がオリフィス
を通過するときの抵抗により振動減衰されるものと考え
られていたが、近年に本出願人が特願昭59−2385
53号として出願したように、オリフィス6内の流体質
量を質量とし、流体室4.4a壁の拡張弾性をばねとす
る共振現象に支配されることが明らかとなり、特に振動
減衰作用に着目するとダイナミックダンパとしての機能
が発揮されることが解明されている。従って、前記従来
の流体封入式防振体lにあっても、流体室4゜4aが容
積変化されるときのゴム体5の拡張弾性およびオリフィ
ス6の流体質量によって、共振周波数が決定(共振周波
数決定要素)され、この共振周波数域の振動のみが効果
的に減衰されるようになっている。つまり、制振対象周
波数は1つの特定周波数域に決定されてしまう。
By the way, in the past, it was thought that vibrations of a fluid-filled vibration isolator were damped by the resistance when the fluid passes through an orifice, but in recent years, the present applicant has
As filed in No. 53, it has become clear that the fluid mass in the orifice 6 is the mass, and that it is dominated by a resonance phenomenon in which the expansion elasticity of the wall of the fluid chamber 4.4a is the spring. It has been revealed that it functions as a damper. Therefore, even in the conventional fluid-filled vibration isolator l, the resonance frequency is determined by the expansion elasticity of the rubber body 5 and the fluid mass of the orifice 6 when the volume of the fluid chamber 4° 4a is changed (resonance frequency (determining factor), so that only vibrations in this resonant frequency range are effectively damped. In other words, the frequency to be damped is determined to be one specific frequency range.

発明が解決しようとする問題点 ところが、前記ゴムブツシュ1を通過して車体側に伝達
される振動は、ディファレンシャルギヤの高周波域であ
るデフノイズとか、路面振動による低周波域のハーシュ
ネス等があり、前記流体封入式防振体lでは、このよう
に周波数域が異なる各振動を同時に減衰させることは不
可能となってしまう。従って、振動減衰を流体封入式防
振体tのみに依存すると減衰しきれない振動が依然とし
て重体側に伝達され、車室内のこらり音となったり雑音
となったりして車室内静粛性の大幅な向上が望めないと
いう問題点があった。
Problems to be Solved by the Invention However, the vibrations transmitted through the rubber bush 1 to the vehicle body include differential noise in the high frequency range of the differential gear, harshness in the low frequency range due to road vibration, etc. With the enclosed vibration isolator l, it is impossible to attenuate vibrations in different frequency ranges at the same time. Therefore, if vibration damping relies only on the fluid-filled vibration isolator t, vibrations that cannot be attenuated will still be transmitted to the heavy body side, causing a rattling sound or noise inside the vehicle interior, which will significantly reduce the quietness of the vehicle interior. The problem was that no significant improvement could be expected.

そこで、本発明は1つの防振体で異なる周波数域の振動
を同時に減衰できるようにした流体封入式防振体を提供
することを目的とする。
Therefore, an object of the present invention is to provide a fluid-filled vibration isolator that can simultaneously damp vibrations in different frequency ranges with one vibration isolator.

問題点を解決するための手段 かかる目的を達成するために本発明は、オリフィスを介
して連通される弾性変形可能な1対の流体室によって構
成される振動減衰部を有し、該振動減衰部のすリフイス
内の流体質量および流体室壁の拡張弾性等の共振周波数
決定要素によって、前記l対の流体室配列方向に振動減
衰される制振対象周波数が決定されるようになった流体
封入式防振体において、1つの防振体に制振対象周波数
が夫々異なる複数の振動減衰部を設けることにより構成
しである。
Means for Solving the Problems In order to achieve the above object, the present invention has a vibration damping section constituted by a pair of elastically deformable fluid chambers communicating through an orifice, the vibration damping section A fluid-filled type in which the vibration damping target frequency to be damped in the arrangement direction of the l pair of fluid chambers is determined by resonance frequency determining factors such as the fluid mass in the nosert fixture and the expansion elasticity of the fluid chamber wall. The vibration isolator is constructed by providing a plurality of vibration damping sections each having a different damping target frequency on one vibration isolator.

