JPH038381A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH038381A
JPH038381A JP14221089A JP14221089A JPH038381A JP H038381 A JPH038381 A JP H038381A JP 14221089 A JP14221089 A JP 14221089A JP 14221089 A JP14221089 A JP 14221089A JP H038381 A JPH038381 A JP H038381A
Authority
JP
Japan
Prior art keywords
discharge
dielectric
thickness
discharge part
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14221089A
Other languages
Japanese (ja)
Inventor
Masaki Kuzumoto
昌樹 葛本
Masaaki Tanaka
正明 田中
Shigenori Yagi
重典 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14221089A priority Critical patent/JPH038381A/en
Publication of JPH038381A publication Critical patent/JPH038381A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Abstract

PURPOSE:To perform stabilized electric discharge between electrodes by reducing the thickness of dielectric which covers discharge electrodes on opposite sides as it approaches the center, but increasing the thickness as it approaches the ends. CONSTITUTION:When an attempt is made to apply voltage to an electrode 21 in a power supply 7 so that a space electric field reaches a breakdown valve of laser gas, electric discharge is produced in a space. The surface of a discharge section 22a of a dielectric 22 on the power supply side is designed to be curved. The thickness of the dielectric 22 is reduced as it approaches its center while the thickness is increased as it approaches its ends so that it may come into close contact with the convex surface of the electrode 21 on the discharge side. Therefore, the electric field is weaker as it covers the ends of he metal and electrode 21, which minimizes the effect of edge of the electrode 21 and makes constant the distribution of power density so that homogeneous discharge power distribution may be obtained between the discharge sections 22a of the dielectric 22. Therefore, it is possible to obtain stabilized discharge at high power density. At the same time, a total thickness B of a non-discharge section 22b of the dielectric 22 is formed to be greater than the thickness of the discharge section 22a in the central part, which reduces the capacitance of the non-discharge section 22b. On the other hand, as for the discharge region, the discharge power density is not reduced between the discharge sections 22a and 22b, which makes it possible to prevent the drop in the efficiency of laser oscillation.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はガスレーザ装置、特に交流放電励起ガスレー
ザにおける電極構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrode structure in a gas laser device, particularly an AC discharge excited gas laser.

[従来の技術] 第4図及び第5図は例えば特公昭132−39555号
公報に示された従来のCO2のガスレーザ装置の代表的
な方式である三軸直交型、即ち、レーザガス流方向、放
電方向、レーザ光軸方向がお互いに直交するCO2のガ
スレーザ装置を示す縦断面図及び横断面図である。
[Prior Art] Figures 4 and 5 show a three-axis orthogonal type, which is a typical system of a conventional CO2 gas laser device shown in Japanese Patent Publication No. 132-39555, that is, a laser gas flow direction, a discharge FIG. 2 is a vertical cross-sectional view and a cross-sectional view showing a CO2 gas laser device in which the laser beam direction and the laser optical axis direction are orthogonal to each other.

図において、(la) 、 (lb)は対向して配置さ
れた一対の放電電極、(2)は放電ギャップ、(3)は
レーザガス循環用ブロア、(4)は熱交換器、(5)は
筐体、(6)はブッシング、(7)は交流電源、(8)
は全反射鏡、(9)は部分透過鏡、(lO)はレーザ光
である。
In the figure, (la) and (lb) are a pair of discharge electrodes arranged oppositely, (2) is a discharge gap, (3) is a laser gas circulation blower, (4) is a heat exchanger, and (5) is a Housing, (6) is bushing, (7) is AC power supply, (8)
is a total reflection mirror, (9) is a partially transmitting mirror, and (lO) is a laser beam.

次に動作について説明する。Next, the operation will be explained.

放電電極(la) 、 (lb)の間にブッシング(6
)を介して交流@ i (7)から交流高電圧を印加す
ると、放電ギャップ(2)で無声放電と呼ばれる放電が
生成される。筐体(5)の中には数+Toor〜百数十
TorrのGo、N、Heから成るレーザガスが封2 入されており、無声放電によりレーザガス中のCO2分
子が励起され、特定の振動順位間に反転分布(Popu
lation 1nversion)を生じるため、こ
の放電励起部の放電ギャップ(2)の間に全反射鏡(8
)と適当な透過率を有する部分透過鏡(9)とを対向し
て配置させると、部分反射鏡(9)からレーザ光(lO
)が出てくる。
A bushing (6) is placed between the discharge electrodes (la) and (lb).
) When applying an AC high voltage from AC @ i (7), a discharge called silent discharge is generated in the discharge gap (2). A laser gas consisting of Go, N, and He of several Torr to several tens of Torr is sealed in the housing (5), and the CO2 molecules in the laser gas are excited by silent discharge, causing vibrations between specific vibration orders. Population inversion (Popu
A total reflection mirror (8) is installed between the discharge gap (2) of this discharge excitation part to generate a
) and a partially transmitting mirror (9) having an appropriate transmittance are placed facing each other, the laser beam (lO
) will appear.

