JPS61284539A - Method for refining alloy to high purity - Google Patents

Method for refining alloy to high purity

Info

Publication number
JPS61284539A
JPS61284539A JP60125978A JP12597885A JPS61284539A JP S61284539 A JPS61284539 A JP S61284539A JP 60125978 A JP60125978 A JP 60125978A JP 12597885 A JP12597885 A JP 12597885A JP S61284539 A JPS61284539 A JP S61284539A
Authority
JP
Japan
Prior art keywords
alloy
refining
temperature
alloys
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60125978A
Other languages
Japanese (ja)
Other versions
JPH0332613B2 (en
Inventor
Kazumi Harashima
原島 和海
Ryoshi Arima
有馬 良士
Kazuo Onuki
一雄 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60125978A priority Critical patent/JPS61284539A/en
Publication of JPS61284539A publication Critical patent/JPS61284539A/en
Publication of JPH0332613B2 publication Critical patent/JPH0332613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To rapidly refine an alloy to high purity in a high yield by holding the alloy at the solidus line temp. to the liquidus line temp., adding a refining agent to the alloy while agitating the alloy, and vigorously agitating the alloy to efficiently remove impurities from the alloy. CONSTITUTION:An alloy to be refined is held at the solidus line temp. to the liquidus line temp., and while the alloy is agitated, a refining agent such as Ca-CaF2 is added. The alloy is vigorously agitated by applying high or low frequency power or electromagnetic force or blowing gas, and slag is removed so that impurities do not return from the slag to the alloy. The above-mentioned refining may be repeatedly carried out. Impurity elements such as P, S and As in the alloy are efficiently removed and a high purity alloy is obtd. in a high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄合金、ニッケル合金、クロム合金、チタン合
金、マンガン合金などの合金(これらの純金属を含む)
から不純物を除去し、高純度化するための効率的な精錬
方法に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention is applicable to alloys such as iron alloys, nickel alloys, chromium alloys, titanium alloys, manganese alloys (including pure metals thereof)
The present invention relates to an efficient refining method for removing impurities from and achieving high purity.

(従来の技術) 従来、合金から不純物を除去するために実施されている
方法は、精錬容器内で不純物を除去すべき合金を完全に
溶融状態に保持し、すなわち該合金の融点以上に保持し
て精錬するのが一般的である。
(Prior Art) Conventionally, methods implemented for removing impurities from alloys involve maintaining the alloy from which impurities are to be removed in a completely molten state in a refining vessel, i.e., maintaining the temperature above the melting point of the alloy. It is common to refine it by smelting it.

たとえば、本発明者らのひとシはCaC2を用いて金属
または合金から不純物元素を除去する方法(特公昭59
−034767号公報)、あるいはCaOを主体とした
精錬剤を用いて溶銑を精錬する方法(特公昭58−01
1485号公報)をすでに発明したO しかし、不純物の合金への溶解度は、一般的には固体合
金よシも液体合金の方が大きく、平衡論的には不純物元
素は除去しにくい。従って、前記の方法は合金を完全に
溶融状態で精錬するために、不純物元素の除去効率にお
のずと限界がある。
For example, the present inventors have proposed a method for removing impurity elements from metals or alloys using CaC2 (Japanese Patent Publication No. 59
-034767) or a method of refining hot metal using a refining agent mainly containing CaO (Japanese Patent Publication No. 58-01
However, the solubility of impurities in alloys is generally greater in liquid alloys than in solid alloys, and impurity elements are difficult to remove from an equilibrium perspective. Therefore, since the above method refines the alloy in a completely molten state, there is a natural limit to the efficiency of removing impurity elements.

一方、固体状態の合金からの不純物元素の除去は、該合
金中の不純物元素の拡散を利用するために、不純物元素
の除去には長大な時間を必要とする。−例として、Cm
−CaC22やCa−CaF27ラツクスで固体合金粒
を精錬する方法(特開昭49−73321号公報)が公
知である。しかし、大量に、迅速に合金を精錬するには
、あまりにも工程が複雑である。
On the other hand, since the removal of impurity elements from a solid state alloy utilizes the diffusion of the impurity elements in the alloy, it takes a long time to remove the impurity elements. - As an example, Cm
- A method of refining solid alloy grains with CaC22 or Ca-CaF27 lux (Japanese Unexamined Patent Publication No. 49-73321) is known. However, the process is too complex to rapidly refine alloys in large quantities.

