RU2068015C1 - Method of preparing silumins - Google Patents

Method of preparing silumins Download PDF

Info

Publication number
RU2068015C1
RU2068015C1 RU93029271A RU93029271A RU2068015C1 RU 2068015 C1 RU2068015 C1 RU 2068015C1 RU 93029271 A RU93029271 A RU 93029271A RU 93029271 A RU93029271 A RU 93029271A RU 2068015 C1 RU2068015 C1 RU 2068015C1
Authority
RU
Russia
Prior art keywords
melt
aluminum
slag
silumins
silumin
Prior art date
Application number
RU93029271A
Other languages
Russian (ru)
Other versions
RU93029271A (en
Inventor
В.М. Федотов
Original Assignee
Сибирская государственная горно-металлургическая академия
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сибирская государственная горно-металлургическая академия filed Critical Сибирская государственная горно-металлургическая академия
Priority to RU93029271A priority Critical patent/RU2068015C1/en
Publication of RU93029271A publication Critical patent/RU93029271A/en
Application granted granted Critical
Publication of RU2068015C1 publication Critical patent/RU2068015C1/en

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

FIELD: production of alloys. SUBSTANCE: silumins are prepared by hydrogen charging an aluminum melt and introducing silica. The former is performed by introducing into the melt the dross out of the silumin production in amounts of 5-10% of the mass of melt. EFFECT: new technique proposed. 1 tbl

Description

Изобретение относится к области металлургии цветных металлов и сплавов, в частности к получению сплавов алюминия с кремнием. The invention relates to the field of metallurgy of non-ferrous metals and alloys, in particular to the production of aluminum alloys with silicon.

В промышленной практике приготовления силуминов предусматривается растворение кристаллического кремния в жидком алюминии (Альтман М.Б. и др. Плавка и литье алюминиевых сплавов. М. Металлургия, 1983, 351 с.). Замена шихтового кремния на кремнезем достигается в способе получения силуминов, включающем расплавление алюминия, введение в расплав кремнезема в количестве 5 10% от массы расплава, наводороживание расплава водяным паром и повторение цикла обработки (авт. св. СССР, кл. C 22 C 1/02, N 1264589, 1986). In industrial practice, the preparation of silumins provides for the dissolution of crystalline silicon in liquid aluminum (Altman MB and others. Smelting and casting of aluminum alloys. M. Metallurgy, 1983, 351 S.). Replacing charge silica with silica is achieved in a method for producing silumins, including the melting of aluminum, introducing silica into the melt in an amount of 5-10% by weight of the melt, hydrogenating the melt with water vapor and repeating the treatment cycle (ed. St. USSR, class C 22 C 1 / 02, No. 1264589, 1986).

Наиболее близким к заявляемому по технической сущности и достигаемому результату является способ, согласно которому расплавленный алюминий наводороживают и вводят в расплав кремнезема при 780 850oC в количестве 5.10% от массы расплава и повторяют цикл обработки (авт. св. СССР N 1772198, кл. C 22 C 1/02, опубл. 30.10.92, бюл. N 40).Closest to the claimed technical essence and the achieved result is a method according to which molten aluminum is hydrogenated and introduced into the silica melt at 780,850 ° C in an amount of 5.10% by weight of the melt and the treatment cycle is repeated (ed. St. USSR N 1772198, cl. C 22 C 1/02, publ. 10/30/92, bull. N 40).

Недостатком способа является относительно низкий выход силумина, не превышающий 71%
Задачей изобретения является исключение окисления алюминия, что повышает выход силумина.
The disadvantage of this method is the relatively low yield of silumin, not exceeding 71%
The objective of the invention is to eliminate the oxidation of aluminum, which increases the yield of silumin.

Поставленная задача достигается тем, что в известном способе получения силуминов, включающем наводороживание расплавленного алюминия и введение в расплав кремнезема, согласно изобретению наводороживание расплава осуществляют введением в него шлака производства силуминов в количестве 5.10% от массы расплава. The problem is achieved in that in the known method for producing silumins, including hydrogenation of molten aluminum and introducing silica into the melt, according to the invention, hydrogenation of the melt is carried out by introducing silumin production slag in it in an amount of 5.10% by weight of the melt.

