JPS61285388A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS61285388A
JPS61285388A JP12892685A JP12892685A JPS61285388A JP S61285388 A JPS61285388 A JP S61285388A JP 12892685 A JP12892685 A JP 12892685A JP 12892685 A JP12892685 A JP 12892685A JP S61285388 A JPS61285388 A JP S61285388A
Authority
JP
Japan
Prior art keywords
heat transfer
tubes
bare
heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12892685A
Other languages
Japanese (ja)
Inventor
Shoichi Anami
阿波 正一
Tamotsu Takada
保 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Kogyo Co Ltd
Original Assignee
Nissin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Kogyo Co Ltd filed Critical Nissin Kogyo Co Ltd
Priority to JP12892685A priority Critical patent/JPS61285388A/en
Publication of JPS61285388A publication Critical patent/JPS61285388A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To permit to reduce pressure drop with good heat transfer efficiency by a method wherein neighboring heat transfer tubes, penetrating plate fins respectively, are constituted positionally to form a substantially regular triangular form and the one side of the triangle is arranged in parallel to the ventilating direction of the heat exchanger in a condenser for a refrigerating device or the like. CONSTITUTION:A multitude of heat transfer bare tubes 2, through which heat medium flow, are arranged in multiple stages and multiple rows so that neighboring three pieces of heat transfer bare tubes A-C are constituted positionally so as to form a substantially regular triangular form and one side of the triangle is arranged in parallel to the ventilating direction (a) of the heat exchanger while a multitude of plate fins 12, through which the heat transfer bare tubes 2 are penetrating, is provided with proper pitches to form the group of heat transfer tubes for the heat exchanger. A cross but 15 is cut at a place of the plate fin 12, which is corresponding to the penetrating hole 14 for the tube 2, and the roots of the triangular sections 13a, which are equally divided into four segments, are bent to form triangular protuberances 13. According to this method, the pressure drop may be reduced extremely without deteriorating heat transfer efficiency in the group of the tubes and miniaturization of a fan or the like may be realized.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は管群内における伝熱効率を低下させることなく
、送風機の静圧を極度に減少することができる熱交換器
にかんするものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a heat exchanger that can extremely reduce the static pressure of a blower without reducing the heat transfer efficiency within the tube group.

「従来の技術」 従来、熱媒体を通す伝熱裸管を多段かつ多列に配置した
熱交換器においては、各種の伝熱管群の構成要素である
各隣接する伝熱裸管を正方形(基盤目)配列あるいは三
角形配列(千鳥)に配列して伝熱管群を形成し、伝熱裸
管外側即ち伝熱管群内に冷却又は被冷却気体を通し、伝
熱裸管内を流れる熱媒体と熱交換し、冷却気体により熱
媒体を液化(例えば冷凍装置の凝縮器)したり、被冷却
気体を冷却(例えば冷凍装置の冷却器)したりしている
が、伝熱管群に直交する通気の場合には、三角形配列が
多用され、その形態は各隣接する三本の伝熱裸管を正三
角形又は近似正三角形に配列し、該各三角形の一辺に直
交するように通気しているが、通気方向に対して直交す
る列の伝熱裸管の間隙STが小さく、管群内流路面積は
狭いため、管群内風速及び質量速度は速くなるが、逆に
管群的圧力降下を増大させるという大なる欠点を存した
次第である。
"Conventional Technology" Conventionally, in a heat exchanger in which heat transfer bare tubes for passing a heat medium are arranged in multiple stages and in multiple rows, each adjacent heat transfer bare tube, which is a constituent element of various heat transfer tube groups, is arranged in a square shape (substrate 2) Arrange in an array or triangular arrangement (staggered) to form a group of heat transfer tubes, and pass the cooling or cooled gas outside the heat transfer tubes, that is, inside the heat transfer tube group, to exchange heat with the heat medium flowing inside the heat transfer tubes. However, in the case of ventilation perpendicular to a group of heat transfer tubes, A triangular arrangement is often used, in which three adjacent bare heat transfer tubes are arranged in an equilateral triangle or an approximately equilateral triangle, and ventilation is perpendicular to one side of each triangle. Since the gap ST between the heat transfer bare tubes in the row orthogonal to the tube group is small and the flow path area within the tube group is narrow, the wind velocity and mass velocity within the tube group become faster, but conversely, the pressure drop across the tube group increases. However, it did have a major drawback.