さらに、固液共存状態の合金を対象にして、不純物を液
体に濃化せしめて、その液体合金と、固体合金とを分離
せしめる、合金の精製方法がすでに報告されている(リ
ファイニングパイ フラクショナル ソリディフィケー
ション(A、 L、 Lux。
Furthermore, an alloy refining method has already been reported that targets an alloy in a solid-liquid coexistence state, concentrates impurities into a liquid, and then separates the liquid alloy from the solid alloy (refining pie fractional solid alloy). Difficulty (A, L, Lux.

M、 C,Flemings、 ” Refining
 by FractionalSoltdificat
1on″、 Submitted to Met、 B
 、 May+19781)。
M. C. Flemings, ”Refining
by FractionalSoltdificat
1on'', Submitted to Met, B
, May+19781).

しかし、この方法は精製された固体合金の収率が悪く、
さらに収率を向上させるためには分離された液体合金を
繰返して精製しなければならないなど、精製工程が複雑
であり、精製効率が悪い。
However, this method has a poor yield of purified solid alloys.
Furthermore, in order to improve the yield, the separated liquid alloy must be purified repeatedly, and the purification process is complicated, resulting in poor purification efficiency.

さらに精錬剤を用いないために、不純物が濃化した液体
をもとに繰返して精製しても、最初に得られる固体合金
と繰返して精製される固体合金とは、当然不純物濃度に
差ができ、次第に得られる固体合金の不純物濃度が高濃
度になる。一方、固体−液体間において不純物元素が分
配される事を利用し合金をn製するゾーン・メルティン
グ法が古くから知られている。しかし、ゾーン・メルテ
ィング法は非常に生産性が悪く、大量の合金を短時間に
精製することはできず、さらに合金内部には大きな不純
物元素の分布が残シ、目的に応じては、その一部分を削
除しなければならず、精製合金の利用効率が極めて悪い
Furthermore, because no refining agent is used, even if a liquid with concentrated impurities is repeatedly refined, there will naturally be a difference in impurity concentration between the initially obtained solid alloy and the repeatedly refined solid alloy. , the impurity concentration of the obtained solid alloy gradually becomes high. On the other hand, a zone melting method has been known for a long time to produce alloys by utilizing the distribution of impurity elements between solid and liquid. However, the zone melting method has very poor productivity, cannot refine a large amount of alloy in a short time, and also leaves a large distribution of impurity elements inside the alloy. A portion must be removed, making the use of refined alloy extremely inefficient.

(発明が解決しようとする問題点) 本発明者らは、不純物除去効率、処理時間の長時間化、
工程の複雑化、低生産性等々、上記のような従来技術に
おける問題点を解決すべく種々の研究を重ねた結果、合
金中の不純物元素を効率的かつ短時間のうちに除去する
方法を発明した。
(Problems to be solved by the invention) The present inventors have solved the problem of impurity removal efficiency, long processing time,
As a result of various research efforts to solve the problems of conventional technology such as complicated processes and low productivity, we have invented a method to efficiently and quickly remove impurity elements from alloys. did.

(問題点を解決するための手段) 本発明は、不純物元素を除去すべき合金の温度を該合金
の液相線温度以下で、かつ固相線温度以上に保持し、該
合金を攪拌しながら精錬剤を添加混合して強攪拌し、合
金中の不純物を除去することを目的とする。
(Means for solving the problem) The present invention maintains the temperature of an alloy from which impurity elements are to be removed below the liquidus temperature of the alloy and above the solidus temperature of the alloy, and while stirring the alloy. The purpose is to remove impurities in the alloy by adding and mixing a refining agent and stirring vigorously.

すなわち、本発明は、固体合金と液体合金とを共存させ
、まず不純物を固〜液分配を利用して、液体合金に不純
物を濃縮させ、かつ精錬剤を用いることによシ化学反応
を利用して、液体合金に濃縮させた不純物元素のみを精
錬剤に移行させるので合金の損失が極めて少く、かつ精
錬効果も大きく、シかも工程も簡単である等極めて優れ
た方法である。
That is, the present invention allows a solid alloy and a liquid alloy to coexist, first concentrates impurities in the liquid alloy by utilizing solid-liquid distribution, and then utilizes a chemical reaction by using a refining agent. Since only the impurity elements concentrated in the liquid alloy are transferred to the refining agent, the loss of the alloy is extremely small, the refining effect is large, and the process is simple.

以下本発明について説明する。The present invention will be explained below.

