JPH02205267A - Consumable electrode arc welding method - Google Patents

Consumable electrode arc welding method

Info

Publication number
JPH02205267A
JPH02205267A JP2269089A JP2269089A JPH02205267A JP H02205267 A JPH02205267 A JP H02205267A JP 2269089 A JP2269089 A JP 2269089A JP 2269089 A JP2269089 A JP 2269089A JP H02205267 A JPH02205267 A JP H02205267A
Authority
JP
Japan
Prior art keywords
groove
electrode
welding
filler wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2269089A
Other languages
Japanese (ja)
Inventor
Shigeo Fujimori
藤森 成夫
Koichi Shinada
功一 品田
Yukiyoshi Kitamura
北村 征義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2269089A priority Critical patent/JPH02205267A/en
Publication of JPH02205267A publication Critical patent/JPH02205267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain sound weld beads by feeding a filler wire whose feed speed is controlled according to detected information on a groove shape of material to be welded to a first electrode arc to control both prescribed penetration and quantity of reinforcement of weld at the same time. CONSTITUTION:In three-electrode submerged arc welding, for instance, groove position and groove shape detectors 14 and 15 calculate continuously the groove position and shape information which are collected to a controller 16. The groove cross-sectional area is then calculated from the information and compared with a reference value and when the former is larger than the latter, the filler wire 12 speed corresponding to the groove cross-sectional area by the difference is calculated and its output signal is given to a feed motor 13. The wire 12 has 1.6-3.2mm diameter and a part of a current of the first electrode are is caused to flow thereto. When the wire 12 is fed to the first electrode arc 2 from the front, the arc 2 ignited between the material 1 to be welded and a first electrode wire 6 is also ignited on the wire 12 and the arc is transferred slightly above from the groove bottom and the penetration is controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はサブマージドアーク溶接をはじめとする消耗電
極式アーク溶接において、開先を有する被溶接物の溶接
ビード形成の主要素である、溶込み及び余盛量の双方を
同時に制御せしめる方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is applied to welding, which is the main element in forming a weld bead on a workpiece having a groove, in consumable electrode arc welding such as submerged arc welding. The present invention relates to a method for simultaneously controlling both the filling amount and the excess filling amount.

[従来の技術] サブマージドアーク溶接などが適用される両面−層盛溶
接では、各層における溶込みの管理が重要である。これ
らの溶接は、一般に溶接条件一定で行われているが、時
折、バックパス側(最初に溶接を行なう側)では溶は落
ち、フィニツシユバス側(a後に溶接を行なう側)では
溶込み不足といった欠陥が発生する。また、余盛量の過
不足なども生ずるが、これらの欠陥は開先加工・組立時
に生ずる開先形状変動に起因する。
[Prior Art] In double-sided layered welding to which submerged arc welding or the like is applied, control of penetration in each layer is important. These welds are generally performed under constant welding conditions, but sometimes the melt drops on the backpass side (the side welded first) and there is insufficient penetration on the finish bus side (the side welded after a). Such defects occur. In addition, excess or deficiency in the amount of extra material may occur, and these defects are caused by variations in the groove shape that occur during groove processing and assembly.

溶込み及び余盛は開先形状・溶接電流・溶接速度に支配
され、通常用いられる開先形状であるV溝形では開先角
度一定で開先深さが大となれば、開先断面積も大となる
。このような場合、多電極アーク溶接で溶込みを一定に
保つためには経験的に先行電極溶接電流を小とすること
が知られている。一方、所定の全盛量を保つには、総連
接電流を増し、消耗電極ワイヤ溶着量を増加させる必要
がある。このためには、第2電極以降で先行電極溶接電
流減少分を肩代りし、かつ、溶着速度増大のため、さら
に溶接電流の上乗せが必要となる。
Penetration and reinforcement are controlled by the groove shape, welding current, and welding speed. In the commonly used V-groove groove shape, if the groove angle is constant and the groove depth is large, the groove cross-sectional area becomes large. In such cases, it is known from experience to reduce the preceding electrode welding current in order to maintain constant penetration in multi-electrode arc welding. On the other hand, in order to maintain a predetermined peak amount, it is necessary to increase the total connection current and increase the amount of consumable electrode wire welding. For this purpose, it is necessary to compensate for the decrease in the preceding electrode welding current at the second and subsequent electrodes, and to further increase the welding current in order to increase the welding speed.

