JPS61284984A - Gas laser - Google Patents

Gas laser

Info

Publication number
JPS61284984A
JPS61284984A JP12666285A JP12666285A JPS61284984A JP S61284984 A JPS61284984 A JP S61284984A JP 12666285 A JP12666285 A JP 12666285A JP 12666285 A JP12666285 A JP 12666285A JP S61284984 A JPS61284984 A JP S61284984A
Authority
JP
Japan
Prior art keywords
gas
discharge
optical axis
electrodes
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12666285A
Other languages
Japanese (ja)
Inventor
Kimiharu Yasui
公治 安井
Masaaki Tanaka
正明 田中
Masaki Kuzumoto
昌樹 葛本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12666285A priority Critical patent/JPS61284984A/en
Publication of JPS61284984A publication Critical patent/JPS61284984A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a laser beam of homogeneous and stable mode by constructing the components of the flow of gas of the direction perpendicular to an optical axis of the components of the flow of the gas reversely at least two positions on an optical axis. CONSTITUTION:A high frequency high voltage is applied by a high frequency high voltage source 6 between metal electrodes 2 and 3. Since glasses 4, 5 are coated on the electrodes 2, 3, a voiceless discharge 7 is generated between the electrodes. A housing 1 is partitioned by a partition plate 16 to the right and left sides, the gas is passed by a blower 88 through a discharge space beforehand perpendicular to the paper shown by 12 in the right section, and passed by a blower 8 in a discharge space in the depthwise direction perpendicular to the paper shown by 11 in the left section. In other words, the gas flows are reverse in the right and left sides. While the gas is circulated, it is cooled by a heat exchanger 10, uniform exciting space of the light is obtained to provided a stable and homogeneous laser beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はガスレーザ装置、とくにそのレーザビームモ
ードの高品質化に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas laser device, particularly to improving the quality of its laser beam mode.

〔従来の技術〕[Conventional technology]

第7図(a)は、従来の無声放電式ガスレーザ装置を示
す断面構成図であり、@T図(b)は第7図(atのR
−B線からの矢視図である。
Figure 7 (a) is a cross-sectional configuration diagram showing a conventional silent discharge type gas laser device, and @T figure (b) is a
- It is an arrow view from the B line.

図において、(1)は筐体で、内部にはレーザガスがつ
められている。+21 +31は相対向する金属電極。
In the figure, (1) is a housing, inside of which laser gas is filled. +21 +31 are opposing metal electrodes.

+41 、 (51は金属成極(2) 、 (31上に
おのおのコーティングされたガラス、(6)は高周波高
電圧電源、(7)は電極間に生じた無声放電、(8)は
送風機、(9)は送風機取付は用の穴つき板、 (II
は熱交換器、αυは送風機(8)により生じたガスの流
れの方向を示す記号、(13は部分反射鏡、(4)は全
反射鏡、α9はレーザビーム。
+41, (51 is metal polarization (2), (31 is each coated glass, (6) is a high frequency high voltage power supply, (7) is a silent discharge generated between the electrodes, (8) is a blower, ( 9) is a plate with holes for installing the blower, (II
is a heat exchanger, αυ is a symbol indicating the direction of gas flow generated by the blower (8), (13 is a partial reflection mirror, (4) is a total reflection mirror, and α9 is a laser beam.

(150)はレーザビームの光軸である。(150) is the optical axis of the laser beam.

次に動作について説明する。金属電極(2)と金属電極
(3)との間には高周波高電圧電源(6)より、高周波
高電圧がかゆられる。金属電極+21 、 (3)上に
はガラス(41、(5)がコーティングされているため
、電極間には無声放電(7)が生じる。ガスは送風機(
8)により、放電空間(7)に送りこまれ、熱交換器0
1により冷却さね、再び放電空間(7)に送りこまれる
。共振器は全反射鏡Iと0部分反射鏡αjとからなり、
光は無声放電によりレーザ励起した無声放電の中を往復
することにより、増幅され、ある値以上になると、レー
ザビームa!9として外部に取出される。
Next, the operation will be explained. A high frequency high voltage is applied between the metal electrode (2) and the metal electrode (3) from a high frequency high voltage power source (6). Since the metal electrode +21, (3) is coated with glass (41, (5)), a silent discharge (7) occurs between the electrodes.The gas is supplied by a blower (
8) into the discharge space (7), and the heat exchanger 0
1 and then sent into the discharge space (7) again. The resonator consists of a total reflection mirror I and a zero partial reflection mirror αj,
The light is amplified by going back and forth in the silent discharge excited by the laser, and when it exceeds a certain value, the laser beam a! 9 and taken out to the outside.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のガスレーザ装置は以上のように構成されているの
で。
The conventional gas laser device is configured as described above.