放電により発生する熱により、放電励起部のガス温度が
高くなると、上述の反転分布が効率よく行なわれなくな
る。この熱をレーザガス流により運び去るためにレーザ
ガス循環用ブロア(3)により、レーザガスを熱交換器
(4)を介して筐体(5)内を循環させている。通常放
電ギャップ(2)でのガス流速は数十m/seeである
When the gas temperature in the discharge excitation section increases due to heat generated by discharge, the above-mentioned population inversion cannot be performed efficiently. In order to carry away this heat with the laser gas flow, the laser gas is circulated within the housing (5) via the heat exchanger (4) by a laser gas circulation blower (3). Normally, the gas flow velocity in the discharge gap (2) is several tens of meters/see.

以上がガスレーザ装置の動作原理であるが、放電電極(
la) 、(lb)の構造について次に詳しく説明する
The above is the operating principle of the gas laser device, but the discharge electrode (
The structures of la) and (lb) will be explained in detail below.

第6図は従来のガスレーザ装置の電極構造を示す断面図
である。
FIG. 6 is a sectional view showing the electrode structure of a conventional gas laser device.

図において、(11)は交流電源(7)に接続されてい
る金属電極、(12)は金属電極(11)に密着し、放
電部(12a)と非放電(12b)を有する誘電体であ
る。
In the figure, (11) is a metal electrode connected to an AC power source (7), and (12) is a dielectric that is in close contact with the metal electrode (11) and has a discharge part (12a) and a non-discharge part (12b). .

誘電体(12)の放電部(12a)は金属電極(11)
の放電側表面と側面の一部を覆い、放電部(12a)の
厚みは非放電部(12b)の厚みよりも薄く設計されて
おり、誘電体(12)の比誘電率εSが小さい場合には
ある程度放電領域の制限が可能な構造となってる。
The discharge part (12a) of the dielectric (12) is a metal electrode (11)
The thickness of the discharge part (12a) is designed to be thinner than the thickness of the non-discharge part (12b), so that when the dielectric constant εS of the dielectric material (12) is small, has a structure that allows the discharge area to be limited to some extent.

従って、放電電極(la) 、 (lb)間に交流電源
(7)の交流電圧を印加して放電を発生させた場合、放
電は第6図に示すように誘電体(12)の放電部(12
a)。
Therefore, when the AC voltage of the AC power supply (7) is applied between the discharge electrodes (la) and (lb) to generate a discharge, the discharge occurs at the discharge part (12) of the dielectric (12) as shown in FIG. 12
a).

(12a)間の領域に制限されて生じる。(12a) It occurs restricted to the region between.

[発明が解決しようとする課題] 上記のような従来のガスレーザ装置では、放電電極(l
a) 、 (lb)の金属電極(11)の放電側表面と
側面の一部を覆っている誘電体(12)の放電部(12
a)の厚みが電力密度を均一にすべく均一に形成されて
いるが、金属電極(11)のエツジ部分の電界集中が著
しく、金属電極(1)における電力密度分布は第7図に
示すように、金属電極(1)の端部で高く、中央部で低
くなることが観測によって判明した。
[Problem to be solved by the invention] In the conventional gas laser device as described above, the discharge electrode (l
a), the discharge part (12) of the dielectric (12) covering part of the discharge side surface and side surface of the metal electrode (11) of (lb);
Although the thickness of a) is uniform to make the power density uniform, the electric field concentration at the edge part of the metal electrode (11) is significant, and the power density distribution in the metal electrode (1) is as shown in Figure 7. It has been found through observation that it is high at the ends of the metal electrode (1) and low at the center.

そのため、誘電体(12)の放電部(12a) 、 (
12a)間において均質な放電電力密度が得られず、放
電電極(la) 、 (lb)間で均質かつ安定した放
電が得られないという問題点があった。
Therefore, the discharge part (12a) of the dielectric (12), (
There was a problem that a homogeneous discharge power density could not be obtained between the discharge electrodes (la) and (lb), and a homogeneous and stable discharge could not be obtained between the discharge electrodes (la) and (lb).