「発明が解決しようとする問題点」 伝熱裸管の従来の正三角形又は近似正三角形配列(千鳥
)での管群内流路面積を広くし、管群内風速及び質量速
度が遅くなるにもかかわらず、管群内の伝熱効率を低下
することなく、管群的圧力降下を極度に減少させること
にある。
"Problems to be Solved by the Invention" By increasing the flow passage area within the tube group in the conventional equilateral triangular or approximate equilateral triangular arrangement (staggered) of heat transfer bare tubes, the wind speed and mass velocity within the tube group are reduced. Nevertheless, the objective is to extremely reduce the pressure drop across the tube group without reducing the heat transfer efficiency within the tube group.

「問題を解決するための手段」 熱交換器の熱媒体を通す伝熱裸管の配列を、従来多用さ
れている正三角形又は近似正三角形配列(千鳥)を伝熱
裸管の隣接する各三本の伝熱裸管が鈍角二等辺三角形を
構成する配列(変則千鳥)とし、送風機により正三角形
又は近似正三角形の一辺と平行に、如ち該鈍角二等辺三
角形の底辺に直交するように通気し、プレートフィンに
伝熱裸管を貫通して形成した伝熱管においては、プレー
トフィンを各伝熱裸管が貫通する管孔の周囲に多数個の
三角形状突起を形成し、また螺線状の環状フィンを付設
した伝熱管においては、伝熱裸管外表面の環状フィン間
に螺線状突起を形成したものである。
``Means for solving the problem'' The arrangement of the heat transfer bare tubes through which the heat medium of the heat exchanger passes should be changed from the conventionally frequently used equilateral triangular arrangement or approximately equilateral triangular arrangement (staggered) to each adjacent three of the heat transfer bare tubes. The heat transfer bare tubes are arranged in an obtuse isosceles triangle (irregular zigzag), and air is vented by a blower parallel to one side of an equilateral triangle or an approximately equilateral triangle, and perpendicular to the base of the obtuse isosceles triangle. However, in a heat transfer tube formed by penetrating a heat transfer bare tube through a plate fin, a large number of triangular protrusions are formed around the tube hole through which each heat transfer bare tube passes through the plate fin, and a spiral shaped In the heat transfer tube equipped with annular fins, spiral protrusions are formed between the annular fins on the outer surface of the bare heat transfer tube.

「作用」 伝熱裸管の配列を、従来の正三角形又は近似正三角形配
列(千鳥)とし、該正三角形又は近似正三角形の一辺に
直交するよう通気する方法から鈍角二等辺三角形配列、
即ち変則千鳥とし、該鈍角二等辺三角形の底辺に直交し
て通気するようにしたから、通気方向と直交する列方向
の伝熱裸管の間隙S?は大きくなり、管側流路面積を広
くすることができるので、St’間の質量速度の二乗に
比例する管群的圧力降下はSTが大きくなる程極度に減
少するものである。一方管外側境膜係数は前記S7及び
通気方向と平行である段方向の伝熱裸管の間隙SRが大
きくなる程小さくなるが、本発明はSTは大きくし、か
つ間隙S、Iを小さくなるようにし、尚かつ伝熱裸管外
面にプレートフィンを形成した伝熱管においては三角形
状突起を各フィン間に形成し、また伝熱裸管外面に螺線
状の環状フィンを形成した伝熱管においても、螺線状の
突起を伝熱裸管外表面のフィン間に形成し、通気に対す
る管群的圧力降下に大きく影響を及ぼさないような形状
にしたから、管群内流速を局部的に増速し、渦流を発生
させることによって局部的にレイノルズ数を増大させ、
管群内即ち伝熱裸管外面及びフィン面の伝熱を改善する
他、前記両者の突起が直接的にフィン効率の高い伝熱面
積として加算されるので、高伝熱効率化を可能とするも
のである。
"Operation" The heat transfer bare tubes are arranged in a conventional equilateral triangular arrangement or an approximately equilateral triangular arrangement (staggered), and ventilation is carried out perpendicularly to one side of the equilateral triangle or approximate equilateral triangle, to an obtuse isosceles triangular arrangement.
That is, since the irregular staggered pattern is used and ventilation is perpendicular to the base of the obtuse isosceles triangle, the gap S between the heat transfer bare tubes in the row direction perpendicular to the ventilation direction? becomes large and the tube side flow path area can be widened, so that the pressure drop across the tube group, which is proportional to the square of the mass velocity between St', is extremely reduced as ST becomes larger. On the other hand, the tube-side membrane coefficient becomes smaller as the gap SR of the heat transfer bare tube in the step direction parallel to S7 and the ventilation direction becomes larger, but in the present invention, ST is increased and the gaps S and I are made smaller. In addition, in a heat transfer tube in which plate fins are formed on the outer surface of the heat transfer bare tube, a triangular protrusion is formed between each fin, and in a heat transfer tube in which a spiral annular fin is formed on the outer surface of the heat transfer bare tube. In addition, spiral protrusions are formed between the fins on the outer surface of the bare heat transfer tubes, and the shape does not significantly affect the pressure drop in the tube group due to ventilation, so the flow velocity within the tube group can be locally increased. The Reynolds number is increased locally by increasing the speed and generating vortices.
In addition to improving heat transfer within the tube group, that is, on the outer surface of heat transfer bare tubes and on the fin surface, the protrusions on both of the above are directly added as a heat transfer area with high fin efficiency, making it possible to improve heat transfer efficiency. It is.