(1)放電により生じるガスの温度上昇が共振器空間内
にガス流の方向の温度分布を生じさせ、これは空間に不
均一な屈折率分布をもたらす。
(1) The temperature rise of the gas caused by the discharge causes a temperature distribution in the direction of the gas flow within the resonator space, which results in a non-uniform refractive index distribution in the space.

(2)  レーザ励起されたガスは、ガス流により流さ
れ、下流付近でレーザ光の増幅率、即ちゲインが最大と
なるというようにゲイン分布をもたらす。
(2) The laser-excited gas is caused to flow by the gas flow, resulting in a gain distribution such that the amplification factor, ie, the gain, of the laser beam is maximum near the downstream side.

以上2つの理由により、共振器空間内に、ガス流方向に
異方性が生じ、均質なレーザビームが得られないという
問題点があった。
Due to the above two reasons, anisotropy occurs in the gas flow direction within the resonator space, resulting in a problem that a homogeneous laser beam cannot be obtained.

この発明は、上記のような問題点を解消するためになさ
れたもので、均質で安定したモードのレーザビームを得
るガスレーザ装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a gas laser device that produces a homogeneous and stable laser beam mode.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るガスレーザ装置は、ガスの流れの成分の
うち、光軸と直交する方向の流れの成分が、光軸上少な
くとも2ケ所においてたがいに逆方向となるように構成
したものである。
The gas laser device according to the present invention is configured such that among the gas flow components, flow components in a direction perpendicular to the optical axis are in opposite directions at at least two locations on the optical axis.

〔作用〕[Effect]

この発明におけるガスの流れは、光軸方向からみた時、
互いに逆方向の複数のガスの流れがあるので、ガス流に
より生じる温度分布やゲイン分布をうち消しあう。
The gas flow in this invention is as follows when viewed from the optical axis direction:
Since there are multiple gas flows in opposite directions, the temperature distribution and gain distribution caused by the gas flows cancel each other out.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(alはこの発明の一実施例による無声放電式ガ
スレーザ装置を示す断面構成図であり、第1図(blは
第1図(81のB−B線からの矢視図であり、第1図(
elは第1図(a)のO−0線からの矢視図である。図
において、第7図と同一符号は同−又は相当部分を示す
。(88)は送風機(8)と回転方向の異なる送風機、
alは送風機(8)により生じたガスの流れ方向。
FIG. 1 (al is a cross-sectional configuration diagram showing a silent discharge gas laser device according to an embodiment of the present invention, and FIG. 1 (bl is a view taken from line B-B in FIG. 1 (81), Figure 1 (
El is a view taken from the O-0 line in FIG. 1(a). In the figure, the same reference numerals as in FIG. 7 indicate the same or corresponding parts. (88) is a blower whose rotation direction is different from that of blower (8);
al is the flow direction of gas generated by the blower (8).

(I7Jは送風機(88)により生じたガスの流れ方向
であり、これらのガスの流れ方向(lH3は光軸(15
0)と直交する方向の流れの成分がたがいに逆方向とな
っている。(1eはしきり板である。
(I7J is the flow direction of the gases generated by the blower (88), and the flow direction of these gases (lH3 is the direction of the optical axis (15
The flow components in the direction orthogonal to 0) are in opposite directions. (1e is a partition board.

次に動作について説明する。金属電極f21 、 (3
1の間には、高周波高電圧電源(6)より、高周波高電
圧がかけられる。金属電極+21 、 (31上にはガ
ラス(4)。
Next, the operation will be explained. Metal electrode f21, (3
1, a high frequency high voltage is applied from a high frequency high voltage power supply (6). Metal electrode +21, (Glass (4) on 31.

(5)がコーティングされているため、電極間には無声
放電(7)が生じる。筐体(1)内は、しきり板αeに
より左、右の部分にしきられていて、第1図(a)にお
ける右の部分ではガスは送風機(88)によりa3に示
す紙面垂直手前方向に放電空間内を通過するが。
(5) is coated, a silent discharge (7) occurs between the electrodes. The inside of the casing (1) is divided into left and right parts by a partition plate αe, and in the right part in FIG. It passes through the inside.