また、誘電体(12)が例えば比誘電率εs 90の酸
化チタンTlO2の如く比誘電率εSが大きい高誘電率
材料で形成されている場合には、第8図に示すように誘
電体(12)の非放電部(jL2b)の静電容量(41
)が大きくなるため、放電は誘電体(12)の非放電部
(12b)を含む全域に広がり、放電領域制限が不可能
となって放電電力密度が減少し、レーザ発振効率が低下
するという問題点もあった。
Further, when the dielectric (12) is formed of a high dielectric constant material having a large relative permittivity εS, such as titanium oxide TlO2 having a relative permittivity εs of 90, the dielectric (12) ) of the non-discharge part (jL2b) (41
) increases, the discharge spreads over the entire area including the non-discharge portion (12b) of the dielectric (12), making it impossible to limit the discharge area, reducing the discharge power density and reducing laser oscillation efficiency. There were also points.

この発明は上記のような問題点を解消するためになされ
たもので、誘電体の放電部間において均質な放電電力密
度が得られ、かつ誘電体が比誘電率の大きい高誘電率材
料で形成されてもレーザ発振効率が低下しないガスレー
ザ装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to obtain a uniform discharge power density between the discharge parts of the dielectric, and the dielectric is made of a high-permittivity material with a large relative permittivity. An object of the present invention is to obtain a gas laser device in which the laser oscillation efficiency does not decrease even when the laser oscillation efficiency is reduced.

[課題を解決するための手段] この発明に係るガスレーザ装置は、放電電極の一部を構
成する誘電体の放電部及び非放電部の放電側表面を平面
とし、誘電体の放電部の給電側表面を曲面とし、放電部
の厚みを中央部を薄く、端部にいくに従い厚くなるよう
に形成し、非放電部の全部或いは放電部との境界領域部
分の厚みを放電部の中央部の厚みより薄くするようにし
たものである。
[Means for Solving the Problems] In the gas laser device according to the present invention, the discharge side surfaces of the discharge part and the non-discharge part of the dielectric that constitute a part of the discharge electrode are flat, and the power supply side of the discharge part of the dielectric is flat. The surface is curved, and the thickness of the discharge part is thinner in the center and thicker toward the ends, and the thickness of the entire non-discharge part or the boundary area with the discharge part is the thickness of the central part of the discharge part. It is made to be thinner.

[作 用] この発明においては、放電電極の一部を構成する誘電体
の放電側表面を平面とし、放電部の給電側表面を曲面と
し、放電部の厚みを中央部を薄く、端部にいくに従い厚
くなるように形成したから、金属電極の端部はど電界が
弱くなるため、エツジ部分の電界集中は少なくなり、金
属電極における電力密度分布は均一となり、誘電体の放
電部間おいて均質な放電電力密度が得られ、放電電極間
で安定した放電となる。
[Function] In the present invention, the discharge side surface of the dielectric that constitutes a part of the discharge electrode is a flat surface, the power feeding side surface of the discharge part is a curved surface, and the thickness of the discharge part is made thinner in the center and thinner in the ends. Since the metal electrode is formed so that it becomes thicker as it goes, the electric field becomes weaker at the edge of the metal electrode, so the electric field concentration at the edge part decreases, and the power density distribution in the metal electrode becomes uniform, and the electric field becomes weaker at the edge of the metal electrode. A homogeneous discharge power density is obtained, resulting in stable discharge between the discharge electrodes.

また、誘電体の非放電部の全部或いは放電部との境界領
域部分の厚みを放電部の中央部の厚みより薄く形成した
から、放電部以外である非放電部の静電容量が減少し、
放電領域が放電部に制限される。従って、放電部間にお
ける放電電力密度が減少せず、レーザ発振効率の低下が
防止される。
In addition, since the thickness of the entire non-discharge portion of the dielectric material or the boundary area with the discharge portion is made thinner than the thickness of the central portion of the discharge portion, the capacitance of the non-discharge portion other than the discharge portion is reduced.
The discharge area is limited to the discharge part. Therefore, the discharge power density between the discharge parts does not decrease, and a decrease in laser oscillation efficiency is prevented.