「実施例」 今、ここに本発明の実施例を示す添付図面について詳説
する。
Embodiments Reference will now be made in detail to the accompanying drawings that illustrate embodiments of the invention.

1は熱交換器の本体で、2は多数の熱媒体を通す直管状
伝熱裸管であり、多数の伝熱裸管2を本体1内部に水平
配置し、該伝熱裸管2の内、第8図に示すように隣接す
る三本ABCを正三角形状に配列した従来のもの(千鳥
)を通気方向aに対して直交する伝熱裸管2の列方向の
間隙S?を大きくするために、第5図に示すように伝熱
裸管2の内、隣接する三本ACDが鈍角二等辺三角形を
構成するよう管群を90°転換して配列し、即ち変則千
鳥とし、各伝熱裸管2の両端を本体1の両側の管板3,
3を貫通して突出させたものである。4は多数の180
 ’ベンドで、第2図に示すように各伝熱裸管2の本体
1両側の管板3.3よりの前記突出部を各列毎に上下に
、かつ両側の管板3.3において交互に連結するもので
、各列毎の上下複数本の伝熱裸管2で夫々独立した流路
を構成するものである。5は熱媒体入口ヘッダーで、6
は熱媒体出口ヘッダーであり、各列の最上段及び最下段
の伝熱裸管2の突出端部を夫々連結するもので、熱媒体
入口ヘッダ−5より流入した熱媒体は各列の上下複数本
の伝熱裸管2で構成した夫々独立の流路を通り熱媒体出
口ヘッダ−6より流出するものである。7は送風機で、
前記本体1の上面板8に穿設した吸入口9に設備し、本
体1の上面板8から底面枠lO方向に従来の配列、千鳥
の伝熱裸管BCに平行に、即ち変則千鳥の鈍角二等辺三
角形ACDの底辺CDに直交するように通気するもので
ある。11は該底面枠10に穿設した吐出口で、吸入口
9から吸い込まれた気体を多数の伝熱裸管2を通る熱媒
液と熱交換し、冷却気体あるいは加熱気体を吐き出すも
のである。
1 is a main body of the heat exchanger, and 2 is a straight heat transfer bare tube through which a large number of heat mediums are passed.A large number of heat transfer bare tubes 2 are arranged horizontally inside the main body 1, As shown in FIG. 8, a conventional one (staggered) in which three adjacent ABC tubes are arranged in an equilateral triangle shape has a gap S? in the row direction of the heat transfer bare tubes 2 perpendicular to the ventilation direction a? In order to increase this, as shown in Fig. 5, the tube group is arranged by turning the tube group by 90 degrees so that three adjacent ACDs of the heat transfer bare tubes 2 form an obtuse isosceles triangle, that is, in an irregular staggered manner. , both ends of each heat transfer bare tube 2 are connected to tube sheets 3 on both sides of the main body 1,
3 and protrudes through it. 4 is a large number of 180
' At the bend, as shown in FIG. A plurality of upper and lower heat transfer bare tubes 2 in each row constitute independent flow paths. 5 is a heat medium inlet header, 6
is a heat medium outlet header, which connects the protruding ends of the top and bottom heat transfer bare tubes 2 of each row, respectively. The heat medium flows out from the heat medium outlet header 6 through independent flow paths made up of two heat transfer bare tubes 2, respectively. 7 is a blower;
The suction port 9 is installed in the top plate 8 of the main body 1, and the conventional arrangement is from the top plate 8 of the main body 1 in the direction of the bottom frame lO, parallel to the staggered heat transfer bare tube BC, that is, at an irregular staggered obtuse angle. Ventilation is perpendicular to the base CD of the isosceles triangle ACD. Reference numeral 11 denotes a discharge port drilled in the bottom frame 10, which exchanges heat with the heat medium liquid passing through a large number of bare heat transfer tubes 2 with the gas sucked in from the suction port 9, and discharges cooling gas or heated gas. .