左の部分では、ガスは送風機(8)により、αυに示す
紙面垂直奥方向に放電空間内を通過する。つまり左、右
の部分でガスの流れ方向は互いに逆となっている。それ
ぞれガスは循環する間に、熱交換器顛により冷却される
In the left part, the gas is passed through the discharge space by the blower (8) in a direction perpendicular to the plane of the paper shown at αυ. In other words, the gas flow directions are opposite to each other on the left and right sides. Each gas is cooled by a heat exchanger system during circulation.

共振器は部分反射鏡αjと全反射鏡α4とからなり。The resonator consists of a partial reflection mirror αj and a total reflection mirror α4.

両反射鏡間を往復する光は、無声放電により励起された
ガスにより増幅される。ガスの流れ方向に。
The light traveling back and forth between both reflecting mirrors is amplified by the gas excited by the silent discharge. in the direction of gas flow.

共振器空間中には温度分布、ゲイン分布があるが。There is a temperature distribution and a gain distribution in the resonator space.

左、右の放電部で、ガスの流れの方向が異なるため、共
振器内に往復する光にとっては、温度分布。
Because the direction of gas flow differs between the left and right discharge parts, the temperature distribution changes for the light that travels back and forth within the resonator.

ゲイン分布がないように感じられ、均質に増幅されて、
レーザビームa!9として外部に取出される。
It feels like there is no gain distribution, and it is amplified homogeneously,
Laser beam a! 9 and taken out to the outside.

なお、上記実施例では、第1図(e)に示すようにガス
の流れの系は、左の部分では、放電空間→熱交換器→送
風器→放電空間の順番に循環し、右の部分では、放電空
間→送風器→熱交換器→放電空間の順番に循環するもの
を示したが、第2図又は第3図に示すように、右、左部
分で同一の循環系路となるように送風機、熱交換器を配
置してもよく、また第4図のように互いにガスの流れ方
向が異なる区域に対応して電極を分割もしくは、同一電
極で中央部のみ放電を制限してもよい。こうすることに
より、中央付近に生じる逆方向のガスの流れ方向(Iυ
、 (I′IJによるよどみがもたらす放電の不安定さ
が軽減できる。
In the above embodiment, as shown in FIG. 1(e), the gas flow system circulates in the order of discharge space → heat exchanger → blower → discharge space in the left part, and in the right part. In the above, we have shown the system that circulates in the order of discharge space → blower → heat exchanger → discharge space, but as shown in Figure 2 or Figure 3, the circulation path is the same in the right and left parts. A blower and a heat exchanger may be placed in the area, or the electrodes may be divided to correspond to areas where the gas flow direction is different, as shown in Figure 4, or the discharge may be limited to the central area using the same electrode. . By doing this, the opposite gas flow direction (Iυ
, (The instability of discharge caused by stagnation due to I'IJ can be reduced.

また第5図に示すように、光軸(150)上に放電の下
流付近がくるように電極を分割配置、もしくは同一電極
で放電面を制限してもよい。一般に。
Further, as shown in FIG. 5, the electrodes may be divided and arranged so that the vicinity of the downstream side of the discharge is on the optical axis (150), or the discharge surface may be limited by the same electrode. in general.

増幅率は、ガス下流付近で最大となるため、光軸がこの
付近にあるように配置することにより、高出力レーザビ
ームを取り出すことができる。
Since the amplification factor is maximum near the downstream side of the gas, a high-power laser beam can be extracted by arranging the optical axis near this point.

上記第5図に近い効果をもたらすものとして。As an effect similar to that shown in Fig. 5 above.

第6図に示すように、電極を斜めに配置してもよt′G また上記実施例では無声放電を用いたものを示したが9
通常の直流グロー放電、マイクロ波放電もしくはそれら
の任意の組合せによる放電を用いたガスレーザ装置につ
いても上記実施例と同様の効果を奏する。
As shown in FIG. 6, the electrodes may be arranged diagonally. Also, in the above embodiment, silent discharge was used.
The same effects as in the above-mentioned embodiments can also be achieved with a gas laser device that uses discharge by ordinary DC glow discharge, microwave discharge, or any combination thereof.