作用 以上の構成により本発明の流体封入式防振体にあっては
、複数設けられた振動減衰部の夫々の制振対象周波数域
を、問題となる各振動周波数に予めヂューニングしてお
くことによって、個々の振動減衰部で夫々周波数が異な
った振動を減衰でき、1つの防振体で複数の振動周波数
域の振動減衰ができることになる。
In the fluid-filled vibration isolator of the present invention with the above-described configuration, the vibration damping target frequency range of each of the plurality of vibration damping sections is tuned in advance to each vibration frequency of interest. , each vibration damping section can damp vibrations of different frequencies, and one vibration isolator can damp vibrations in a plurality of vibration frequency ranges.

実施例 以下、本発明の実施例を図に基づいて詳細に述べる。尚
、この実施例は従来と同様にサスペンションのリンクブ
ツシュに例をとって流体封入式防振体を述べる。
EXAMPLES Hereinafter, examples of the present invention will be described in detail based on the drawings. In this embodiment, a fluid-filled vibration isolator will be described using a suspension link bushing as an example, as in the prior art.

即ち、第1図は本発明の一実施例を示す流体封入式防振
体lOで、この流体封入式防振体lOは4リンク式サス
ペンションのロアリンク11のゴムブツシュ12に設け
られるようになっている。即ち4リンク式サスペンンヨ
ン13は第2図に示すように、デイファレンンヤルギャ
およびドライブシャフトを収納するアクセルケース14
の上側、下側に夫々1対のアッパーリンク15および1
対のロアリンク11が回動可能に取付けられており、そ
して、該アッパーリンク[5,ロアリンク11の各先端
部は図外の車体側に回動可能に連結されるようになって
いる。尚、アッパー、ロアリンク15.11の各端部に
は夫々ゴムブツシュが装着され、このゴムブツシュを介
して各リンクは前記アクセルケース14および車体に連
結されている。前記ゴムブツシュ12は前記第1図に示
したように、内筒16.外筒17およびこれら内、外筒
16.17間に装填されるゴム体18からなり、前記外
筒■7がリンク本体19に固設されるようになっている
。このように、前記ロアリンク[lはリンク本体19の
両端に夫々装着されるゴムブツシュ12とによって構成
され、アクセルケースI4側から車体側に伝達される振
動がリンク本体19両端のゴムブツシュ12によって吸
収されるようになっている。従って、前記ロアリンク1
1はアクセルケース14を車体に連結する機能を有する
と共に、リンク本体19および1対のゴムブツシュ12
によって1つの防振体が構成されるようになっている。
That is, FIG. 1 shows a fluid-filled vibration isolator lO showing an embodiment of the present invention, and this fluid-filled vibration isolator lO is provided on a rubber bush 12 of a lower link 11 of a four-link suspension. There is. That is, as shown in FIG. 2, the four-link suspension 13 is connected to an accelerator case 14 that houses the differential gear and the drive shaft.
A pair of upper links 15 and 1 are provided on the upper and lower sides, respectively.
A pair of lower links 11 are rotatably attached, and the tips of the upper link [5 and lower link 11] are rotatably connected to the vehicle body side (not shown). Note that rubber bushings are attached to each end of the upper and lower links 15, 11, and each link is connected to the aforesaid accelerator case 14 and the vehicle body via the rubber bushings. As shown in FIG. 1, the rubber bushing 12 is connected to an inner cylinder 16. It consists of an outer cylinder 17 and a rubber body 18 loaded between the outer cylinders 16 and 17, and the outer cylinder 7 is fixed to the link body 19. In this way, the lower link [l] is constituted by the rubber bushes 12 attached to both ends of the link body 19, and vibrations transmitted from the accelerator case I4 side to the vehicle body side are absorbed by the rubber bushes 12 at both ends of the link body 19. It has become so. Therefore, the lower link 1
1 has the function of connecting the accelerator case 14 to the vehicle body, and also has a link body 19 and a pair of rubber bushes 12.
One vibration isolator is constructed by the above.