実施例1 本実施例のものは伝熱管としてプレートフィン式のもの
を使用するもので、変則千鳥に配列した伝熱裸管2に、
咳各伝熱裸管2が貫通するプレートフィン12を適宜ピ
ッチP、で多数付設したものである。13は各伝熱裸管
2の周囲に付設した三角形状突起で、本実施例では多数
のプレートフィン12の各伝熱裸管2が貫通する管孔1
4相当箇所に十字の切目15を穿設し、四等分された三
角形状部13aを各伝熱裸管2のフィン12根元部で折
曲し、各プレートフィン12.12間にフィン12と平
行に、又は適当な角度を付けて形成したもので、前記通
気方向aと直交する方向の伝熱裸管2の間隙STが大き
くなることにより拡大される管側流路面積を各伝熱裸管
2の周囲で局部的に縮小し、質量速度を増速させ、また
伝熱管の相当直径を小ならしめるものである。
Example 1 This example uses plate fin type heat transfer tubes, and the heat transfer bare tubes 2 arranged in an irregular staggered manner are
A large number of plate fins 12 through which each heat transfer bare tube 2 passes are attached at an appropriate pitch P. Reference numeral 13 denotes a triangular projection attached around each heat transfer bare tube 2, and in this embodiment, a tube hole 1 through which each heat transfer bare tube 2 of a large number of plate fins 12 passes.
A cross-shaped cut 15 is made at a location corresponding to 4, and the triangular portion 13a divided into four is bent at the base of the fin 12 of each heat transfer bare tube 2, and a fin 12 is formed between each plate fin 12 and 12. They are formed parallel to each other or at an appropriate angle, and each heat transfer bare tube is designed to measure the area of the tube-side flow passage that is expanded by increasing the gap ST between the heat transfer bare tubes 2 in the direction perpendicular to the ventilation direction a. It shrinks locally around the tube 2, increasing the mass velocity and reducing the equivalent diameter of the heat transfer tube.

実施例2 本実施例のものは伝熱管として環状フィンを使用したも
ので1、伝熱裸管2の外周に螺線状に帯状のフィン16
aを巻き付けて環状フィン16とし、該環状フィン16
を付設した多数の伝熱裸管2を前記変則千鳥に配列した
ものである。
Example 2 This example uses annular fins as the heat transfer tube 1, and a strip-shaped fin 16 spirally arranged around the outer circumference of the bare heat transfer tube 2.
a is wound to form an annular fin 16, and the annular fin 16
A large number of heat transfer bare tubes 2 with attached heat transfer tubes 2 are arranged in the above-mentioned irregular staggered pattern.

16bは帯状のフィン16a、16a間に螺線状に巻き
付けた、本実施例では断面が円形状の螺線状突起で、帯
状フィン16aと同様に伝熱裸管2の表面と全周におい
て接触一体としたものである。この場合変則千鳥の通気
方向aと直交する方向の伝熱裸管2の間隙S、が大きく
なることにより拡大される管側流路面積は各伝熱裸管2
の周囲に螺線状に帯状のフィン16aを巻き付ける際に
生ずる環状フィン16の根元部のびだ17に対し前記伝
熱裸管2の表面に突設した螺線状突起16bが前記三角
形状突起13と同様の作用をし、実施例1と同様の効果
をもたらすものである。
Reference numeral 16b denotes a spiral projection having a circular cross section in this embodiment, which is wound in a spiral between the band-shaped fins 16a, 16a, and is in contact with the surface of the heat transfer bare tube 2 over the entire circumference similarly to the band-shaped fin 16a. It is an integrated thing. In this case, as the gap S between the heat transfer bare tubes in the direction perpendicular to the ventilation direction a of the irregular zigzag pattern becomes larger, the tube-side flow passage area of each heat transfer bare tube 2 is enlarged.
The spiral protrusion 16b protruding from the surface of the heat transfer bare tube 2 is attached to the triangular protrusion 13 with respect to the extension 17 of the root portion of the annular fin 16 that is created when the band-shaped fin 16a is wound spirally around the fin 16a. This has the same effect as in Example 1, and brings about the same effects as in Example 1.