一般にF@基、Nl基、Cr基などの合金中に含有され
る不純物元素(シん、硫黄、ひ素など)は合金の機械的
性質を著しく阻害するため極力低減する必要がおる。液
体全体の不純物元素の平均濃度P0の合金を、該合金の
液相線温度(TL)と固相線温度(T8)の間に保持す
ると液体金属中に不純物元素濃度の低い固体合金が晶出
する。これを模式的に示すと第1図伽)のようになる。
Generally, impurity elements (silica, sulfur, arsenic, etc.) contained in alloys such as F@-based, Nl-based, and Cr-based alloys must be reduced as much as possible since they significantly impede the mechanical properties of the alloy. When an alloy with an average impurity element concentration P0 in the entire liquid is held between the liquidus temperature (TL) and the solidus temperature (T8) of the alloy, a solid alloy with a low impurity element concentration will crystallize in the liquid metal. do. This is schematically shown in Figure 1).

一方液体合金中の不純物元素の濃度は、固体合金から排
出された不純物元素が濃縮して高濃度となる。そこで、
この不純物濃度の高い液体合金と精錬剤とを反応させる
と、精錬剤の精錬能が第1図<=)に示したP0レベル
までしかない場合でも平均としてPRまで不純物を除去
することができる。従って単位精錬剤あたυの不純物除
去率が大幅に向上する。
On the other hand, the concentration of impurity elements in the liquid alloy becomes high because the impurity elements discharged from the solid alloy are concentrated. Therefore,
When this liquid alloy with a high impurity concentration is reacted with a refining agent, even if the refining agent has only the refining ability up to the P0 level shown in FIG. 1<=), impurities can be removed to PR on average. Therefore, the impurity removal rate per unit refining agent υ is greatly improved.

本発明は、合金を高純度化するにあたυ、精錬すべき合
金の温度を、該合金の液相線温度以下で、かつ固相線温
度以上に保持し、該合金を攪拌させるとともに精錬剤を
添加混合して強攪拌し、合金中の不純物元素を除去する
ことを特徴とするものである。以下詳細に説明する。
In order to purify an alloy, the present invention maintains the temperature of the alloy to be refined below the liquidus temperature of the alloy and above the solidus temperature, stirs the alloy, and refines the alloy. This method is characterized in that impurity elements in the alloy are removed by adding and mixing additives and vigorously stirring the mixture. This will be explained in detail below.

合金温度(TR)がTLとT、の間にある場合の不純物
除去率は、該合金温度がT、以上である場合よυもはる
かに向上する。このような固体合金と液体合金の共存状
態は、精錬すべき合金の温度を、該合金の液相線温度以
下で、かつ該合金の固相線温度以上に保持することによ
ってのみ達成される。
When the alloy temperature (TR) is between TL and T, the impurity removal rate is much improved by υ compared to when the alloy temperature is T or higher. Such coexistence of solid and liquid alloys can only be achieved by maintaining the temperature of the alloy to be refined below the liquidus temperature of the alloy and above the solidus temperature of the alloy.

この状態で合金を精錬する場合の、該合金の攪拌は非常
に重要である。すなわち、化学反応速度あるいは不純物
の合金中での物質移動速度は精錬温度が高い程大きく、
不純物除去に要する時間が短かくて有利である。しかし
、本発明における精錬温度TRはTL > TR> T
sの範囲にあるため精錬温度が通常の合金の精錬温度よ
シも低く、反応速度は第2図に示すように遅くなる。し
かし、該合金を攪拌して、精錬剤と積極的に接触させる
事によって不純物除去速度が大幅に向上する。
When refining an alloy in this state, stirring of the alloy is very important. In other words, the higher the refining temperature, the greater the chemical reaction rate or the mass transfer rate of impurities in the alloy.
This is advantageous because the time required to remove impurities is short. However, the refining temperature TR in the present invention is TL>TR>T
Since the refining temperature is in the range of s, the refining temperature is lower than that of ordinary alloys, and the reaction rate is slow as shown in Figure 2. However, by stirring the alloy and bringing it into active contact with the refining agent, the rate of impurity removal is greatly improved.

さらに、固体合金と液体合金とが共存する該合金の精錬
においては、精錬容器内にある該合金の温度は、でき得
る限り均一である事が好ましい。
Furthermore, in refining the alloy in which a solid alloy and a liquid alloy coexist, it is preferable that the temperature of the alloy in the refining vessel be as uniform as possible.

該合金の温度が不均一であると局部的に該合金が凝固し
て、精錬効率が低下する。したがって、該合金の温度を
均一に前記規定範囲内に保持するのに、該合金を攪拌す
るのは非常に有効である。
If the temperature of the alloy is non-uniform, the alloy will solidify locally, reducing refining efficiency. Therefore, stirring the alloy is very effective in maintaining the temperature of the alloy uniformly within the specified range.