Сущность предлагаемого способа состоит в следующем. The essence of the proposed method is as follows.

Технология приготовления сплавов на основе алюминия предусматривает ряд операций, осуществляемых в условиях контакта жидкого металла с воздушной атмосферой, т.е. создаются условия образования и попадания в расплав γ-Al2O3 (Г. Б. Строганов. Высокопрочные литейные алюминиевые сплавы. М. Металлургия, 1985, с. 122). Однако известно, что модификация g-Al2O3 устойчива до 850oC (Химическая энциклопедия, М. 1988, с. 119), поэтому при сливе алюминия из электролита в ковш и его транспортировке в ковше в литейное отделение возможно образование активной к водороду модификации g-Al2O3. Таким образом, оксиды алюминия в шлаках производства алюминиевых сплавов, например силуминов, присутствуют в различных модификациях, в том числе и g-Al2O3. В свою очередь, g-Al2O3 адсорбируют водород, источниками которого являются металлический расплав, контактирующий со шлаком, и печная атмосфера, что приводит к насыщению шлака водородом. К этому надо добавить то, что при введении кремния в жидкий алюминий растворимость водорода в расплаве уменьшается (Д.Ф. Чернега и др. Газы в цветных металлах и сплавах. М. Металлургия, 1982, с. 59), и соответственно ускоряется процесс перехода водорода из расплава в шлаковую фазу.The technology for the preparation of aluminum-based alloys provides for a number of operations carried out under conditions of contact of a liquid metal with an air atmosphere, i.e. conditions are created for the formation and ingress of γ-Al 2 O 3 into the melt (G. B. Stroganov. High-strength cast aluminum alloys. M. Metallurgy, 1985, p. 122). However, it is known that the modification of g-Al 2 O 3 is stable up to 850 o C (Chemical Encyclopedia, M. 1988, p. 119), therefore, when aluminum is drained from the electrolyte into the ladle and transported in the ladle to the foundry compartment, formation of hydrogen-active modifications of g-Al 2 O 3 . Thus, aluminum oxides in the slags of the production of aluminum alloys, for example silumins, are present in various modifications, including g-Al 2 O 3 . In turn, g-Al 2 O 3 adsorb hydrogen, the sources of which are a metal melt in contact with the slag, and the furnace atmosphere, which leads to the saturation of the slag with hydrogen. To this we must add that when silicon is introduced into liquid aluminum, the solubility of hydrogen in the melt decreases (DF Chernega et al. Gases in non-ferrous metals and alloys. M. Metallurgy, 1982, p. 59), and the transition process is correspondingly accelerated hydrogen from the melt to the slag phase.

Исходя из представленных рассуждений, можно считать, что шлаки производства сплавов на основе алюминия являются источником водорода, необходимого для осуществления процесса восстановления кремнезема. При этом в отличие от прототипа введение в расплав шлаков не сопровождается окислением алюминия, что и определяет увеличение выхода силумина. Based on the presented reasoning, we can assume that the slags for the production of aluminum-based alloys are a source of hydrogen, necessary for the implementation of the recovery process of silica. Moreover, unlike the prototype, the introduction of slag into the melt is not accompanied by the oxidation of aluminum, which determines the increase in the yield of silumin.

Оптимальное количество шлака, вводимого в расплав в одном цикле обработки, составляет 5 10% от массы расплава. Отклонение от указанных пределов как в сторону увеличения, так и в сторону уменьшения приводит к уменьшению выхода силумина, что объясняется или малой концентрацией водорода в расплаве (менее 5% шлака), или усилением процесса вывода избыточного водорода из расплава за счет его молизации (более 10% шлака). The optimal amount of slag introduced into the melt in one processing cycle is 5-10% by weight of the melt. Deviation from the indicated limits both in the direction of increasing and decreasing leads to a decrease in the yield of silumin, which can be explained either by the low concentration of hydrogen in the melt (less than 5% slag) or by the intensification of the process of removing excess hydrogen from the melt due to its molization (more than 10 % slag).