本発明は以上のような構成で、本発明の変則千鳥に配列
したちの甲の通気方向aと直交する列方向の伝熱裸管2
の間隙S、は従来の正三角形配列の千鳥乙の7倍となり
、例えば甲及び乙の夫々の伝熱裸管2の管配列寸法を第
4図のようにすると、本発明中の管側流路面積は従来の
もの乙より35%広くなり、同−流量下における管群的
流速は乙が7.4m/s s甲が6.7m八となる。一
方、VaIlpolaの式で与えられる管外側境膜係数
を管群的流速が4.0.6.0.8.0.10.0(m
/s)と変化したときの値をある気体、温度について算
出し、又実験によりこれらを確認すると第12図に示す
ようなグラフになり、前記同一流量下における管群的流
速は甲が6.7m/s、乙が7.4m/sであるから、
第12図により管外側境膜係数は夫々中が26.5 、
乙が24.3kcal/rrrh”cとなり約13%増
加する。次に管群内圧力降下を前記甲、乙について管群
内圧力(管群的流速)が前記同様に変化したときの値を
算出すると第13図に示すようなグラフとなり、同−流
量下における管群的流速は夫々6.7m/s。
The present invention has the above configuration, and the heat transfer bare tubes 2 are arranged in an irregular staggered manner in the row direction perpendicular to the ventilation direction a of the instep.
The gap S is seven times that of the conventional staggered equilateral triangular arrangement.For example, if the tube arrangement dimensions of the heat transfer bare tubes 2 of A and B are made as shown in FIG. The passage area is 35% wider than the conventional one, and the flow velocity of the pipe group under the same flow rate is 7.4 m/s for Otsu and 6.7 m/s for A. On the other hand, if the tube-like flow velocity is 4.0.6.0.8.0.10.0 (m
/s) is calculated for a certain gas and temperature, and when these are confirmed through experiments, a graph as shown in Fig. 12 is obtained, and the flow velocity of the tube group under the same flow rate is 6. 7m/s, and Otsu is 7.4m/s, so
According to Figure 12, the extratubular membrane coefficients are 26.5 for the middle and 26.5 for the middle, respectively.
B becomes 24.3 kcal/rrrh"c, which increases by about 13%. Next, calculate the pressure drop in the tube group for A and B when the pressure in the tube group (flow velocity in the tube group) changes in the same way as above. Then, a graph as shown in Fig. 13 is obtained, and the flow velocity of each tube group under the same flow rate is 6.7 m/s.

7.4m/sであるから管群内圧力降下は0.9mm八
qへ段、2.7 mmA47段となり、甲のものは乙に
比べて約1/3に減少するが、甲と乙との通気方向と平
行である段の伝熱裸管2の間隙SRは1:2であるから
同一熱交換器として伝熱裸管2を配置する場合の前記段
数は2:1となり、結局管群内圧力降下は2/3に減少
するものである。
Since it is 7.4 m/s, the pressure drop within the tube group is 0.9 mm 8q steps, 2.7 mm A47 steps, and the pressure drop in A is reduced to about 1/3 compared to B, but between A and O Since the gap SR between the heat transfer bare tubes 2 in the stages parallel to the ventilation direction is 1:2, the number of stages when the heat transfer bare tubes 2 are arranged as the same heat exchanger is 2:1, and as a result, the tube group The internal pressure drop is reduced by 2/3.