しかしながら、これら後行電極溶接電流配分比が増加す
ると、溶込み量に影響を及ぼすとともに、アンダーカッ
トなどの溶接欠陥も発生し易くなる。また、溶接速度制
御で溶込み一定を維持しようとすると、溶接速度を速め
る必要があるが、この場合には余盛量が極端に減少して
しまう。このように、開先変動に対し、溶接条件による
溶込み、全盛制御は相反する関係にあり、双方を同時に
制御することは難しい課題である。
However, when these trailing electrode welding current distribution ratios increase, not only does it affect the amount of penetration, but also welding defects such as undercuts are more likely to occur. Furthermore, in order to maintain constant penetration through welding speed control, it is necessary to increase the welding speed, but in this case, the amount of excess metal will be extremely reduced. In this way, penetration and full thickness control based on welding conditions have a contradictory relationship with respect to groove fluctuations, and it is difficult to control both at the same time.

[発明が解決しようとする課題] 近年、この問題点おを克服するため、特開昭60〜92
083号公報で示されるように、開先形状を検知し、そ
の結果に基すいて各電極溶接電流値を制御して、溶込み
、余盛形状を維持する方法が提案されている。しかしな
がら、この方法は3電極溶接以上で、先行電極で溶込み
を制御し5かつ、最終電極を2電極以上として溶接線と
ほぼ直交してパラレルに配置することを特徴としており
、2電極溶接以下では使用しにくい。
[Problem to be solved by the invention] In recent years, in order to overcome this problem,
As shown in Japanese Patent No. 083, a method has been proposed in which the groove shape is detected and the welding current value of each electrode is controlled based on the result to maintain the penetration and overfill shape. However, this method is characterized by 3-electrode welding or more, in which penetration is controlled by the preceding electrode, and the final electrode is 2 or more electrodes arranged in parallel almost orthogonal to the weld line, and 2-electrode welding or less. It is difficult to use.

一方、この特開昭60−92083号公報には、先行電
極の溶接電流値を電流検出器で検知し、表ビード高さ設
定値と比較し、フィラーワイヤ送給速度を制御して一定
のビード高さを得る方法が示されている。この方法では
、片面溶接法で裏当て金側からアーク光量を検知して表
ビードな制御することにポイントがあり、本提案から両
面−層溶接での溶込み制御を行わしめることは困難であ
る。
On the other hand, this Japanese Patent Application Laid-open No. 60-92083 discloses that the welding current value of the preceding electrode is detected by a current detector, compared with the front bead height setting value, and the filler wire feeding speed is controlled to maintain a constant bead. A method of obtaining height is shown. In this method, the key point is to detect the amount of arc light from the backing metal side and control the surface bead in single-sided welding, and it is difficult to control penetration in double-sided layer welding from this proposal. .

本発明は上述した問題点を解決するため、開先を有する
サブマージドアーク溶接をはじめとするアーク溶接にお
いて、所定の溶込み、余盛量の双方を同時に制御せしめ
、欠陥発生のない健全な溶接ビードを得んとするもので
ある。
In order to solve the above-mentioned problems, the present invention simultaneously controls both the predetermined penetration and the amount of excess welding in arc welding, including submerged arc welding with a groove, to create a healthy weld bead without any defects. It is something that you are trying to gain.