[実施例] 以下、この発明の一実施例を図面に基いて説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の放電電極を示す断面図で
ある。図において、(la) 、 (lb)は放電電極
、(2)は放電ギャップ、(7)は交流電源、(21)
は交流電源(7)に接続された放電側−表面が凸状の金
属電極、(22)は金属電極(21)の放電側−表面と
側部の一部に密着する誘電体で、放電部(22a)と非
放電部(22b)とを有し、放電部(22a)と非放電
(22b)の放電側表面は平面に形成され、放電部(2
2a)の給電側表面は曲面に形成されている。放電部(
22a)はその厚みを中央部は薄く、端部にいくに従い
厚くなるように形成されている。非放電部(22b)は
その厚みBを放電部(22a)の中央部の厚みAより薄
く形成されている。(30)は誘電体(22)の非放電
部(22b)の給電側表面に接着された沿面放電を防止
するための絶縁部材であり、誘電体(22)の比誘電率
より小さいものが使われている。
FIG. 1 is a sectional view showing a discharge electrode according to an embodiment of the present invention. In the figure, (la) and (lb) are discharge electrodes, (2) is a discharge gap, (7) is an AC power supply, and (21)
is a metal electrode with a convex surface on the discharge side connected to the AC power source (7), and (22) is a dielectric material that is in close contact with the discharge side of the metal electrode (21) - a part of the surface and side part. (22a) and a non-discharge part (22b), the discharge side surfaces of the discharge part (22a) and the non-discharge part (22b) are formed flat, and the discharge part (22b) has a flat surface.
The power feeding side surface of 2a) is formed into a curved surface. Discharge part (
22a) is formed so that its thickness is thinner in the center and thicker toward the ends. The non-discharge portion (22b) has a thickness B that is thinner than the thickness A of the central portion of the discharge portion (22a). (30) is an insulating member for preventing creeping discharge that is adhered to the power feeding side surface of the non-discharge portion (22b) of the dielectric (22), and the material used is a material whose dielectric constant is smaller than that of the dielectric (22). It is being said.

上記のように構成されたガスレーザ装置においては、交
流電源(7)より交流電圧が金属電極(11)。
In the gas laser device configured as described above, an AC voltage is applied to the metal electrode (11) from the AC power source (7).

(11)に印加され、空間電界がレーザガスの破壊値に
達すると、放電空間に放電が発生する。この場合、誘電
体(22)の放電部(22a)の給電側表面を曲面とし
、放電部(22a)の厚みを中央部を薄く、端部にいく
に従い厚くなるように形成し、金属電極(21)の凸状
の放電側表面と密着させられているから、金属電極(2
1)の端部はど電界が弱くなるため、金属電極(1)の
エツジ部分の影響が小さく金属電極(21)における電
力密度分布は均一となり、誘電体(22)の放電部(2
2a) 、 (22a)間において均質な放電電力密度
が得られ、高電力密度でも放電部間で安定した放電とな
る。
(11) is applied, and when the spatial electric field reaches the destruction value of the laser gas, a discharge occurs in the discharge space. In this case, the power feeding side surface of the discharge part (22a) of the dielectric (22) is made into a curved surface, the thickness of the discharge part (22a) is thinner in the center and thicker toward the ends, and the metal electrode ( The metal electrode (21) is in close contact with the convex discharge side surface of the metal electrode (21).
Since the electric field is weaker at the edge of the metal electrode (1), the influence of the edge part of the metal electrode (1) is small and the power density distribution in the metal electrode (21) becomes uniform, and the electric field at the discharge part (2) of the dielectric (22) becomes uniform.
A homogeneous discharge power density is obtained between 2a) and (22a), and stable discharge is achieved between the discharge parts even at high power density.

また、誘電体(22)の非放電部(22b)全体の厚み
Bを放電部(22a)の中央部Aの厚みより薄く形成し
たから、非放電部(22b)の静電容量が減少し、静電
容量成分による影響は小さくなり、放電領域が放電部(
22a)に制限される。従って、放電部(22a) 、
 (22b)間における放電電力密度が減少せず、レー
ザ発振効率の低下が防止される。
Furthermore, since the overall thickness B of the non-discharge portion (22b) of the dielectric (22) is formed to be thinner than the thickness of the central portion A of the discharge portion (22a), the capacitance of the non-discharge portion (22b) is reduced. The influence of the capacitance component becomes smaller, and the discharge area becomes the discharge part (
22a). Therefore, the discharge part (22a),
The discharge power density between (22b) does not decrease, and a decrease in laser oscillation efficiency is prevented.