「発明の効果」 本発明は多数の伝熱裸管2の配列を、各々隣接する三本
の伝熱裸管2が正三角形を構成し、通気方向aに対して
該正三角形の一辺を直交するようにした配列、即ち千鳥
から、前記正三角形の一辺に平行に通気するよう管群の
配列を90゜転換し、各々隣接する三本の伝熱裸管2が
鈍角二等辺三角形を構成する配列、即ち変則千鳥とした
から、管側流路面積が従来の配列、即ち千鳥と比べて3
5%広くでき、管群的流速は遅くなるが、千鳥と同一管
群内流速において管外側境膜係数は従来のものより、適
用管群内流速4.0〜10.0  m/sの範囲におい
て約13%程度改善でき、而もプレートフィン12を用
いる場合は各伝熱裸管2の周囲に突設した三角形状突起
13、また環状フィン16を用いる場合はフィン根元部
に形成されるひだ17に対し各伝熱裸管2の表面に突設
した螺線状突起16bによって前記拡大された管側流路
面積を各伝熱裸管2の回りで局部的に縮小し、管群的流
速を増速し、渦流を発生させてレイノルズ数を増大させ
、また質量速度を増速し、また伝熱管の相当直径を縮小
し、伝熱裸管2面及びフィン12.16面の伝熱を改善
するから、伝熱効率を低下させることがないものである
。また管群内圧力降下は従来の配列千鳥の273となる
ので、送風機7の所要動力は大幅に節減でき、膨大な省
エネルギー化が達成できるものである。更に前記のよう
に本発明は通気方向aと平行方向の伝熱裸管2の段数は
従来のものの約2倍となり、従来の千鳥と同一の管側流
路面積にするためには通気方向aと直交する方向の伝熱
裸管2の列数は少なくなるので、熱交換器本体1の幅が
狭くなり、据付は区画の床面積の省スペース化を図るこ
とができる。
"Effects of the Invention" The present invention arranges a large number of heat transfer bare tubes 2 such that three adjacent heat transfer bare tubes 2 form an equilateral triangle, and one side of the equilateral triangle is perpendicular to the ventilation direction a. The arrangement of the tube group is changed from the staggered arrangement by 90 degrees so that the ventilation is parallel to one side of the equilateral triangle, and the three adjacent bare heat transfer tubes 2 form an obtuse isosceles triangle. Because of the irregular staggered arrangement, the tube side flow path area is 3 times smaller than the conventional arrangement, that is, staggered.
Although it can be made wider by 5% and the flow velocity within the tube group becomes slower, at the same flow velocity within the tube group as in the staggered tube, the outer membrane coefficient is within the range of 4.0 to 10.0 m/s for the applicable intra-tube flow velocity than the conventional one. can be improved by about 13%, and when plate fins 12 are used, the triangular protrusions 13 protruding around each heat transfer bare tube 2, and when annular fins 16 are used, the folds formed at the base of the fins can be improved by about 13%. 17, the expanded tube-side flow path area is locally reduced around each heat-transfer bare tube 2 by the spiral protrusion 16b protruding from the surface of each heat-transfer bare tube 2, and the tube-group flow velocity is reduced. , increase the Reynolds number by generating a vortex flow, increase the mass velocity, and reduce the equivalent diameter of the heat transfer tube to reduce the heat transfer on the two surfaces of the heat transfer bare tube and the 12 and 16 surfaces of the fins. Since it improves heat transfer efficiency, it does not reduce heat transfer efficiency. In addition, since the pressure drop within the tube group is 273 times higher than the conventional staggered arrangement, the power required for the blower 7 can be significantly reduced, and enormous energy savings can be achieved. Furthermore, as described above, in the present invention, the number of stages of heat transfer bare tubes 2 in the direction parallel to the ventilation direction a is approximately twice that of the conventional one, and in order to have the same tube side flow path area as the conventional staggered one, the number of stages of the heat transfer bare tubes 2 in the direction parallel to the ventilation direction a is approximately twice Since the number of rows of heat transfer bare tubes 2 in the direction perpendicular to the 100 mm is reduced, the width of the heat exchanger main body 1 is narrowed, and the installation space of the compartment can be saved.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施例を示すもので、第1図は一部
を切欠したプレートフィン式の熱交換器の斜視図、第2
図は同熱交換器の概略縦断面図、第3図は同ヘフダ一部
から見た概略側面図、第4図は管配列寸法図で、甲は本
発明の変則千鳥のもの、乙は従来の千鳥のもの、第5図
〜第8図は実施例1のもので、第5図は第2図のA−A
線要部拡大断面図、第6図は第5図要部平面図、第7図
は伝熱裸管が貫通する前のプレートフィンの要部正面図
、第8図はプレートフィン式で従来の配列、千鳥のもの
の要部拡大縦断面図、第9図〜第11図は実施例2のも
ので、第9図は環状フィン式の第2図A−A線要部拡大
断面図、第10図は環状フィンの要部拡大断面図、第1
1図は環状フィン式で従来の配列、千鳥のものの要部拡
大断面図、第12図は管群的流速を変化させたときの本
発明中と従来のもの乙との管外側境膜係数の変化を示す
グラフ、第13図は間管群内圧力降下の変化を示すグラ
フである。 1・・・・熱交換器本体、2−・直管状伝熱裸管、3−
・一管板、4−180°ベンド、5−熱媒体入ロヘソゲ
ー16−熱媒体出ロヘソグー、7−送風機、8・−・・
・上面板、9・−吸入口、10−・−底面枠、11・−
・吐出口、12・−プレートフィン、13−・三角形状
突起、13a−三角形状部、14−・−・管孔、15−
切目、16・・・・環状フィン、16a−帯状フィン、
16b・・・螺線状突起、17−ひだ、a−・−通気方
向。
The accompanying drawings show embodiments of the present invention, and FIG. 1 is a partially cutaway perspective view of a plate-fin type heat exchanger, and FIG.
The figure is a schematic longitudinal sectional view of the heat exchanger, Figure 3 is a schematic side view as seen from a part of the heat exchanger, and Figure 4 is a dimensional drawing of the tube arrangement. Figures 5 to 8 are from Example 1, and Figure 5 is from A-A in Figure 2.
Figure 6 is an enlarged cross-sectional view of the main part of the line, Figure 6 is a plan view of the main part of Figure 5, Figure 7 is a front view of the main part of the plate fin before the heat transfer bare tube passes through it, and Figure 8 is the conventional plate fin type. FIGS. 9 to 11 are enlarged vertical cross-sectional views of the main parts of the staggered arrangement, and FIG. 9 is an enlarged cross-sectional view of the main parts taken along the line A-A in FIG. The figure is an enlarged cross-sectional view of the main part of the annular fin.
Figure 1 is an enlarged cross-sectional view of the main part of a conventional annular fin arrangement and a staggered arrangement, and Figure 12 shows the outer membrane coefficient of the present invention and the conventional arrangement when the flow velocity in the tube group is changed. Graph showing changes. FIG. 13 is a graph showing changes in pressure drop within the inter-tube group. 1... heat exchanger body, 2- straight heat transfer bare tube, 3-
・One tube plate, 4-180° bend, 5-Heat medium input 16-Heat medium output rohesogoo, 7-Blower, 8...
・Top plate, 9.-Inlet, 10.--Bottom frame, 11.-
-Discharge port, 12--plate fin, 13--triangular projection, 13a-triangular part, 14--tube hole, 15-
Cut, 16... annular fin, 16a-band fin,
16b...Spiral projection, 17-fold, a--ventilation direction.