ここで本実施例は前記ロアリンク11の一端に設けられ
るゴムブツシュ12のゴム体18内に、内筒16を境に
してリンク本体【9の配設方向に対向される1対の第1
.第2流体室20.21および1対の第3゜第4流体室
22.23を上下方向に形成しである。これら第1.第
2流体室20.21および第3.第4流体室22.23
のうち、第1流体室20および第3流体室22は内筒1
6よりリンク本体19側に形成され、かつ第2流体室2
1および第4流体室23はリンク本体19から遠ざかる
側に設けられている。そして、前記第1.第3流体室2
0.22は、リンク本体19を介して入力される振動荷
重が効果的に作用するように、ゴムブツシュ18の略径
方向に延びる長孔に形成されると共に、前記第2.第4
流体室21.23は外筒17内周に沿う円弧状の長孔に
形成されている。
Here, in this embodiment, in the rubber body 18 of the rubber bush 12 provided at one end of the lower link 11, a pair of first first and second
.. A second fluid chamber 20.21 and a pair of third and fourth fluid chambers 22.23 are formed in the vertical direction. These first. The second fluid chamber 20.21 and the third fluid chamber 20.21. Fourth fluid chamber 22.23
Of these, the first fluid chamber 20 and the third fluid chamber 22 are located in the inner cylinder 1.
6 is formed closer to the link body 19 and the second fluid chamber 2
The first and fourth fluid chambers 23 are provided on the side facing away from the link body 19. And the above-mentioned 1. Third fluid chamber 2
The second. Fourth
The fluid chambers 21 and 23 are formed in arcuate long holes along the inner circumference of the outer cylinder 17.

また、夫々対となった第1.第2流体室20.21およ
び第3.第4流体室22.23は、それぞれ第1゜第2
オリフィス24.25を介して連通され、該第1゜第2
オリフィス24.25および前記各流体室20.21゜
22、23内には水等の非圧縮性流体が封入されている
。従って、外力振動によりゴム体18が変形され、各流
体室20.21.22.23内容積が変化されると、該
流体室内の流体はオリフィス24.25を通過すること
になり、かかる1対の第1.第2流体室20゜21と第
1オリフイス24で第1振動減衰部26が構成され、か
つ1対の第3.第4流体室22.23と第2オリフイス
25で第2振動減衰部27が構成されるようになってい
る。ところで、これら第1.第2振動減衰部26.27
が固有に有する共振周波数、つまり制振対象周波数は、
オリフィス24.25内の流体質量と、流体室20.2
1.22.23壁、つまりゴム体18の拡張弾性等の共
振周波数決定要素によって決まることを前述したが、本
実施例にあっては第1オリフイス24と第2オリフイス
25の径を異ならせることにより、第1.第2振動減衰
部26.27の制振対象周波数を夫々違えである。即ち
、前記オリフィスの流体質量は、詳細には液体室の有効
受圧面積(A)をオリフィスの断面積(a)で除した値
の二乗に、オリフィス内の可動流体質量(a)を乗した
等価可動流体質量として得られ、このときの共このとき
のオリフィス径と共振周波数の関係は、第3図に示すよ
うにオリフィス径が大きくなると共振周波数が高くなる
ようになっている。そこで、前記第1振動減衰部26の
第1オリフイス24径を比較的小さくして、該第1振動
減衰部26の共振周波数を低く設定し、たとえば路面振
動の71−シュネスの風波数域(30〜150Hz)に
設定すると共に、前記第2振動減衰部27の第2オリフ
イス25径を比較的大きくして、該第2振動減衰部27
の共振周波数を高く設定し、たとえばディファレンシャ
ルギヤのデフノイズの周波数域(200〜800Hz)
に設定しである。
In addition, each pair of the first. The second fluid chamber 20.21 and the third fluid chamber 20.21. The fourth fluid chambers 22 and 23 have a first fluid chamber and a second fluid chamber, respectively.
The first and second
An incompressible fluid such as water is sealed within the orifice 24, 25 and each of the fluid chambers 20, 21, 22, 23. Therefore, when the rubber body 18 is deformed by external force vibration and the internal volume of each fluid chamber 20, 21, 22, 23 is changed, the fluid in the fluid chamber passes through the orifice 24, 25. 1st. The second fluid chamber 20.degree. 21 and the first orifice 24 constitute a first vibration damping section 26, and a pair of third. The fourth fluid chamber 22, 23 and the second orifice 25 constitute a second vibration damping section 27. By the way, these first. Second vibration damping section 26.27
The unique resonance frequency of
The fluid mass in the orifice 24.25 and the fluid chamber 20.2
1.22.23 As mentioned above, it is determined by the resonance frequency determining factors such as the expansion elasticity of the wall, that is, the rubber body 18, but in this embodiment, the diameters of the first orifice 24 and the second orifice 25 are made different. According to 1st. The damping target frequencies of the second vibration damping sections 26 and 27 are different. That is, the fluid mass of the orifice is, in detail, the equivalent of the square of the effective pressure-receiving area (A) of the liquid chamber divided by the cross-sectional area (a) of the orifice, multiplied by the movable fluid mass (a) in the orifice. The relationship between the orifice diameter and the resonant frequency obtained as a movable fluid mass is such that as the orifice diameter increases, the resonant frequency increases as shown in FIG. 3. Therefore, the diameter of the first orifice 24 of the first vibration damping section 26 is made relatively small, and the resonance frequency of the first vibration damping section 26 is set low, for example, in the 71-Schnes wind wave frequency range (30 ~150Hz), and the diameter of the second orifice 25 of the second vibration damping section 27 is made relatively large, so that the second vibration damping section 27
Set the resonant frequency of the
It is set to .