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной области техники и, следовательно, обеспечивают заявляемому решению соответствие критерию "Изобретательский уровень". Signs that distinguish the claimed technical solution from the prototype, are not identified in other technical solutions when studying this technical field and, therefore, provide the claimed solution with the criterion of "Inventive step".

Способ осуществляют следующим образом. В разогретый до 780 850oC алюминий вводят шлак в количестве 5 10% от массы расплава. После растворения шлака в расплав вводят кремнезем в количестве 5 10% от массы расплава. Выдерживают расплав в течение 20 30 мин и цикл обработки повторяют или сливают расплав.The method is as follows. In the aluminum heated to 780 850 o C, slag is introduced in an amount of 5-10% by weight of the melt. After dissolution of the slag, silica is introduced into the melt in an amount of 5-10% by weight of the melt. The melt is held for 20-30 minutes and the treatment cycle is repeated or the melt is drained.

Способ проверен в лабораторных условиях. The method was tested in laboratory conditions.

Пример 1. Получали силумин по предлагаемому способу. Навеску алюминия А7 (масса 1 кг) расплавили в алундовом тигле в лабораторной электрической печи сопротивления. Example 1. Received silumin according to the proposed method. A portion of aluminum A7 (weight 1 kg) was melted in an alundum crucible in a laboratory electric resistance furnace.

При 800oC в расплав ввели 5% шлака (50% Al, 10% Si и 32% Al2O3) и после его растворения ввели 5% кремнезема. После выдержки расплава при 800oC в течение 20 мин цикл обработки повторили. Проведено 4 цикла обработки. Полученный сплав взвешивали и определяли выход силумина по уравнению

Figure 00000001

где Pспл. масса сплава,
PAl масса алюминия с учетом алюминия, вводимого со шлаком.At 800 ° C., 5% of slag (50% Al, 10% Si and 32% Al 2 O 3 ) was introduced into the melt and 5% silica was introduced after its dissolution. After holding the melt at 800 ° C. for 20 minutes, the treatment cycle was repeated. Conducted 4 processing cycles. The resulting alloy was weighed and the yield of silumin was determined by the equation
Figure 00000001

where P spl. alloy mass
P Al is the mass of aluminum, taking into account the aluminum introduced with the slag.

Результаты опыта представлены в таблице (опыт N 1). The results of the experiment are presented in the table (experiment No. 1).

Пример 2. Получили силумин по методике примера 1 в два цикла обработки, а количество вводимого шлака и кремнезема составляло 10% (опыт N 2). Example 2. Received silumin according to the method of example 1 in two treatment cycles, and the amount of input slag and silica was 10% (experiment No. 2).

Пример 3. Получили силумин по методике примера 1 в три цикла обработки. Количество вводимого шлака составляло 8% а кремнезема 7% (опыт N 3). Example 3. Received silumin according to the method of example 1 in three treatment cycles. The amount of introduced slag was 8% and silica 7% (experiment No. 3).

Пример 4. Получали силумин по методике примера 1, а количество вводимого шлака составляло 4% (ниже заявляемого предела, опыт N 4) и 12% (выше заявляемого предела, опыт N 5). Example 4. Received silumin according to the method of example 1, and the amount of introduced slag was 4% (below the claimed limit, experiment No. 4) and 12% (above the claimed limit, experiment No. 5).

Пример 5. Получали силумин по известному способу при 800oC в три цикла обработки, масса алюминия 1 кг. Количество вводимого шлака составляло 1% от массы расплава, а количество кремнезема 8% от массы расплава. Время обработки водяным паром составляло 4 мин при общей длительности одного цикла, равной 30 мин (опыт N 6).Example 5. Received silumin by a known method at 800 o C in three treatment cycles, the mass of aluminum 1 kg The amount of slag introduced was 1% by weight of the melt, and the amount of silica was 8% by weight of the melt. The treatment time with water vapor was 4 minutes with a total duration of one cycle equal to 30 minutes (experiment No. 6).