本発明の方法に従って用いられる攪拌の方法は高周波を
利用した攪拌、低周波を利用した攪拌、電磁力を利用し
た攪拌が最も有効であるが、他の加熱手段と組合せるガ
ス吹込みを利用した攪拌でもよい。
The most effective methods of stirring used according to the method of the present invention are stirring using high frequency, stirring using low frequency, and stirring using electromagnetic force. Stirring may also be used.

本発明の方法を実施するにあたシ、合金温度を一定に保
持するために、各種の加熱方法を用いることができる。
In carrying out the method of the present invention, various heating methods can be used to maintain the alloy temperature constant.

本発明の方法を、精錬すべき合金を対象に、繰返して実
施する事によってよυ高純度な合金を得る事ができる。
By repeatedly carrying out the method of the present invention on the alloy to be refined, an alloy with higher purity can be obtained.

この場合、好ましくは第−回精錬後のスラグは排除する
方が良い。
In this case, it is preferable to exclude the slag after the second refining.

本発明の方法は、減圧下もしくは高真空下で実施する事
もできる。
The method of the invention can also be carried out under reduced pressure or high vacuum.

本発明の方法に従りて、合金を高純度化した後、ただち
に目的の鋳型に鋳込んでもよく、再加熱して、該合金温
度を該合金のTL以上に上昇せしめてから次工程に移行
させてもよい。この場合、精錬容器内の精錬に用いたス
ラグは、スラグから不純物が該合金にもどらないように
、排除する事が好ましい。
After the alloy is highly purified according to the method of the present invention, it may be immediately cast into a target mold, or it may be reheated to raise the alloy temperature above the TL of the alloy before proceeding to the next step. You may let them. In this case, the slag used for refining in the refining vessel is preferably removed so that impurities from the slag do not return to the alloy.

ここで合金の液相線温度TLと固相線温度T8はあらか
じめ実験的に測定する事が好ましい。さらに、合金の状
態図が知られている場合にはその状態図からTLとT、
を読みとって利用できる。
Here, it is preferable to experimentally measure the liquidus temperature TL and solidus temperature T8 of the alloy in advance. Furthermore, if the phase diagram of the alloy is known, from that phase diagram TL and T,
can be read and used.

なお本発明の方法は純金属の不純物除去にも利用可能で
ある。但し、純金属の場合はTLとT、が等しい値であ
シ、融点で表示される。なおこの場合、精錬すべき金属
の温度を該金属の融点に保持するのが好ましいが、該金
属の融点の上下3〜5℃以内に上下させ保持することに
よシ固相と液相を共存させることができる。この場合融
点を通過させる頻度は多い方が好ましい。
Note that the method of the present invention can also be used to remove impurities from pure metals. However, in the case of pure metals, TL and T must be equal values, and the melting point is expressed. In this case, it is preferable to maintain the temperature of the metal to be refined at the melting point of the metal, but by keeping it within 3 to 5 degrees Celsius above or below the melting point of the metal, it is possible to have a solid phase and a liquid phase coexist. can be done. In this case, it is preferable to pass the melting point more frequently.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

実施例1 30に9の下記の組成の合金を、低周波加熱炉内で溶解
し下記の精錬剤を用いて精錬した。
Example 1 An alloy of 30 to 9 having the following composition was melted in a low frequency heating furnace and refined using the following refining agent.

実施例2 20%Cr −10% N1−F’eの組成の合金30
ゆを精錬剤としてCa −CaF 2を用いアルゴン雰
囲気中で低周波加熱炉内で精錬した場合と抵抗加熱炉内
で精錬した場合の合金中のりん濃度の経時変化を測定し
た。第2図はその結果を示すもので、本発明方法(TL
) 1445℃>T、第2図の線■)は他の方法〔低周
波加熱炉(低周波攪拌)TR>TL(第2図の線■)〕
および〔抵抗加熱炉(攪拌なし)TL)1445℃>’
rs(第2図の線111))K比較して短時間で脱りん
が行われていることが明瞭に認められる。
Example 2 Alloy 30 with composition 20%Cr -10% N1-F'e
Changes in phosphorus concentration in the alloy over time were measured when the alloy was refined in a low frequency heating furnace and in a resistance heating furnace in an argon atmosphere using Ca-CaF2 as a refining agent. Figure 2 shows the results, and shows the method of the present invention (TL
) 1445℃>T, line ■ in Figure 2) is another method [low frequency heating furnace (low frequency stirring) TR > TL (line ■ in Figure 2)]
and [Resistance heating furnace (no stirring) TL) 1445°C>'
rs (line 111 in FIG. 2)) It is clearly recognized that dephosphorization is carried out in a short time compared to K.