以上の構成により本実施例の流体封入式防振体lOにあ
っては、アクセルケース14からロアリンク11を介し
て車体側に入力されるハーシュネスとかデフノイズ等の
振動は、第1.第2流体室20.21および第1オリフ
イス24によって構成される第1振動減衰部26の共振
周波数域が前記ハーシュネスの振動周波数に設定されて
いることから、このハーシュネスが車体に伝達されるの
が著しく低減される。一方、第3.第4流体室22.2
3および第2オリフイス25によって構成される第2振
動減衰部27の共振周波数域が前記デフノイズの振動周
波数に設定されていることから、このデフノイズ振動が
車体に伝達されるのが著しく低減される。第4図は流体
封入式防振体の振動伝達力特性を示し、図中、実線で示
す伝達力特性(イ)は本実施例によるもので、2箇所の
制振対象周波数域(A、B)が存在する。即ち、低周波
数域の制振対象周波数域(A)は第1振動減衰部26に
よって達成されるハーシュネス領域であり、また高周波
数域の制振対象周波数域(B)は第2振動減衰部27に
よって達成されるデフノイズ領域であり、これら問題と
なるハーシュネス、デフノイズが同時に低減されている
のが明らかである。従って、車室内に伝達されるデフノ
イズによる雑音およびハーシュネスによるこもり音等が
大幅に少なくなり車室内静粛性の著しい向上が図られる
。尚、第4図中破線で示す伝達力特性(ロ)は従来の流
体封入式防振体によるもので、制振対象周波数域が1箇
所となり、ハーシュネス低減を行っており、このように
ハーシュネス領域に制振対象周波数域を設定すると、こ
れの反共振(振り返し)によりデフノイズ領域の伝達力
が大きくなって、他方の不具合点が増長されていた。
With the above-described structure, in the fluid-filled vibration isolator lO of this embodiment, vibrations such as harshness and differential noise input from the accelerator case 14 to the vehicle body via the lower link 11 are reduced to the first. Since the resonance frequency range of the first vibration damping section 26 constituted by the second fluid chamber 20.21 and the first orifice 24 is set to the vibration frequency of the harshness, it is difficult for this harshness to be transmitted to the vehicle body. significantly reduced. On the other hand, the third. Fourth fluid chamber 22.2
Since the resonance frequency range of the second vibration damping section 27 constituted by the second orifice 3 and the second orifice 25 is set to the vibration frequency of the differential noise, transmission of the differential noise vibration to the vehicle body is significantly reduced. Figure 4 shows the vibration transmission force characteristics of the fluid-filled vibration isolator. ) exists. That is, the frequency range (A) to be damped in the low frequency range is a harshness region achieved by the first vibration damping section 26, and the frequency range (B) to be damped in the high frequency range is the harshness region achieved by the second vibration damping part 27. It is clear that these problematic harshness and differential noise are reduced at the same time. Therefore, the noise caused by the differential noise and the muffled noise caused by the harshness transmitted into the vehicle interior are significantly reduced, and the quietness of the vehicle interior is significantly improved. The transmission force characteristic (b) shown by the broken line in Fig. 4 is due to the conventional fluid-filled vibration isolator, and the frequency range to be damped is one, reducing the harshness. When the frequency range to be damped was set, anti-resonance (reflection) of this increased the transmission force in the differential noise region, exacerbating the other problem.

