JPS6128429B2 - - Google Patents
Info
- Publication number
- JPS6128429B2 JPS6128429B2 JP2258182A JP2258182A JPS6128429B2 JP S6128429 B2 JPS6128429 B2 JP S6128429B2 JP 2258182 A JP2258182 A JP 2258182A JP 2258182 A JP2258182 A JP 2258182A JP S6128429 B2 JPS6128429 B2 JP S6128429B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- light
- controlled
- arc
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003466 welding Methods 0.000 claims description 139
- 239000011324 bead Substances 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- 230000005855 radiation Effects 0.000 claims description 5
- 239000002184 metal Substances 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 239000004020 conductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000005493 welding type Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/124—Circuits or methods for feeding welding wire
- B23K9/125—Feeding of electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Description
この発明は、開先状態の変動にかかわらず、常
に所定の表ビード形状が得られる片面自動溶接方
法に関するものである。
片面自動溶接は、被溶接材を反転することなく
片面からの溶接で十分な溶込みが得られ、良好な
ビードを形成することができるため、造船材の如
き大形鋼板の溶液に多く用いられている。
ところで、良好なビードを形成させるために
は、被溶接材の開先形状が常に一定でなければな
らないが、被溶接材の端面は例えばその切断時に
熱変形が生じるため、開先形状はかならずしも一
定とはならず、この結果溶接後のビード形状に不
揃いの生ずる問題があつた。
本発明者等は、上述した問題を解決し開先状態
に変動があつても、常に均一な高さの良好なビー
ドを形成することができる片面自動溶接方法を開
発すべく鋭意研究を重ねた。
本発明者等は、先に片面自動溶接において、裏
当金の裏当材との接面側に複数の光電受光素子か
らなる光量検出器を設け、前記光電受光素子によ
り溶接時における被溶接材裏面に貫通したアーク
光および溶接赤熱部からの輻射光を受光し、これ
を電気信号に変換して、裏当金の移動速度および
左右方向の位置制御を行なう方法および電流、電
圧、溶接速度等の溶接パラメータを制御し、入熱
制御による裏ビード形状、アーク穿孔力を制御す
る方法を開発した。
第1図は上記方法の一実施例を示す片面自動溶
接部の縦断面図、第2図は裏当金の平面図で、1
は被溶接材である鋼板、2は裏当金、3は鋼板1
と裏当金2との間に介在せしめたグラスフアイバ
ーテープ等の透光性を有する裏当材、4は溶接ワ
イヤで、矢印は溶接方向を示す。
裏当金2の前記裏当材3との接面側には、フオ
トダイオード、フオトトランジスタ、cds等の受
光素子5からなる光量検出器が埋込まれている。
受光素子5は第2図に示す如く、裏当金2に溶接
進行方向に関して溶接ワイヤの直下より前方と後
方のそれぞれ右側と左側に相互に所定の間隔を設
けて4個埋込まれており、アーク発生位置6の中
心が4個の受光素子5の中央付近に位置するよう
に、裏当金2の移動速度および左右方向の位置が
制御される。
本発明者等は、上述した1個または複数個の受
光素子5で受光した光量が一定となるように溶接
電流を制御すれば、開先状態のいかんにかかわら
ず、裏ビード輻を一定にすることができ、この溶
接電流の大小と開先内に形成される表ビード高さ
とは比例関係にあることを知見した。第7図は、
種々の開先状態において溶接電流を広範囲に変え
て溶接したときの、前述した1個または複数個の
受光素子5で受光したアーク光量(電圧値)と裏
ビード幅との閑係を示すグラフである。図面に示
すように、開先状態のいかんにかかわらず、前記
アーク光量(電圧値)と前記裏ビード幅との間に
は、良い相関関係のあることがわかつた。
従つて、第7図から、アーク光量(電圧値)が
一定となるように溶接電流を制御すれば、開先状
態のいかんにかかわらず裏ビード幅を一定にし得
ることが明らかである。
第8図は、種々の開先状態においてアーク光量
が一定となるように溶接電流を制御したときの、
前記溶接電流とナゲツト高さおよび裏ビード幅と
の関係を示すグラフである。図面に示すように、
アーク光量が一定となるように溶接電流を制御す
れば、裏ビード幅は常に一定となり、そして、ナ
ゲツト高さとの間には比例関係のあることがわか
つた。前記ナゲツト高さは、板厚と裏ビード高さ