第2図及び第3図はこの発明の別の実施例の放電電極を
それぞれ示す断面図である。第1図に示す実施例では誘
電体(22)の非放電部(22b)の厚みを一様に薄く
しているが、第2図に示す別の実施例は、誘電体(22
)の非放電部(22b)における放電部(22a)との
境界領域部分に溝(23)を設け、その境界領域部分の
厚みを薄くするようにしている。
FIGS. 2 and 3 are cross-sectional views showing discharge electrodes according to other embodiments of the present invention. In the embodiment shown in FIG. 1, the thickness of the non-discharge portion (22b) of the dielectric (22) is uniformly thin, but in another embodiment shown in FIG.
A groove (23) is provided in the boundary area between the non-discharge part (22b) and the discharge part (22a), and the thickness of the boundary area is made thinner.

このようにすることにより、その境界領域部分の静電容
量が減少し、それ以外の部分は、金属電極(21)から
離れて電界が弱くなり、放電領域が放電部(22a)に
制限されるという第1図に示す実施例と同様の作用・効
果を有する。
By doing this, the capacitance in the boundary area decreases, and the electric field in other areas becomes weaker as they move away from the metal electrode (21), and the discharge area is limited to the discharge part (22a). This embodiment has the same functions and effects as the embodiment shown in FIG.

更に、第3図に示す実施例のように、非放電部(22b
)に設けられた溝(24)の底部を曲面とすれば電力密
度分布はより均質化される。
Furthermore, as in the embodiment shown in FIG.
) If the bottom of the groove (24) provided in the groove (24) is made into a curved surface, the power density distribution will be made more homogeneous.

[発明の効果] この発明は以上説明したように、誘電体の放電部の給電
側表面を曲面とし、放電部の厚みを中央部を薄く、端部
にいくに従い厚くなるようにし、金属電極の端部はど電
界が弱くなるようにして、エツジ部分の影響を小さくす
るようにしたので、金属電極における電力密度分布は均
一となり、誘電体の放電部間において均質な放電電力密
度による安定した放電が得られ、更に誘電体の非放電部
の全部或いは放電部との境界領域部分の厚みを放電部の
中央部の厚みより薄く形成し、非放電部の静電容量を減
少させて、静電容量成分による影響を小さくし、放電領
域を放電部に制限したので、放電電力密度が減少せず、
レーザ発振効率の低下が防止され、放電空間に均質・高
密度の安定したレーザ発振効率のよい放電が得られるこ
とにより、レーザビームの高品質化と装置のコンパクト
化が図れるという効果を有する。
[Effects of the Invention] As explained above, the present invention has a curved surface on the power supply side of the discharge part of the dielectric, the thickness of the discharge part is thinner in the center part and becomes thicker toward the ends, and the thickness of the metal electrode is made thinner. Since the electric field is weaker at the edges and the influence of the edges is reduced, the power density distribution in the metal electrode is uniform, resulting in stable discharge due to homogeneous discharge power density between the discharge parts of the dielectric material. Furthermore, by forming the entire non-discharge area of the dielectric material or the thickness of the boundary area with the discharge area to be thinner than the thickness of the central part of the discharge area, the capacitance of the non-discharge area is reduced. Since the influence of the capacitance component is reduced and the discharge area is limited to the discharge area, the discharge power density does not decrease.
A decrease in laser oscillation efficiency is prevented, and a homogeneous, high-density, stable discharge with good laser oscillation efficiency is obtained in the discharge space, which has the effect of increasing the quality of the laser beam and making the device more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の放電電極を示す断面図、
第2図はこの発明の別の実施例の放電電極を示す断面図
、第3図はこの発明の更に別の実施例の放電電極を示す
断面図、第4図は従来のガスレーザ装置を示す縦断面図
、第5図は同ガスレーザ装置を示す横断面図、第6図は
同ガスレーザ装置の電極構造を示す断面図、第7図は高
誘電率材料の誘電体を用いたときの金属電極の電力密度
を示す線図、第8図は高誘電率材料の誘電体を用いた電
極構造を示す断面図である。 図において、(la) 、(lb)は放電電極、(7)
は交流電源、(21)は金属電極、(22)は誘電体、
(22a)は放電部、(22b)は非放電部、Aは放電
部の中央部の厚み、Bは非放電部の厚みである。 なお各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a sectional view showing a discharge electrode according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view showing a discharge electrode according to another embodiment of the present invention, FIG. 3 is a cross-sectional view showing a discharge electrode according to still another embodiment of the present invention, and FIG. 4 is a longitudinal cross-sectional view showing a conventional gas laser device. 5 is a cross-sectional view showing the same gas laser device, FIG. 6 is a sectional view showing the electrode structure of the same gas laser device, and FIG. 7 is a cross-sectional view showing the electrode structure of the same gas laser device. A diagram showing the power density, and FIG. 8 is a cross-sectional view showing an electrode structure using a dielectric material of a high permittivity material. In the figure, (la) and (lb) are discharge electrodes, (7)
is an AC power supply, (21) is a metal electrode, (22) is a dielectric,
(22a) is the discharge part, (22b) is the non-discharge part, A is the thickness of the central part of the discharge part, and B is the thickness of the non-discharge part. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 金属電極の表面が放電部と非放電部からなる誘電体で覆
われて形成された放電電極を対向させて放電空間を構成
し、前記一対の放電電極間に交流電圧を印加してその放
電空間内で交流放電を発生させ、レーザ媒質を励起して
レーザを発生させるようにしたガスレーザ装置において
、 前記誘電体の放電部及び非放電部の放電側表面を平面と
し、前記放電部の給電側表面を曲面とし、前記放電部の
厚みを中央部を薄く、端部にいくに従い厚くなるように
形成し、前記非放電部の全部或いは放電部との境界領域
部分の厚みを放電部の中央部の厚みより薄くするように
形成したことを特徴とするガスレーザ装置。
[Scope of Claims] Discharge electrodes formed by covering the surface of a metal electrode with a dielectric consisting of a discharge part and a non-discharge part are made to face each other to constitute a discharge space, and an alternating current voltage is applied between the pair of discharge electrodes. In the gas laser apparatus, the discharge side surfaces of the discharge part and the non-discharge part of the dielectric are flat, and the discharge side surfaces of the discharge part and the non-discharge part of the dielectric are flat, and The power feeding side surface of the discharge part is a curved surface, the thickness of the discharge part is thinner in the center part and becomes thicker toward the ends, and the thickness of the entire non-discharge part or the boundary area with the discharge part is reduced. A gas laser device characterized in that the thickness of the discharge part is thinner than that of the central part of the discharge part.
JP14221089A 1989-06-06 1989-06-06 Gas laser device Pending JPH038381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14221089A JPH038381A (en) 1989-06-06 1989-06-06 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14221089A JPH038381A (en) 1989-06-06 1989-06-06 Gas laser device