第5図は他の実施例の流体封入式防振体10aを示し、
リンク本体19の両端に設けられるゴムブツシュ12.
12aに夫々振動減衰部を設けたもので、一方のゴムブ
ツシュ12のゴム体18内には、内筒16を挾んでリン
ク本体19延設方向に対向される1対の第1.第2流体
室’20a、 21aおよびこれら両流体室20a、 
21aを連通する第1オリフイス24aによって第1振
動減衰部26aが設けられると共に、他方のゴムブツシ
ュ12aのゴム体18内には、同様に内筒16を挾んで
リンク本体19延設方向に対向されるl対の第3.第4
流体室22a、 L3aおよび第2オリフイス25aに
よって第2振動減衰部27aが設けられている。そして
、前記実施例同様に第1振動減衰部26aの制振対象周
波数域をハーシュネス領域に設定すると共に、第2振動
減衰部27aの制振対象周波数域をデフノイズ領域に設
定することにより、前記実施例と同様の機能が発揮され
る。
FIG. 5 shows a fluid-filled vibration isolator 10a of another embodiment,
Rubber bushings 12 provided at both ends of the link body 19.
Each of the rubber bushings 12a is provided with a vibration damping section, and in the rubber body 18 of one rubber bushing 12, there are a pair of first. Second fluid chambers 20a, 21a and both fluid chambers 20a,
A first vibration damping section 26a is provided by the first orifice 24a that communicates with the first orifice 21a, and a link body 19 is similarly disposed in the rubber body 18 of the other rubber bush 12a and is opposed in the extending direction of the link body 19 with the inner cylinder 16 in between. The third of the l pair. Fourth
A second vibration damping section 27a is provided by the fluid chambers 22a, L3a and the second orifice 25a. Then, as in the embodiment described above, the frequency range to be damped by the first vibration damping section 26a is set to the harshness region, and the frequency range to be damped by the second vibration damping section 27a is set to the differential noise region. The same functionality as in the example is demonstrated.

第6図(A)、(B)、(C)は他の実施例を示し、片
方のゴムブツシュ12内に第1、第2振動減衰部26b
、 27bが設けられるようになった流体封入式防振体
lObにあって、これら第1.第2振動減衰部26b、
 27bはゴムブツシュI2の軸方向に隔成され、かつ
、夫々の振動減衰方向を異ならせである。即ち、第1振
動減衰部26bの第1.第2流体室20b。
6(A), (B), and (C) show another embodiment, in which first and second vibration damping portions 26b are provided in one rubber bushing 12.
. a second vibration damping section 26b;
The rubber bushes 27b are spaced apart from each other in the axial direction of the rubber bush I2, and have different vibration damping directions. That is, the first . Second fluid chamber 20b.

21bは、第6図(B)に示すように内筒16を挾んで
リンク本体19の延設方向とは直角方向に対向配置され
ると共に、第2振動減衰部27bの第3.第4流体室2
2b、 23bは、第6図(C)に示すように内筒16
を挾んでリンク本体19の延設方向に対向配置されてい
る。従って、第1振動減衰部26bの振動減衰方向はリ
ンク本体19の延設方向とは直角方向になり、第2振動
減衰部27bの振動減衰方向はリンク本体19の延設方
向となっている。
21b is disposed opposite to the extending direction of the link body 19 with the inner cylinder 16 in between, as shown in FIG. Fourth fluid chamber 2
2b and 23b are the inner cylinder 16 as shown in FIG. 6(C).
They are arranged opposite to each other in the extending direction of the link body 19 with the link bodies 19 in between. Therefore, the vibration damping direction of the first vibration damping part 26b is perpendicular to the extending direction of the link body 19, and the vibration damping direction of the second vibration damping part 27b is the extending direction of the link body 19.