と表ビード高さとの和であり、溶接する前に板厚
と裏ビード高さとは一定値として与えられるの
で、第8図から溶接電流の大小と開先内に形成さ
れる表ビード高さとの間には、比例関係のあるこ
とが明らかである。即ち、開先状態が変動して
も、制御された溶接電流が被溶接材の板厚に応じ
た所定電流値になるように溶接を行なえば、一定
の高さを有する表ビードが得られることになる。
この発明は、上記知見に基づいてなされたもの
であつて、被溶接材の裏側に、被溶接部のアーク
光および輻射光の光量を検出する光量検出器を配
置し、被溶接材の開先部に沿つて溶接機と前記光
量検出器とを同期移動させながら、溶接するアー
ク溶接方法において、前記被溶接材の裏面に貫通
した前記アーク光と輻射光のいずれかまたは両方
を、前記光量検出器で受光してその光量を検出
し、検出された光量に基づいて前記溶接電極の溶
接電流を制御すると共に、制御された溶接電流値
を検出して、前記溶接電流値が所定高さの表ビー
ドを形成する設定基準電流値と一致するように、
溶接電極が1つの場合は、溶接速度と溶接電極の
ワイヤ突出し長さの少なくとも1つを、また溶接
電極が複数の場合は、溶接速度、溶接電極のワイ
ヤ突出し長さおよび前記溶接電流の制御を行なわ
ない溶接電極の電流値のうちの少なくとも1つを
制御することに特徴を有するものである。
次に、この発明を2電極サブマージアーク溶接
による片面溶接法に適用した場合の実施例につい
て、第3図のブロツク図に基づき説明する。
図面において、4は先行電極の溶接ワイヤ、
4′は後行電極の溶接ワイヤ、13は先行電極ノ
ズル、13′は後行電極ノズルで、矢印は溶接方
向を示す。11,11′は一端が鋼板1に接続さ
れている溶接電源で、先行電極ノズル13は導線
15により溶接電源11に、また後行電極ノズル
13′は導線15′により溶接電源11′に夫々接
続されている。先行電極ノズル13と溶接電源1
1とを結ぶ導線15の途中には、溶接電流検出器
12が設けられている。
先行電極ノズル13は電極ノズル駆動用モータ
14により、また後行電極ノズル13′は電極ノ
ズル駆動用モータ14′により夫々上下方向に移
動でき、これによつて溶接ワイヤ4,4′の突出
し長さを制御することができる。2は裏当金、5
は裏当金2に設けられた光量検出器である4個の
受光素子、3は透光性のある裏当材である。
この発明においては、裏当金2に設けられた4
個の受光素子5により、先行電極の溶接ワイヤ4
から発せられたアーク光量および溶接赤熱部から
の輻射光量を検出し、検出された輻射光量を電圧
値に光電変換して加算器7で加算した上、比較器
9により裏ビード幅設定器8で予め設定された所
定の裏ビード幅となすための電圧値と比較しその
差電圧を得る。ついで、この差電圧を溶接電流制
御器10に入力し、前記差電圧が零となるように
溶接電源11の出力すなわち先行電極の溶接ワイ
ヤ4の溶接電流を制御する。
かくして所定形状の裏ビードが形成される。
ついで、上記により制御された先行電極の溶接
ワイヤ4の溶接電流値を、溶接電流検出器12に
よつて検出する。溶接電流検出器12によつて検
出された検出電流値は、第4図のブロツク図に示
すように、表ビード高さ設定器12′で設定され
た設定電流値と比較器16で比較して差電圧とし
て出力され、下記の何れか1つまたは2つ以上の
手段で前記差電圧が零となるよううに制御する。
(1) 溶接速度制御器17により溶接台車駆動用モ
ータ18の駆動即ち溶接速度を制御する。
(2) 後行電流制御器19により後行電極ノズルの
溶接電極11′から後行電極の溶接電流を制御
する。
(3) 先行電極のワイヤ突出し長さ制御器20によ
り先行電極ノズル駆動用モータ14の駆動即ち
先行電極の溶接ワイヤの突出し長さを制御す
る。
(4) 後行電極のワイヤ突出し長さ制御器20′に
より後行電極ノズル駆動用モータ14′の駆動
即ち後行電極の溶接ワイヤの突出し長さを制御
する。
上述の制御は、次のようにして行なわれる。即
ち、表ビード高さ設定器12′の設定電流値に比
べて溶接電流検出器12により検出された検出電
流値が小の場合は、表ビードの溶着金属量が不足
しているのであるから、溶接速度を小にするか、
後行電極の電流値または各電極の溶接ワイヤ突出
し長さを大にする。一方前記設定電流他に比べて
検出電流値が大の場合は、表ビードの溶着金属量
が過大なのであるから、溶接速度を大にするか、
後行電極の電流値または各電極の溶接ワイヤ突出
し長さを小にする。また前記設定電流値と検出電
流値とが同じ場合は、表ビードの溶着金属量が適
正状態なのであるから、溶接速度、後行電極の電
流値およびワイヤ突出し長さを現状に保持して溶
接を行なう。
次に、この発明の具体的な実施例を説明する。
板厚16mmの鋼板を、開先形状を50゜のV開先と
して、2電極サブマージアーク溶接により下記の
条件で溶接した。
(1) ワイヤ径 4.8mmφ×2本
(2) 先行電極電圧 36V
(3) 後行電極電圧 42V
裏ビード幅設定器8により裏ビード幅を15〜16
mmに設定し、先行電極の電流値を制御した。同時
に制御された電流値を検出して、その電流値を板
厚16mmの鋼板を溶接する場合に最適な表ビードを
形成せしめ得る電流値である820Aとなるよう
に、溶接速度および後行電極の電流値を制御し
た。
第1表には、この発明方法により、開先部のギ
ヤツプによつて、溶接速度および後行電極の電流
値を制御した場合のビード形状が、このような制
御を行なわない従来例と共に示されている。