Claims (1)

【特許請求の範囲】 1、熱媒体を通す多数の伝熱裸管を多段かつ多列に、各
隣接する三本の伝熱裸管が正三角形又は近似正三角形を
構成するよう配置し、該多数の伝熱裸管が貫通する多数
のプレートフィンを付設して伝熱管群とし、該伝熱管群
に直交気流を供給できるように送風機を設備して伝熱管
群内に通気し、熱媒体と気体間で熱交換するようにした
熱交換器において、多数のプレートフィンを各伝熱裸管
が貫通する管孔の周囲に三角形状突起を形成し、該送風
機により前記各隣接する三本の伝熱裸管が構成する正三
角形又は近似正三角形の一辺と平行に通気することを特
徴とする熱交換器。 2、熱媒体を通す多数の伝熱裸管を多段かつ多列に、各
隣接する三本の伝熱裸管が正三角形又は近似正三角形を
構成するよう配置し、該多数の伝熱裸管の外周に螺線状
に環状フィンを付設して伝熱管群とし、該伝熱管群に直
交気流を供給できるように送風器を設備して伝熱管群内
に通気し、熱媒体と気体間で熱交換するようにした熱交
換器において、伝熱裸管外表面の環状フィン間に螺線状
突起を形成し、該送風器により前記各隣接する三本の伝
熱裸管が構成する正三角又は近似正三角形の一辺と平行
に通気することを特徴とする熱交換器。
[Claims] 1. A large number of heat transfer bare tubes through which a heat medium passes are arranged in multiple stages and in multiple rows so that each three adjacent heat transfer bare tubes constitute an equilateral triangle or an approximately equilateral triangle; A large number of plate fins penetrated by a large number of heat transfer bare tubes are attached to form a heat transfer tube group, and a blower is installed to supply cross-sectional airflow to the heat transfer tube group to ventilate the heat transfer tube group. In a heat exchanger configured to exchange heat between gases, a triangular protrusion is formed around a tube hole through which each heat transfer bare tube passes through a large number of plate fins, and the blower is used to blow each of the three adjacent heat transfer tubes. A heat exchanger characterized in that ventilation is carried out parallel to one side of an equilateral triangle or an approximate equilateral triangle formed by bare thermal tubes. 2. A large number of heat transfer bare tubes through which a heat medium passes are arranged in multiple stages and in multiple rows so that each three adjacent heat transfer bare tubes constitute an equilateral triangle or an approximately equilateral triangle, and the large number of heat transfer bare tubes An annular fin is attached to the outer periphery of the heat transfer tube group in a spiral shape to form a heat transfer tube group, and a blower is installed to supply cross-sectional airflow to the heat transfer tube group to ventilate the heat transfer tube group. In a heat exchanger configured to exchange heat, a spiral protrusion is formed between the annular fins on the outer surface of the heat transfer bare tube, and the air blower is used to form an equilateral triangle formed by each of the three adjacent heat transfer bare tubes. Or a heat exchanger characterized by ventilation parallel to one side of an approximate equilateral triangle.
JP12892685A 1985-06-13 1985-06-13 Heat exchanger Pending JPS61285388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12892685A JPS61285388A (en) 1985-06-13 1985-06-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12892685A JPS61285388A (en) 1985-06-13 1985-06-13 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS61285388A true JPS61285388A (en) 1986-12-16