従って、この実施例にあっては1つの流体封入式防振体
10bで異なる方向から入力される振動を夫々同時に低
減できる。尚、第1振動減衰部26bは制振対象周波数
域がハーシュネス振動と一致するように、第1オリフイ
ス24bを比較的小径に形成し、かつ、第2振動減衰部
27bは制振対象周波数域がデフノイズと一致するよう
に、第2オリフイス25bを比較的大径に形成しである
ことはいうまでもない。
Therefore, in this embodiment, vibrations input from different directions can be simultaneously reduced by one fluid-filled vibration isolator 10b. The first vibration damping section 26b has a first orifice 24b formed with a relatively small diameter so that the frequency range to be damped matches harshness vibration, and the second vibration damping section 27b has a first orifice 24b having a relatively small diameter so that the frequency range to be damped matches harshness vibration. It goes without saying that the second orifice 25b is formed to have a relatively large diameter to match the differential noise.

第7図は更に他の実施例の流体封入式防振体10cを示
し、リンク本体19の両端に夫々設けられるゴムブツシ
ュ12.12aに第1振動減衰部26cおよび第2振動
減衰部27cが別々に形成されるようになった流体封入
式防振体において、第1.第2振動減衰部26c、 2
7cの振動減衰方向を夫々異ならせたものである。従っ
て、この実施例にあっても前記第6図に示す実施例と同
様に、異なる方向から入力される振動を効果的に低減す
ることができる。
FIG. 7 shows a fluid-filled vibration isolator 10c of still another embodiment, in which a first vibration damping section 26c and a second vibration damping section 27c are separately provided on rubber bushes 12, 12a provided at both ends of the link body 19. In the fluid-filled vibration isolator that has been formed, the first. Second vibration damping section 26c, 2
7c, the vibration damping directions are different from each other. Therefore, in this embodiment as well, as in the embodiment shown in FIG. 6, vibrations input from different directions can be effectively reduced.

尚、前述した各実施例にあっては、4リンク式サスペン
ションのロアリンク11ヲ防振体トし、これに本発明の
流体封入式防振体を適用したものを示したが、このロア
リンク11に限ることなく、アッパーリンク15に本発
明を適用してもよく、また図示は省略したがエンノンマ
ウント等の防振体に本発明を適用できることはいうまで
もない。また、振動減衰部は2つに限らず3つ以上設け
てもよく、多く設けることによって制振対象周波数域を
増加させ、振動減衰効果を更に向上することができる。
In each of the above-mentioned embodiments, the lower link 11 of the four-link suspension is used as a vibration isolator, and the fluid-filled vibration isolator of the present invention is applied thereto. The present invention is not limited to the upper link 11, but may be applied to the upper link 15, and although not shown in the drawings, it goes without saying that the present invention can be applied to vibration isolators such as ennon mounts. Further, the number of vibration damping sections is not limited to two, and three or more may be provided, and by providing more vibration damping sections, the frequency range to be damped can be increased, and the vibration damping effect can be further improved.

また、オリフィス長さ、液体の密度などに上り制振周波
数をチューニングしてらよい。
Also, the damping frequency may be tuned depending on the orifice length, liquid density, etc.