The present invention relates to a single-sided automatic welding method that always provides a predetermined surface bead shape regardless of variations in the groove condition. Single-sided automatic welding is often used for welding large steel plates such as shipbuilding materials because sufficient penetration can be obtained by welding from one side without reversing the material to be welded, and a good bead can be formed. ing. By the way, in order to form a good bead, the shape of the groove of the material to be welded must always be constant, but because the end face of the material to be welded is thermally deformed, for example, when cutting it, the shape of the groove is not necessarily constant. As a result, there was a problem in that the bead shape after welding was irregular. The present inventors have conducted extensive research in order to solve the above-mentioned problems and develop a single-sided automatic welding method that can always form a good bead with a uniform height even when the groove condition fluctuates. . The present inventors previously provided a light amount detector consisting of a plurality of photoelectric light-receiving elements on the side of the backing metal that comes into contact with the backing material in single-sided automatic welding, and used the photoelectric light-receiving elements to detect the welding material during welding. A method of receiving arc light penetrating the back surface and radiant light from the red-hot welding part, converting it into an electrical signal, and controlling the movement speed and horizontal position of the backing metal, as well as current, voltage, welding speed, etc. We have developed a method to control the welding parameters and control the back bead shape and arc drilling force by controlling heat input. Fig. 1 is a longitudinal sectional view of a single-sided automatic welding part showing an example of the above method, and Fig. 2 is a plan view of the backing metal.
is the steel plate that is the material to be welded, 2 is the backing metal, 3 is the steel plate 1
A translucent backing material such as glass fiber tape is interposed between the backing metal 2 and the backing metal 2. 4 is a welding wire, and the arrow indicates the welding direction. A light amount detector consisting of a light receiving element 5 such as a photodiode, phototransistor, CDS, etc. is embedded in the side of the backing metal 2 that is in contact with the backing material 3.