Как видно из таблицы, использование предлагаемого способа позволяет увеличить выход силумина на 3.7% причем отклонение от заявляемых пределов приводит к снижению выхода силумина (опыты 4 и 5). As can be seen from the table, the use of the proposed method allows to increase the yield of silumin by 3.7% and a deviation from the claimed limits leads to a decrease in the yield of silumin (experiments 4 and 5).

Применение предлагаемого способа позволит снизить на 5 10% материальные затраты на приготовление силумина по принципиально новой технологии, при этом используются шлаки, являющиеся отходами производства силуминов. ТТТ1 The application of the proposed method will reduce by 5 10% material costs for the preparation of silumin according to a fundamentally new technology, while using slags, which are waste products of silumins. TTT1

Claims (1)

Способ получения силуминов, включающий расплавление алюминия, наводороживание расплава введением шлака производства силуминов и введение кремнезема, отличающийся тем, что шлак производства силуминов вводят в количестве 5 10% от массы расплава. A method of producing silumins, including the melting of aluminum, hydrogenation of the melt by the introduction of slag from the production of silumins and the introduction of silica, characterized in that the slag from the production of silumins is introduced in an amount of 5-10% by weight of the melt.
RU93029271A 1993-06-08 1993-06-08 Method of preparing silumins RU2068015C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93029271A RU2068015C1 (en) 1993-06-08 1993-06-08 Method of preparing silumins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93029271A RU2068015C1 (en) 1993-06-08 1993-06-08 Method of preparing silumins

Publications (2)

Publication Number Publication Date
RU93029271A RU93029271A (en) 1996-07-20
RU2068015C1 true RU2068015C1 (en) 1996-10-20

Family

ID=20142633

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93029271A RU2068015C1 (en) 1993-06-08 1993-06-08 Method of preparing silumins

Country Status (1)

Country Link
RU (1) RU2068015C1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1772198, кл. С 22 С 1/02, 1992. *

Similar Documents

Publication Publication Date Title
CN102094125A (en) Process method for preparing magnesium alloy through electro-slag remelting
RU2068015C1 (en) Method of preparing silumins
US4604135A (en) Apparatus and process for the metallurgical aftertreatment of premelted metals
RU2002134993A (en) RECYCLING METHOD
RU2184789C1 (en) Method of preparing magnesium alloy for shaped castings
SU1057161A1 (en) Modifier for aluminium alloys
SU598951A1 (en) Method of melting aluminium alloys
JPH04120225A (en) Manufacture of ti-al series alloy
SU885310A1 (en) Method of processing silumine slags
SU489799A1 (en) Titanium based alloy
RU2302475C2 (en) Method of production of ingots on base of refractory metals by vacuum autocrucible arc melting
RU2099433C1 (en) Method of processing aluminum-containing metallized slags
RU2058405C1 (en) Method for processing of aluminum slag
RU2063453C1 (en) Method of aluminum slags processing
RU2241775C1 (en) Method for modification of magnesium-based alloys
SU865931A1 (en) Mixture for modifying and desulfurizing cast iron and steel
JPH03197624A (en) Vacuum esr method for component control
RU2084548C1 (en) Method of cleaning of aluminium and its alloys of heavy metal impurities
SU971901A1 (en) Method for electroflux refining of aluminium alloys
RU2154683C1 (en) Method of production of ingots by vacuum arc autocrucible melting
SU645378A1 (en) Method of metal smelting in lined electric furnace
SU768821A1 (en) Method of smelting alloyed steels and alloys
SU290057A1 (en) METHOD OF MELTING ALLOYS CONTAINING NICKEL, MOLYBDEN AND NIOBIUM
Chumarev et al. Structure and phase composition of a V-Al-N master alloy
SU1470799A1 (en) Method of producing aluminium-silicon alloys