[課題を解決するための手段] そのために、本発明は被溶接物の開先形状を連続的に検
知し、該検知情報に従って送給速度が制御された、直径
1.611111〜3.2011のフィラーワイヤを第
1電極而方より第1電極アークに向かって送給し、かつ
、該フィラーワイヤに第1電極アース電流の一部を流す
ことを特徴とする消耗電極式アーク溶接方法を提案する
ものである。
[Means for Solving the Problems] To this end, the present invention continuously detects the groove shape of the workpiece, and the feeding rate is controlled according to the detected information. A consumable electrode type arc welding method is proposed, which is characterized by feeding a filler wire from a first electrode toward a first electrode arc, and flowing a part of the first electrode earth current through the filler wire. It is something.

[作用] 本発明は予測される開先変動範囲の最小値側を基準開先
形状とし、所定のビード形状を得る溶接条件で溶接を行
い、同時に第1電極前方の開先形状を測定し、その計測
信号に従って第1電極アークにフィラーワイヤを送給す
ることによって、第1電極での溶込みの制御と開先断面
積増による余盛量減少を抑制し、一定の溶込みと余盛量
を有する溶接ビートを提供するものである。
[Function] The present invention sets the minimum value side of the predicted groove variation range as a reference groove shape, performs welding under welding conditions to obtain a predetermined bead shape, and simultaneously measures the groove shape in front of the first electrode, By feeding the filler wire to the first electrode arc according to the measurement signal, the penetration at the first electrode is controlled and the decrease in the amount of extra metal due to the increase in the groove cross-sectional area is suppressed, and the welding beat has a constant penetration and amount of extra metal. It provides:

以下5本発明を添付図面を参照して説明する。Hereinafter, five aspects of the present invention will be explained with reference to the accompanying drawings.

第1図は本発明を3電極サブマージドアーク溶接に適ル
した一実施態様を示す模式側面図で、溶接部は理解を容
易にするため、断面図を併用している。同図において、
1は開先を有する被溶接物、2はアーク、3〜5は溶接
電源、6〜8は消耗電極ワイヤ(以下、電極ワイヤと略
称する)、9〜11は送給モータ、】2はフィラーワイ
ヤ、 13はフィラーワイヤ送給モータである。
FIG. 1 is a schematic side view showing an embodiment in which the present invention is applied to three-electrode submerged arc welding, and a cross-sectional view is also used to show the welded portion for easy understanding. In the same figure,
1 is a workpiece having a groove, 2 is an arc, 3 to 5 is a welding power source, 6 to 8 are consumable electrode wires (hereinafter referred to as electrode wires), 9 to 11 are feeding motors, ] 2 is a filler The wire 13 is a filler wire feeding motor.

まず、開先位置検知装置14、及び開先形状検知装置1
5で開先位置・開先形状情報を演算・制御器16に採取
する。つぎに該開先形状情報から開先断面積を求め、基
準開先断面積と比較し、前者の方が多い場合には、その
差分だけの開先断面積に相当するフィラーワイヤ送給速
度を演算し、その出力信号をフィラーワイヤ送給モータ
13に与える。
First, the groove position detection device 14 and the groove shape detection device 1
In step 5, the groove position and groove shape information is collected into the calculation/controller 16. Next, calculate the groove cross-sectional area from the groove shape information, compare it with the standard groove cross-sectional area, and if the former is larger, calculate the filler wire feeding speed corresponding to the groove cross-sectional area by the difference. The output signal is given to the filler wire feeding motor 13.

一方、フィラーワイヤ12はA、8間がアースケーブル
で接続されている。このフィラーワイヤ12が゛第1電
極アーク2に送給されると、これまで被溶接物1と第1
電極ワイヤ6との間に点弧していたアーク2は、フィラ
ーワイヤ12にも点弧してアークが開先底面からみると
やや上方に移行するようになって溶込みの制御が行われ
る。
On the other hand, the filler wires 12 are connected between A and 8 by a ground cable. When this filler wire 12 is fed to the first electrode arc 2, the workpiece 1 and the first
The arc 2 that was ignited between the electrode wire 6 and the filler wire 12 also ignites the filler wire 12, and the arc moves slightly upward when viewed from the bottom of the groove, thereby controlling penetration.