As shown in FIG. 2, four light-receiving elements 5 are embedded in the backing metal 2 at predetermined intervals on the right and left sides of the front and rear sides of the welding wire, respectively, from just below the welding wire in the direction of welding progress. The moving speed and horizontal position of the backing metal 2 are controlled so that the center of the arc generation position 6 is located near the center of the four light receiving elements 5. The present inventors have found that by controlling the welding current so that the amount of light received by the one or more light receiving elements 5 described above is constant, the back bead radius can be made constant regardless of the groove condition. It was found that there is a proportional relationship between the magnitude of this welding current and the height of the surface bead formed within the groove. Figure 7 shows
This is a graph showing the relationship between the amount of arc light (voltage value) received by the one or more light-receiving elements 5 and the back bead width when welding is performed by changing the welding current over a wide range in various groove conditions. be. As shown in the drawings, it was found that there was a good correlation between the amount of arc light (voltage value) and the back bead width, regardless of the groove condition. Therefore, from FIG. 7, it is clear that if the welding current is controlled so that the amount of arc light (voltage value) is constant, the back bead width can be made constant regardless of the groove condition. Figure 8 shows the welding current when the welding current is controlled so that the amount of arc light is constant in various groove conditions.
5 is a graph showing the relationship between the welding current, nugget height, and back bead width. As shown in the drawing,
It was found that if the welding current is controlled so that the amount of arc light is constant, the back bead width will always be constant and there is a proportional relationship between it and the nugget height. The nugget height is the sum of the plate thickness, back bead height, and front bead height, and since the plate thickness and back bead height are given as constant values before welding, from Fig. 8, it can be determined that the welding current is It is clear that there is a proportional relationship between the height of the surface bead formed within the groove. In other words, even if the groove condition changes, if welding is performed so that the welding current is controlled to a predetermined current value depending on the thickness of the material to be welded, a surface bead with a constant height can be obtained. become. This invention was made based on the above knowledge, and includes a light amount detector that detects the amount of arc light and radiation light of the welded part on the back side of the welded material, and In an arc welding method in which welding is performed while a welding machine and the light amount detector are synchronously moved along the welding part, either or both of the arc light and the radiant light that have penetrated the back surface of the welded material are detected by the light amount detection. the welding current of the welding electrode is controlled based on the detected light amount, the controlled welding current value is detected, and the welding current value is set at a predetermined height. To match the set reference current value to form a bead,
When there is one welding electrode, at least one of the welding speed and the wire protrusion length of the welding electrode is controlled, and when there are multiple welding electrodes, the welding speed, the wire protrusion length of the welding electrode, and the welding current are controlled. This method is characterized in that at least one of the current values of the welding electrodes that are not used is controlled. Next, an embodiment in which the present invention is applied to a single-sided welding method using two-electrode submerged arc welding will be described based on the block diagram of FIG. In the drawing, 4 is the welding wire of the leading electrode;
4' is a welding wire of a trailing electrode, 13 is a leading electrode nozzle, 13' is a trailing electrode nozzle, and the arrow indicates the welding direction. 11 and 11' are welding power sources whose one ends are connected to the steel plate 1, the leading electrode nozzle 13 is connected to the welding power source 11 by a conductor 15, and the trailing electrode nozzle 13' is connected to the welding power source 11' by a conductor 15', respectively. has been done. Leading electrode nozzle 13 and welding power source 1