Family

ID=14996803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12892685A Pending JPS61285388A (en) 1985-06-13 1985-06-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61285388A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091137A (en) * 2008-10-03 2010-04-22 Hoshizaki Electric Co Ltd Heat exchanger
CN108679883A (en) * 2018-08-15 2018-10-19 天津商业大学 Integral fins pipe air-cooler
CN108800724A (en) * 2018-08-15 2018-11-13 天津商业大学 The air-cooler that six sides of pipe triangular fin one are arranged symmetrically

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542139U (en) * 1978-09-12 1980-03-18
JPS584061A (en) * 1981-06-30 1983-01-11 本間 克明 Bending device of long roof
JPS5818594A (en) * 1981-07-27 1983-02-03 Susumu Kusaka Self-feeding type liquid pumping device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542139U (en) * 1978-09-12 1980-03-18
JPS584061A (en) * 1981-06-30 1983-01-11 本間 克明 Bending device of long roof
JPS5818594A (en) * 1981-07-27 1983-02-03 Susumu Kusaka Self-feeding type liquid pumping device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091137A (en) * 2008-10-03 2010-04-22 Hoshizaki Electric Co Ltd Heat exchanger
CN108679883A (en) * 2018-08-15 2018-10-19 天津商业大学 Integral fins pipe air-cooler
CN108800724A (en) * 2018-08-15 2018-11-13 天津商业大学 The air-cooler that six sides of pipe triangular fin one are arranged symmetrically

Similar Documents

Publication Publication Date Title
US5111876A (en) Heat exchanger plate fin
KR100225627B1 (en) Heat exchanger for air conditioner
JPH09133488A (en) Heat exchanger with fin
KR100210072B1 (en) Heat exchanger of air conditioner
JPH0278896A (en) Heat exchanger
JPH10206085A (en) Heat-exchanger for air-conditioner
KR100621525B1 (en) Heat transfer pin of heat exchanger
JPS61285388A (en) Heat exchanger
JPS633183A (en) Finned heat exchanger
JP2002235993A (en) Spiral fin tube and refrigeration air conditioning device
JPH0684876B2 (en) Heat exchanger with fins
JPS616590A (en) Finned heat exchanger
JP2016017695A (en) Fin tube heat exchanger
KR100357100B1 (en) heat-exechanger is made up of pipe is formed of small diameter
KR100357131B1 (en) heat-exechanger is made up of pipe is formed of small diameter
KR100357099B1 (en) heat-exechanger is made up of pipe is formed of small diameter
KR100357132B1 (en) heat-exechanger is made up of pipe is formed of small diameter
JPS6133432Y2 (en)
KR100357133B1 (en) heat-exechanger is made up of pipe is formed of small diameter
KR100357101B1 (en) heat-exechanger is made up of pipe is formed of small diameter
KR100357134B1 (en) heat-exechanger is made up of pipe is formed of small diameter
JP2730649B2 (en) Heat exchanger
KR100187225B1 (en) Heat exchanger
JP3591090B2 (en) Heat exchanger
JPWO2021234957A5 (en)