高繰り返しパルス状放電を用いたガスレーザ装置につい
ても、放電方向に温度分布が生じる状況は変わりなく上
記実施例と同様の効果を奏する。
A gas laser device using a highly repetitive pulsed discharge also produces the same effect as the above embodiment without changing the situation in which temperature distribution occurs in the discharge direction.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればガスの流れの成分のう
ち、光軸と直交する方向の流れの成分が。
As described above, according to the present invention, among the components of the gas flow, the component of the flow in the direction perpendicular to the optical axis.

光軸上少な(とも2ケ所においてたがいに逆方向となる
よう構成したので0元にとって均質な励起空間が得られ
、安定で均質なレーザビームを得ることができる。
Since the excitation space is small on the optical axis (both directions are opposite to each other at two locations), a homogeneous excitation space can be obtained for zero elements, and a stable and homogeneous laser beam can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(aHbl(e)は各々この発明の一実施例によ
るガスレーザ装置を示す断面構成図、並びに第1図(a
)のローB線及びO−0線からの矢視図、第2図はこの
発明の他の実施例によるがスレーザ装置を示すa−O線
からの矢視図、第3図(、)価)は各々この発明の他の
実施例によるガスレーザ装置を示す断面構成図及び第3
図(a)のB−B線からの矢視図、第4図。 第5図及び第6図は各々この発明の他の実施例によるガ
スレーザ装置を示すC−O線からの矢視図。 並びに第7図(a)(b)は各々従来のガスレーザ装置
を示す断面構成図及び第1図体)のB−B線からの矢視
図である。 図において、 (2+(3)は電極、(6)は高周波高
電圧電源s (7)I!無声放1i、 (8) (88
)ハ送風機、 (IIは熱交換器、t1υQ2はガスの
流れ方向、 aSはレーザビーム。 (150)は光軸、Qeはしきり板である。 なお9図中、同一符号は同−又は相当部分を示すO
FIG. 1 (aHbl(e)) is a cross-sectional configuration diagram showing a gas laser device according to an embodiment of the present invention, and FIG.
) is a view taken from the low B line and the O-0 line; FIG. 2 is a view taken from the a-O line showing a laser device according to another embodiment of the present invention; FIG. ) are a cross-sectional configuration diagram showing a gas laser device according to another embodiment of the present invention, and a third
FIG. 4 is an arrow view taken from line BB in figure (a). 5 and 6 are views taken along the C-O line, respectively, showing gas laser apparatuses according to other embodiments of the present invention. FIGS. 7(a) and 7(b) are a cross-sectional configuration diagram showing a conventional gas laser device and a view taken along the line BB of FIG. 1), respectively. In the figure, (2+(3) is the electrode, (6) is the high frequency high voltage power supply s (7) I! Silent radio 1i, (8) (88
) C blower, (II is the heat exchanger, t1υQ2 is the gas flow direction, aS is the laser beam, (150) is the optical axis, and Qe is the diaphragm plate. In Figure 9, the same symbols are the same or equivalent parts. O indicating

Claims (5)

【特許請求の範囲】[Claims] (1)相対向する電極間にガスを流し、上記電極間に高
電圧を印加して上記電極間に放電をおこし、レーザ励起
をするものにおいて、上記ガスの流れの成分のうち、光
軸と直交する方向の流れの成分が、上記光軸上少なくと
も2ケ所において、たがいに逆方向であることを特徴と
するガスレーザ装置。
(1) In a device that flows gas between opposing electrodes and applies a high voltage between the electrodes to generate a discharge between the electrodes and excite the laser, the components of the gas flow that correspond to the optical axis A gas laser device characterized in that flow components in orthogonal directions are in opposite directions at at least two locations on the optical axis.
(2)ガスの流れの系は電極間に形成される放電空間、
送風機及び熱交換器よりなり、互いに逆方向のガスの流
れは各々上記放電空間、送風機及び熱交換器を流通する
順番が同一である特許請求の範囲第1項記載のガスレー
ザ装置。
(2) The gas flow system consists of a discharge space formed between the electrodes;
2. The gas laser device according to claim 1, wherein the gas laser device comprises a blower and a heat exchanger, and the gas flows in mutually opposite directions flow through the discharge space, the blower, and the heat exchanger in the same order.
(3)互いにガスの流れ方向が異なる区域に対応して、
電極は少なくとも二つに分割されている特許請求の範囲
第1項又は第2項記載のガスレーザ装置。
(3) Corresponding to areas where gas flow directions are different from each other,
3. The gas laser device according to claim 1, wherein the electrode is divided into at least two parts.
(4)電極は放電のガス下流近傍が光軸上になるように
配置された特許請求の範囲第1項ないし第3項のいずれ
かに記載のガスレーザ装置。
(4) The gas laser device according to any one of claims 1 to 3, wherein the electrode is arranged so that the vicinity of the gas downstream of the discharge is on the optical axis.
(5)電極は光軸に対して斜めに配置された特許請求の
範囲第1項ないし第4項のいずれかに記載のガスレーザ
装置。
(5) The gas laser device according to any one of claims 1 to 4, wherein the electrode is arranged obliquely to the optical axis.
JP12666285A 1985-06-11 1985-06-11 Gas laser Pending JPS61284984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12666285A JPS61284984A (en) 1985-06-11 1985-06-11 Gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12666285A JPS61284984A (en) 1985-06-11 1985-06-11 Gas laser