第2〜4図はこれらの現象をX線透視法によフて観察し
た結果を模式図で示したものである。第2図は開先深さ
が基準値でフィラーワイヤ送給がない場合で、開先底面
とワイヤのアーク発生点までの距r!liQは短かいの
に対し、開先がやや深くなってフィラーワイヤ12が低
速で送給されてくると、第3図に示すように、第1電極
ワイヤ6の前方でフィラーワイヤにもアークが点弧する
ようになり、Qがやや大きくなる。さらに開先が深くな
ると第4図に示すように5高速で送給されたフィラーワ
イヤ12は第1電極ワイヤ6の下に潜りこむようになっ
て、Qを大きくして溶込みPを制御するように作用する
Figures 2 to 4 schematically show the results of observing these phenomena using X-ray fluoroscopy. Figure 2 shows the case where the groove depth is the standard value and there is no filler wire feeding, and the distance r from the bottom of the groove to the wire arc generation point! Although liQ is short, when the groove is a little deep and the filler wire 12 is fed at a low speed, an arc also occurs in the filler wire in front of the first electrode wire 6, as shown in FIG. It starts to ignite, and the Q becomes slightly larger. As the groove deepens further, as shown in FIG. 4, the filler wire 12 fed at high speed sneaks under the first electrode wire 6, increasing Q and controlling penetration P. It acts on

第5,6図はこれらの傍証として、開先形状が溶接進行
とともに大きくなる場合のフィラーワイヤ送給速度変化
と、このときのフィラーワイヤに流れるアース電流の経
時変化を示したものである。第5図でフィラーワイヤ送
給速度が順次増大するとともに、第6図に示すフィラー
ワイヤに流れるアース電流も増加している。すなわち、
フィラーワイヤ送給が高速になるにつれ、第1電極アー
クがフィラーワイヤに多く作用していることを意味し、
その分、被溶接物溶融に作用する分が減少し、開先増大
による過大溶造みを防止していることを示している。そ
して、開先増大による余盛量不足をこのフィラーワイヤ
の溶着速度増大で補償することが可能となる。
As supporting evidence, Figures 5 and 6 show changes in filler wire feeding speed when the groove shape increases as welding progresses, and changes over time in the earth current flowing through the filler wire at this time. As the filler wire feeding speed increases sequentially in FIG. 5, the ground current flowing through the filler wire shown in FIG. 6 also increases. That is,
As the filler wire feeding speed increases, it means that the first electrode arc acts more on the filler wire,
This shows that the amount acting on the melting of the object to be welded is reduced by that much, thereby preventing excessive welding due to an increase in the groove. In addition, it becomes possible to compensate for the insufficient amount of extra material due to the increase in the groove by increasing the welding speed of the filler wire.

本発明でフィラーワイヤにアースケーブルを付帯せしめ
ると定めたのは、フィラーワイヤにアースケーブルが接
続されていない場合には、第7図に示すように高速でフ
ィラーワイヤを送給させたとき、送給不安定を生ずるこ
とがあるためである。これは、絶縁状態でフィラーワイ
ヤが送給された場合には、フィラーワイヤとゝ第1電極
ワイヤ間で直接アーク発生せず、被溶接物と第1fi極
ワイヤ間で点弧しているアーク熱によってのみ、フィラ
ーワイヤが溶融するため、高速送給時には瞬間的にフィ
ラーワイヤが第1電極ワイヤに突き当たる現象が発生し
ているものと考えられる。この現象が発生すると溶接電
圧が大きく変動するため、スラグ巻込みなどの溶接欠陥
が発生し易く、好ましくない。
The reason why the earth cable is attached to the filler wire in the present invention is that if the earth cable is not connected to the filler wire, when the filler wire is fed at high speed as shown in FIG. This is because it may lead to unstable wages. This is because when the filler wire is fed in an insulated state, an arc is not generated directly between the filler wire and the first electrode wire, but the arc heat is generated between the workpiece and the first electrode wire. Since the filler wire melts only by this, it is thought that a phenomenon occurs in which the filler wire instantaneously butts against the first electrode wire during high-speed feeding. When this phenomenon occurs, the welding voltage fluctuates greatly, which tends to cause welding defects such as slag inclusion, which is undesirable.