A welding current detector 12 is provided in the middle of the conductor 15 connecting the two. The leading electrode nozzle 13 can be moved vertically by an electrode nozzle driving motor 14, and the trailing electrode nozzle 13' can be moved vertically by an electrode nozzle driving motor 14', thereby controlling the protruding length of welding wires 4, 4'. can be controlled. 2 is the backing money, 5
3 is a light-transmitting backing material, and 3 is a light-transmitting backing material. In this invention, the 4
The welding wire 4 of the leading electrode is
The amount of arc light emitted from the welding part and the amount of radiant light from the red-hot welding part are detected, and the detected amount of radiant light is photoelectrically converted into a voltage value and added by adder 7. It is compared with a voltage value for forming a predetermined back bead width set in advance, and a difference voltage is obtained. Next, this differential voltage is input to the welding current controller 10, and the output of the welding power source 11, that is, the welding current of the welding wire 4 of the leading electrode is controlled so that the differential voltage becomes zero. In this way, a back bead of a predetermined shape is formed. Next, the welding current value of the welding wire 4 of the preceding electrode controlled as described above is detected by the welding current detector 12. The detected current value detected by the welding current detector 12 is compared with the set current value set by the front bead height setting device 12' by a comparator 16, as shown in the block diagram of FIG. The voltage difference is output as a voltage difference, and the voltage difference is controlled to be zero by one or more of the following means. (1) The welding speed controller 17 controls the drive of the welding cart drive motor 18, that is, the welding speed. (2) The trailing current controller 19 controls the welding current from the welding electrode 11' of the trailing electrode nozzle to the trailing electrode. (3) The leading electrode wire projection length controller 20 controls the driving of the leading electrode nozzle drive motor 14, that is, the leading electrode welding wire projection length. (4) The trailing electrode wire protrusion length controller 20' drives the trailing electrode nozzle drive motor 14', that is, controls the protrusion length of the welding wire of the trailing electrode. The above control is performed as follows. That is, if the detected current value detected by the welding current detector 12 is smaller than the set current value of the front bead height setting device 12', this means that the amount of weld metal deposited on the front bead is insufficient. Decrease the welding speed or
Increase the current value of the trailing electrode or the welding wire protrusion length of each electrode. On the other hand, if the detected current value is large compared to the set current and others, the amount of weld metal deposited on the front bead is excessive, so either increase the welding speed or
Reduce the current value of the trailing electrode or the welding wire protrusion length of each electrode. If the set current value and the detected current value are the same, the amount of deposited metal on the front bead is appropriate, so welding can be carried out by keeping the welding speed, trailing electrode current value, and wire protrusion length at their current values. Let's do it. Next, specific examples of the present invention will be described. A steel plate with a thickness of 16 mm was welded with a V-groove shape of 50° by two-electrode submerged arc welding under the following conditions. (1) Wire diameter 4.8mmφ x 2 (2) Leading electrode voltage 36V (3) Trailing electrode voltage 42V Set the back bead width to 15 to 16 using the back bead width setting device 8.
mm, and the current value of the leading electrode was controlled. At the same time, the controlled current value is detected, and the welding speed and trailing electrode are adjusted so that the current value becomes 820A, which is the current value that can form the optimal surface bead when welding a steel plate with a thickness of 16 mm. The current value was controlled. Table 1 shows the bead shape when the welding speed and the current value of the trailing electrode are controlled by the gap in the groove according to the method of the present invention, along with a conventional example in which such control is not performed. ing.