Publications (1)

Publication Number Publication Date
JPS61284984A true JPS61284984A (en) 1986-12-15

Family

ID=14940762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12666285A Pending JPS61284984A (en) 1985-06-11 1985-06-11 Gas laser

Country Status (1)

Country Link
JP (1) JPS61284984A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221053A (en) * 2006-02-20 2007-08-30 Komatsu Ltd Laser equipment
WO2012035953A1 (en) * 2010-09-17 2012-03-22 三菱電機株式会社 Gas laser device and laser processing device
WO2015008405A1 (en) * 2013-07-18 2015-01-22 三菱電機株式会社 Gas-laser device
WO2015093076A1 (en) * 2013-12-17 2015-06-25 三菱電機株式会社 Orthogonal excitation-type gas laser oscillation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221053A (en) * 2006-02-20 2007-08-30 Komatsu Ltd Laser equipment
WO2012035953A1 (en) * 2010-09-17 2012-03-22 三菱電機株式会社 Gas laser device and laser processing device
US8873599B2 (en) 2010-09-17 2014-10-28 Mitsubishi Electric Corporation Gas laser device
JP5653444B2 (en) * 2010-09-17 2015-01-14 三菱電機株式会社 Gas laser device
DE112011103110B4 (en) * 2010-09-17 2016-12-01 Mitsubishi Electric Corporation Gas laser device
WO2015008405A1 (en) * 2013-07-18 2015-01-22 三菱電機株式会社 Gas-laser device
WO2015093076A1 (en) * 2013-12-17 2015-06-25 三菱電機株式会社 Orthogonal excitation-type gas laser oscillation device
JPWO2015093076A1 (en) * 2013-12-17 2017-03-16 三菱電機株式会社 Orthogonal excitation gas laser oscillator
US9634456B2 (en) 2013-12-17 2017-04-25 Mitsubishi Electric Cororation Gas laser oscillation apparatus of orthogonal excitation type

Similar Documents

Publication Publication Date Title
JPS61284984A (en) Gas laser
JPH06120592A (en) Laser device
US20160308325A1 (en) Air-cooled carbon-dioxide laser
JPS639393B2 (en)
JPS6026310B2 (en) gas laser equipment
JPS6364070B2 (en)
JPS6342428B2 (en)
JPH0639469Y2 (en) Gas laser device
GB2145274A (en) Gas laser system
JPH038381A (en) Gas laser device
JP2003264328A (en) Waveguide gas laser oscillator
JP2745976B2 (en) Laterally pumped laser oscillator
JPS59163881A (en) Gas laser oscillator
JPS6350082A (en) Gas laser oscillator
JP2680441B2 (en) Gas laser device
JPH0322578A (en) Gas laser device
JPH02281671A (en) Gas laser oscillation device
JPS62181482A (en) Excimer laser equipment
JPS60254680A (en) Laser oscillator
JP2000269569A (en) Discharge excitation gas laser device
JPH01179377A (en) Laser oscillator
JPS6295884A (en) Gas laser oscillator
JPS6037188A (en) Gas laser oscillator
JPH1079539A (en) Carbon dioxide gas laser oscillator
JPS5850788A (en) Lateral mode excitation type gas laser device