発明の詳細 な説明したように本発明の流体封入式防振体にあっては
、■つの防振体に、制振対象周波数が夫々異なる複数の
振動減衰部を設けたので、該振動減衰部の数に応じた周
波数域の振動を、1つの防振体で同時に低減できる。従
って、問題となる複数の振動が同時に低減できることに
よって、振動減衰される周波数域が広がり、特に自動車
等の問題となる振動周波数域が広い範囲に亙って複数存
在する場合等にあっては、著しい振動低減効果を奏する
As described in detail of the invention, in the fluid-filled vibration isolator of the present invention, the two vibration isolators are provided with a plurality of vibration damping sections each having a different damping target frequency. One vibration isolator can simultaneously reduce vibrations in frequency ranges corresponding to the number of vibrations. Therefore, by being able to reduce multiple problematic vibrations at the same time, the frequency range in which vibrations can be damped expands, especially in cases where multiple problematic vibration frequency ranges exist over a wide range, such as in automobiles. It has a remarkable vibration reduction effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す流体封入式防振体の要
部を示す断面図、第2図は4リンク式すスペンションの
斜視図、第3図は流体封入式防振体のオリフィス径に対
する共振周波数の関係を示す特性図、第4図は流体封入
式防振体にあって周波数に対する振動伝達力の関係を示
す特性図、第5図は本発明の他の実施例を示す断面図、
第6図は本発明の他の実施例を示し、同図(A)は要部
側面図、同図(B)は(A)図中Via−Via線から
の断面図、同図(C)は(A)図中VIc  Vlc線
からの断面図、第7図は本発明の他の実施例を示す断面
図、第8図は従来の流体封入式防振体を示す要部断面図
である。 10、10a、 fob、 1Oc−・・流体封入式防
振体、20 、20a。 21b、 20cm・・第1流体室、21.21a、 
21b、 21cm・−第2流体室、22.22a、 
22b、 22c・・−第3流体室、23゜23a、 
23b、 23c・・・第4流体室、24.24a、 
24b、 24c・・・第1オリフイス、25.25a
、 25b、 25cm第2オリフイス、26.26a
、 26b、 26c・・・第1振動減衰部、外2名 第1図 第2図 第7図 第8図
Fig. 1 is a sectional view showing the main parts of a fluid-filled vibration isolator according to an embodiment of the present invention, Fig. 2 is a perspective view of a four-link suspension, and Fig. 3 is a fluid-filled vibration isolator. FIG. 4 is a characteristic diagram showing the relationship between the resonance frequency and the orifice diameter of the fluid-filled vibration isolator. FIG. A cross-sectional view showing,
FIG. 6 shows another embodiment of the present invention, in which (A) is a side view of the main part, (B) is a cross-sectional view taken from the line Via-Via in (A), and (C) is a cross-sectional view of the main part. (A) is a sectional view taken from line VIc Vlc in the figure, FIG. 7 is a sectional view showing another embodiment of the present invention, and FIG. 8 is a sectional view of main parts showing a conventional fluid-filled vibration isolator. . 10, 10a, fob, 1Oc--Fluid-filled vibration isolator, 20, 20a. 21b, 20cm...first fluid chamber, 21.21a,
21b, 21cm--second fluid chamber, 22.22a,
22b, 22c...-Third fluid chamber, 23° 23a,
23b, 23c... fourth fluid chamber, 24.24a,
24b, 24c...first orifice, 25.25a
, 25b, 25cm second orifice, 26.26a
, 26b, 26c... 1st vibration damping section, 2 other people Figure 1 Figure 2 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)オリフィスを介して連通される弾性変形可能な1
対の流体室によつて構成される振動減衰部を有し、該振
動減衰部のオリフィス内の流体質量および流体室壁の拡
張弾性等の共振周波数決定要素によつて、前記1対の流
体室配列方向に振動減衰される制振対象周波数が決定さ
れるようになつた流体封入式防振体において、1つの防
振体に、制振対象周波数が夫々異なる複数の振動減衰部
を設けたことを特徴とする流体封入式防振体。
(1) Elastically deformable 1 communicated through an orifice
The vibration damping section includes a pair of fluid chambers, and the vibration damping section has a vibration damping section configured by a pair of fluid chambers, and the resonance frequency determining factors such as the fluid mass in the orifice of the vibration damping section and the expansion elasticity of the fluid chamber wall, In a fluid-filled vibration isolator in which the vibration damping target frequency is determined in the arrangement direction, a plurality of vibration damping parts each having a different vibration damping target frequency are provided in one vibration isolator. A fluid-filled vibration isolator featuring:
JP12964485A 1985-06-14 1985-06-14 Fluid seal type vibration suppressing body Pending JPS61286633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12964485A JPS61286633A (en) 1985-06-14 1985-06-14 Fluid seal type vibration suppressing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12964485A JPS61286633A (en) 1985-06-14 1985-06-14 Fluid seal type vibration suppressing body