【表】
上記第1表から明らかなように、この発明方法
により、開先ギヤツプの寸法に応じて溶接速度お
よび後行電極の電流を制御した結果、このような
制御を行なわない従来例と比較し、均一な表ビー
ド形状が得られ、また裏ビードの形状も均一であ
つた。
第5図は4.0mmφのワイヤを使用し、32Vのア
ーク電圧で35cm/minの速度により、600A、700A
および800Aの溶接電流で、ワイヤの突き出し長
さを変えて溶接した場合のワイヤ溶融速度を示し
たもので、ワイヤの突き出し長さを大にするほど
ワイヤの溶融速度は大となる。従つて、この発明
方法により先行電極の溶接電流の変化に応じてワ
イヤ突き出し長さを変えれば、所期の表ビード形
状を得られることがわかる。
上述した実施例は、溶接電極が2つの場合の例
について述べたが、溶接電極が1つでも同様の方
法により実施することができる。なお溶接電極が
1つの場合は、溶接速度と溶接電極の突出し長さ
とを制御因子とし、その少なくとも1つにより制
御を行なう。また溶接電極が複数の場合は、溶接
速度、溶接電極のワイヤ突出し長さ、および、前
記溶接電流の制御を行なわない溶接電極の電流値
のうちの少なくとも1つを制御する。なお通常
は、先行電極に対して上述した光量に基づく溶接
電流制御を行なう。
この発明は、裏波ビードを形成させる片面アー
ク溶接法のほか、第6図イ,ロに示すように、鋼
板1,1の溶接部に裏ビードを形成させないアー
ク溶接方法に対しても有効に適用でき、またサブ
マージアーク溶接に限らず、消耗電極を用いるガ
スシールドアーク溶接その他各種の溶接に広く適
用することができる。
以上述べたように、この発明方法によれば、片
面アーク溶接において、開先状態の変動にかかわ
らず、一定の裏ビード形状が得られると同時に、
自動的に表ビードの高さを一定にすることがで
き、また裏波ビードを形成させないアーク溶接に
おいては、開先状態の変動にかかわらず一定の溶
込み深さと一定のビード高さが得られる等、工業
上優れた効果がもたらされる。[Table] As is clear from Table 1 above, as a result of controlling the welding speed and trailing electrode current according to the dimensions of the groove gap using the method of the present invention, the results are compared with the conventional example in which such control is not performed. However, a uniform front bead shape was obtained, and the back bead shape was also uniform. Figure 5 shows 600A, 700A using 4.0mmφ wire at 32V arc voltage and 35cm/min speed.
This graph shows the wire melting speed when welding with a welding current of 800A and varying wire protrusion lengths.The wire melting speed increases as the wire protrusion length increases. Therefore, it can be seen that the desired surface bead shape can be obtained by changing the wire protrusion length according to the change in the welding current of the preceding electrode according to the method of the present invention. Although the above-described embodiments have been described with reference to two welding electrodes, the same method can be used even with one welding electrode. In addition, when there is only one welding electrode, the welding speed and the protrusion length of the welding electrode are used as control factors, and control is performed using at least one of them. In addition, when there are a plurality of welding electrodes, at least one of the welding speed, the wire protrusion length of the welding electrode, and the current value of the welding electrode whose welding current is not controlled is controlled. Note that normally, the welding current control is performed for the preceding electrode based on the above-mentioned light amount. This invention is effective not only for the single-sided arc welding method that forms a back bead, but also for the arc welding method that does not form a back bead at the welded portion of the steel plates 1 and 1, as shown in Fig. 6 A and B. Moreover, it can be widely applied not only to submerged arc welding but also to gas shielded arc welding using consumable electrodes and other various types of welding. As described above, according to the method of the present invention, a constant back bead shape can be obtained in single-sided arc welding regardless of variations in the groove condition, and at the same time,
The height of the surface bead can be automatically kept constant, and in arc welding that does not form a uranami bead, a constant penetration depth and constant bead height can be obtained regardless of fluctuations in the groove condition. etc., bring about excellent industrial effects.