実施例3 30に9の下記の金属を低周波加熱炉内で溶解し下記の
精錬剤を用いて精錬した。
Example 3 30 to 9 of the following metals were melted in a low frequency heating furnace and refined using the following refining agent.

(発明の効果) 以上の説明から明らかなように本発明方法は従来法と比
較してはるかにすぐれた脱りん効果を示す。
(Effects of the Invention) As is clear from the above explanation, the method of the present invention exhibits a far superior dephosphorizing effect compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、)は合金の固液共存領域における不純物元素
の濃度分布を示す説明図、同(b)はその模式図、第2
図は本発明方法および比較例におけるりん濃度の経時変
化を示す図、第3図はA−B二元系合金の状態図である
。 第1図 第2図 fil @乗gq  FgI  (min)−溌 相糸泉 一固 ネ百裾泉 i度 C 柑輩泉湯度 相線湛凄
Figure 1 (,) is an explanatory diagram showing the concentration distribution of impurity elements in the solid-liquid coexistence region of the alloy, Figure 1 (b) is its schematic diagram, and Figure 2
The figure shows the change in phosphorus concentration over time in the method of the present invention and a comparative example, and FIG. 3 is a phase diagram of the AB binary alloy. Fig. 1 Fig. 2 fil @ square gq FgI (min) - 溌 phase thread spring one hundred hundred foot spring i degree C

Claims (1)

【特許請求の範囲】[Claims] 合金を高純度化するにあたり、精錬すべき合金の温度を
、該合金の液相線温度以下でかつ固相線温度以上に保持
し、該合金を攪拌するとともに、精錬剤を添加混合して
強攪拌し合金中の不純物元素を除去することを特徴とす
る合金の高純度化精錬方法
When purifying an alloy, the temperature of the alloy to be refined is kept below the liquidus temperature and above the solidus temperature of the alloy, and the alloy is stirred and a refining agent is added and mixed to strengthen it. A refining method for high purification of an alloy, characterized by removing impurity elements in the alloy by stirring.
JP60125978A 1985-06-12 1985-06-12 Method for refining alloy to high purity Granted JPS61284539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60125978A JPS61284539A (en) 1985-06-12 1985-06-12 Method for refining alloy to high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60125978A JPS61284539A (en) 1985-06-12 1985-06-12 Method for refining alloy to high purity

Publications (2)

Publication Number Publication Date
JPS61284539A true JPS61284539A (en) 1986-12-15
JPH0332613B2 JPH0332613B2 (en) 1991-05-14

Family

ID=14923696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60125978A Granted JPS61284539A (en) 1985-06-12 1985-06-12 Method for refining alloy to high purity

Country Status (1)

Country Link
JP (1) JPS61284539A (en)

Also Published As

Publication number Publication date
JPH0332613B2 (en) 1991-05-14

Similar Documents

Publication Publication Date Title
JPS59146920A (en) Manufacture of pure metal silicon
JPS5912731B2 (en) Method for refining aluminum or aluminum alloy
CN1126766A (en) Production process of ferro-titanium alloy
US3212881A (en) Purification of alloys
JPS61284539A (en) Method for refining alloy to high purity
US4049470A (en) Refining nickel base superalloys
US2760859A (en) Metallurgical flux compositions
RU2102495C1 (en) Metallothermal reaction mixture
SU557119A1 (en) Method of smelting siliceous ferroalloys
RU2002134993A (en) RECYCLING METHOD
JPH0364423A (en) Method for melting intermetallic compound ti-al-base alloy
CA1313678C (en) Process for producing an aqueous 4-hydroxyacetophenone (4-hap) which is stable at room temperature
SU665007A1 (en) Flux for refining magnesium
SU1111985A1 (en) Method for purifying technical selenium
SU522621A1 (en) Method of refining tin from admixtures
US3083093A (en) Process for eliminating titanium from products obtained by the carbothermic reduction of aluminum ores
JPS594484B2 (en) Goukintetsunodatsurin Datsutanhouhou
SU449732A1 (en) Catalyst for hydrogenolysis of glucose
RU2097319C1 (en) Method for remelting silicon dust
US2221626A (en) Treatment of manganese
US2237129A (en) Method for purifying tinny leads and lead-tin alloys
JPH0557341B2 (en)
RU2068015C1 (en) Method of preparing silumins
USRE12764E (en) Process of producing alloys or compounds of copper and titanium
Donyina PLASMA PROCESSING OF FERRO-MANGANESE SLAGS.