Publications (1)

Publication Number Publication Date
JPS61286633A true JPS61286633A (en) 1986-12-17

Family

ID=15014609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12964485A Pending JPS61286633A (en) 1985-06-14 1985-06-14 Fluid seal type vibration suppressing body

Country Status (1)

Country Link
JP (1) JPS61286633A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628493A1 (en) * 1988-03-08 1989-09-15 Peugeot ELASTIC ARTICULATION WITH HYDRAULIC RIGIDIFICATION
FR2650356A1 (en) * 1989-07-31 1991-02-01 Hutchinson IMPROVEMENTS MADE TO MAN CHONS HYDRAULIC ANTI-VIBRATOR
EP0566178A1 (en) * 1992-04-17 1993-10-20 General Motors Corporation Hydraulic torque strut with decoupling and related mounting system
US5711513A (en) * 1995-01-04 1998-01-27 Hutchinson Hydraulic antivibration support sleeves
JP2002114015A (en) * 2000-10-06 2002-04-16 Fuji Heavy Ind Ltd Suspension bush structure for automobile
JP2014194255A (en) * 2013-03-29 2014-10-09 Railway Technical Research Institute Elastic body bush and axle box supporting device
JP2014228120A (en) * 2013-05-27 2014-12-08 東洋ゴム工業株式会社 Vibration isolator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628493A1 (en) * 1988-03-08 1989-09-15 Peugeot ELASTIC ARTICULATION WITH HYDRAULIC RIGIDIFICATION
US5042785A (en) * 1988-03-08 1991-08-27 Automobiles Peugeot Elastically yieldable articulation with a hydraulic stiffening
FR2650356A1 (en) * 1989-07-31 1991-02-01 Hutchinson IMPROVEMENTS MADE TO MAN CHONS HYDRAULIC ANTI-VIBRATOR
EP0566178A1 (en) * 1992-04-17 1993-10-20 General Motors Corporation Hydraulic torque strut with decoupling and related mounting system
US5273261A (en) * 1992-04-17 1993-12-28 General Motors Corporation Hydraulic torque strut with decoupling and related mounting system
US5711513A (en) * 1995-01-04 1998-01-27 Hutchinson Hydraulic antivibration support sleeves
JP2002114015A (en) * 2000-10-06 2002-04-16 Fuji Heavy Ind Ltd Suspension bush structure for automobile
JP4504547B2 (en) * 2000-10-06 2010-07-14 富士重工業株式会社 Automobile suspension bushing structure
JP2014194255A (en) * 2013-03-29 2014-10-09 Railway Technical Research Institute Elastic body bush and axle box supporting device
JP2014228120A (en) * 2013-05-27 2014-12-08 東洋ゴム工業株式会社 Vibration isolator

Similar Documents

Publication Publication Date Title
JP5154579B2 (en) Fluid filled vibration isolator
JP5014329B2 (en) Vibration isolator
JPH0247614B2 (en)
US5299788A (en) Fluid-filled cylindrical elastic mount having orifice passages and voids formed in elastic body
JPS6215780B2 (en)
JPS61286633A (en) Fluid seal type vibration suppressing body
JPH09126273A (en) Device mount
JPS63289349A (en) Fluid sealing type vibrationproof bush
JPS60179540A (en) Liquid charged damper device
JPS62261730A (en) Vibration damping device
JPS63266242A (en) Fluid-sealed type mount device
JPH01164831A (en) Fluid-filled type cylinder type mount
JPH11141595A (en) Vibration control device
JPH0434018B2 (en)
JP3656866B2 (en) Liquid-filled bush
JPH06330983A (en) Liquid-sealed type vibration isolating support device
JPS63111335A (en) Cylindrical fluid-sealed type mounting device
JPH0349317Y2 (en)
KR100192480B1 (en) Hydraulic engine mount
JPH01229130A (en) Vibration isolator
JPS63210431A (en) Fluid-sealed type vibrationproof bush
JPH053791Y2 (en)
JP2000002286A (en) Liquid sealing vibration isolation device
JPS63106441A (en) Fluid filled system cylindrical mounting device
JPH05240293A (en) Liquid enclosed cylindrical mount