第1図は光電受光素子による制御手段を示す片
面自動溶接部の縦断面図、第2図は同じく裏当金
の平面図、第3図はこの発明を2電極サブマージ
アーク溶接による片面溶接法に適用した場合のブ
ロツク図、第4図はこの発明による表ビードの溶
着金属量の制御ブロツク図、第5図はワイヤ突出
し長さとワイヤ溶融速度との関係を示す図、第6
図は裏ビードが形成されない溶接部の縦断面図、
第7図はアーク光量と裏ビード幅との関係を示す
グラフ、第8図は溶接電流と裏ビード幅およびナ
ゲツト高さとの関係を示すグラフである。図面に
おいて、
1……鋼板、2……裏当金、3……裏当材、
4,4′……溶接ワイヤ、5……受光素子、6…
…アーク発生位置、6′……溶接赤熱部、7……
加算器、8……裏ビード幅設定器、9……比較
器、10……溶接電流制御器、11,11′……
溶接電源、12……溶接電流検出器、12′……
表ビード高さ設定器、13,13′……電極ノズ
ル、14,14′……電極ノズル駆動用モータ、
15,15′……導線、16……比較器、17…
…溶接速度制御器、18……溶接台車駆動用モー
タ、19……後行電流制御器、20,20′……
ワイヤ突出し長さ制御器。
Fig. 1 is a vertical cross-sectional view of a single-sided automatic welding part showing control means using a photoelectric light receiving element, Fig. 2 is a plan view of the backing metal, and Fig. 3 shows a single-sided welding method using two-electrode submerged arc welding. FIG. 4 is a block diagram of the control of the amount of welded metal on the front bead according to the present invention, FIG. 5 is a diagram showing the relationship between wire protrusion length and wire melting rate, and FIG.
The figure is a longitudinal cross-sectional view of a welded part where no back bead is formed.
FIG. 7 is a graph showing the relationship between the amount of arc light and the back bead width, and FIG. 8 is a graph showing the relationship between the welding current, the back bead width, and the nugget height. In the drawings, 1... Steel plate, 2... Backing metal, 3... Backing material,
4, 4'... Welding wire, 5... Light receiving element, 6...
...Arc generation position, 6'...Red hot part of welding, 7...
Adder, 8... Back bead width setting device, 9... Comparator, 10... Welding current controller, 11, 11'...
Welding power source, 12... Welding current detector, 12'...
Front bead height setting device, 13, 13'... Electrode nozzle, 14, 14'... Electrode nozzle driving motor,
15, 15'... conductor, 16... comparator, 17...
...Welding speed controller, 18... Welding cart drive motor, 19... Trailing current controller, 20, 20'...
Wire protrusion length controller.
Claims (1)
輻射光の光量を検出する光量検出器を配置し、被
溶接材の開先部に沿つて溶接機と前記光量検出器
とを同期移動させながら溶接するアーク溶接方法
において、 前記被溶接材の裏面に貫通したアーク光と輻射
光のいずれかまたは両方を、前記光量検出器で受
光してその光量を検出し、検出された光量を、予
め設定された、裏ビード幅を形成し得る基準光量
と比較して、その差が零となるように、溶接電流
値を制御すると共に、この制御された溶接電流値
を検出して前記溶接電流値が所定高さの表ビード
を形成し得る設定基準電流値と一致するように、
溶接電極が1つの場合には、溶接速度、溶接電極
のワイヤ突出し長さのうちの少なくとも1つを制
御し、前記溶接電極が複数の場合には、溶接速
度、溶接電極のワイヤ突出し長さ、および、前記
溶接電流の制御を行なわない溶接電極の電流値の
うちの少なくとも1つを制御することを特徴とす
るアーク溶接方法。 2 主として被溶接材の裏面に貫通したアーク光
量を検出して制御することを特徴とする特許請求
の範囲第1項に記載のアーク溶接方法。 3 主として被溶接材の溶融池からの輻射光量を
検出して制御することを特徴とする特許請求の範
囲第1項に記載のアーク溶接方法。 4 主として被溶接材の溶接ビードからの輻射光
量を検出して制御することを特徴とする特許請求
の範囲第1項に記載のアーク溶接方法。[Scope of Claims] 1. A light amount detector for detecting the amount of arc light and radiation light of the welding part is arranged on the back side of the material to be welded, and the welding machine and the light amount detector are arranged along the groove of the material to be welded. In the arc welding method in which welding is carried out while moving the welding device in synchronization with the workpiece, either or both of the arc light and the radiation light that penetrate the back surface of the welded material is received by the light amount detector, and the amount of light is detected. The welding current value is controlled so that the difference becomes zero by comparing the light amount set in advance with a reference light amount that can form the back bead width, and this controlled welding current value is detected. so that the welding current value matches a set reference current value that can form a surface bead of a predetermined height,