Publications (1)

Publication Number Publication Date
JPH038381A true JPH038381A (en) 1991-01-16

Family

ID=15309960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14221089A Pending JPH038381A (en) 1989-06-06 1989-06-06 Gas laser device

Country Status (1)

Country Link
JP (1) JPH038381A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593064U (en) * 1992-05-19 1993-12-17 石川島播磨重工業株式会社 Laser device dielectric plate
JPH06120591A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Laser oscillator
JP2002261357A (en) * 2001-03-01 2002-09-13 Amada Co Ltd Gas laser oscillator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593064U (en) * 1992-05-19 1993-12-17 石川島播磨重工業株式会社 Laser device dielectric plate
JPH06120591A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Laser oscillator
JP2002261357A (en) * 2001-03-01 2002-09-13 Amada Co Ltd Gas laser oscillator
JP4618658B2 (en) * 2001-03-01 2011-01-26 株式会社アマダ Gas laser oscillator

Similar Documents

Publication Publication Date Title
EP0553687B1 (en) Laser apparatus
JPH038381A (en) Gas laser device
US4597086A (en) Coaxial type laser oscillator for excitation by silent discharge
JPS60193388A (en) Waveguide laser
KR960013517B1 (en) Gas laser oscillator
JPS6240876B2 (en)
JPS639393B2 (en)
JPS60157277A (en) Axial-flow type noiseless discharge excitation gas laser device
JPS61284984A (en) Gas laser
JP2636478B2 (en) Laser device
JPH06120591A (en) Laser oscillator
JP2757198B2 (en) Gas laser device
JPH06188486A (en) Discharge-pumped excimer laser apparatus
JP2566585B2 (en) Optical waveguide type gas laser device
JP4618658B2 (en) Gas laser oscillator
JPS6239555B2 (en)
JPH02129977A (en) Gas laser oscillator
JPS6191982A (en) Discharge excitation excimer laser
JPH042988Y2 (en)
JPS5815286A (en) Electrode for silent discharge laser
CA1040736A (en) Independent initiation technique of glow discharge production in high-pressure gas laser cavities
JPS60147186A (en) Axial flow type silent discharge excited gas laser device
JPH05327067A (en) Laser device
JPH0337318B2 (en)
JPH01205583A (en) Discharge exciting eximer laser device