When there is one welding electrode, at least one of the welding speed and the wire protrusion length of the welding electrode is controlled, and when there are a plurality of welding electrodes, the welding speed, the wire protrusion length of the welding electrode, and an arc welding method, characterized in that at least one of the current values of the welding electrodes in which the welding current is not controlled is controlled. 2. The arc welding method according to claim 1, characterized in that the amount of arc light that penetrates the back surface of the material to be welded is mainly detected and controlled. 3. The arc welding method according to claim 1, characterized in that the amount of radiation light from a molten pool of the material to be welded is mainly detected and controlled. 4. The arc welding method according to claim 1, characterized in that the amount of radiation light from a weld bead of the material to be welded is mainly detected and controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2258182A JPS58141861A (en) | 1982-02-17 | 1982-02-17 | Arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2258182A JPS58141861A (en) | 1982-02-17 | 1982-02-17 | Arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58141861A JPS58141861A (en) | 1983-08-23 |
JPS6128429B2 true JPS6128429B2 (en) | 1986-06-30 |
Family
ID=12086817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2258182A Granted JPS58141861A (en) | 1982-02-17 | 1982-02-17 | Arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58141861A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60179611A (en) * | 1984-02-27 | 1985-09-13 | Shimadzu Corp | Recorder for analyzer |
ITVI20080180A1 (en) * | 2008-07-29 | 2010-01-30 | Itipack Srl | WELDING APPARATUS AND METHOD FOR THE QUALITY CONTROL OF WELDING |
-
1982
- 1982-02-17 JP JP2258182A patent/JPS58141861A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58141861A (en) | 1983-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3704358A (en) | Submerged-arc both-side butt welding method of a square groove | |
US4816639A (en) | Automatic arc-welding method | |
US4816641A (en) | Automatic arc-welding method | |
US4816640A (en) | Automatic arc-welding method | |
JPS5812109B2 (en) | How do you know what to do with your child? | |
JPS6128429B2 (en) | ||
JPS6128428B2 (en) | ||
US3830999A (en) | Method of welding, fusing or heating workpiece utilizing energy of light | |
JPH02205267A (en) | Consumable electrode arc welding method | |
JPS6117364A (en) | Double electrode type narrow groove welding | |
SU1320030A1 (en) | Current-conducting nozzle | |
JPS5970475A (en) | Arc welding method | |
JPH0479750B2 (en) | ||
EP0093811B1 (en) | Automatic arc-welding method | |
JP3235506B2 (en) | Welding method by arc welding | |
JPH04182075A (en) | Method for heat treating weld zone | |
JPS5970480A (en) | One-side butt welding method of pipe by inert gas tungsten arc welding | |
JPS61202776A (en) | One side uranami automatic welding method | |
SU831454A1 (en) | Method of welding by different-polarity compressed arcs | |
JPS6415278A (en) | Back bead control method for automatic gas shielded arc one-side welding | |
JPS63104782A (en) | Control method for penetration of arc welding | |
JPH01317694A (en) | Method for laser butt welding of sheets | |
JPS6317553B2 (en) | ||
SU397288A1 (en) | In PTB | |
JPH0669638B2 (en) | One-sided welding backing material |