また、別の電源から独立して溶接電流をフィラーワイヤ
に与える方法でも、この現象発生を回避できるが、この
場合には第1電極にさらに熱を加えることになり、フィ
ラーワイヤが添加されても、溶込みが増す方向に働くた
め好ましくない。
This phenomenon can also be avoided by applying welding current to the filler wire independently from a separate power source, but in this case, additional heat will be applied to the first electrode, even if the filler wire is added. , which is unfavorable because it works in the direction of increasing penetration.

つぎに、フィラーワイヤ径を1.6mm〜3.2mmと
限定した理由は以下のとおりである。第1電極前方から
送給するフィラーワイヤはその前方に開先検知装置を付
帯させる関係上、かなり小さな曲率で送給されねばなら
ないが、:1.2mmを超える大径ワイヤでは、剛性が
強く送給負荷が大となり、安定送給か難しい。また、一
定のアーク径に対し、フィラーワイヤ径の比が大きくな
るとフィラーワイヤに点弧する割り合いが大きくなり、
被溶接物溶融分が減りすぎて、かえって溶込みが浅くな
って制御が難しくなる。一方、フィラーワイヤ径が1.
6nv+未満の細径ワイヤでは、ワイヤ曲がりぐせを一
定に維持することが難しく、常に第1電極ワイヤ直下に
フィラーワイヤを送給することが困難となる。さらに、
アーク径に対し、フィラーワイヤ径の比が小さすぎると
、被溶接物溶融分が減らず溶込み制御が難しくなる。
Next, the reason why the filler wire diameter was limited to 1.6 mm to 3.2 mm is as follows. The filler wire fed from the front of the first electrode must be fed with a fairly small curvature because a groove detection device is attached to the front of the filler wire. The feeding load becomes large and stable feeding is difficult. Also, when the ratio of the filler wire diameter to a constant arc diameter increases, the percentage of filler wire ignited increases.
If the melted amount of the welded object decreases too much, the penetration becomes shallower and control becomes difficult. On the other hand, the filler wire diameter is 1.
With a wire having a small diameter of less than 6 nv+, it is difficult to maintain a constant bending of the wire, making it difficult to always feed the filler wire immediately below the first electrode wire. moreover,
If the ratio of the filler wire diameter to the arc diameter is too small, the melted amount of the welded object will not be reduced and penetration control will become difficult.

上記に述べた本発明法を用いて溶接を行い、第1図中の
開先位置検知装置14で溶接終端を検知した時点で開先
形状検知器及び、第1電極ワイヤが溶接終端に到達する
までの時間を求め、その瞬間に達した時点でフィラーワ
イヤ送給を止め、溶接を終了せしめることにより、常に
一定した溶込み、余盛量を維持することができる。
Welding is performed using the above-described method of the present invention, and when the welding end is detected by the groove position detection device 14 in FIG. 1, the groove shape detector and the first electrode wire reach the welding end. By determining the time required for the welding to occur, and stopping the feed of the filler wire to complete the welding when that moment is reached, it is possible to maintain constant penetration and excess welding at all times.

[実施例] 3電極サブマージドアーク溶接において、JISG31
06に相当するSM、 50B材、板厚12゜7I!l
ff+の鋼板を用い、該鋼板に開先角度はすべて90°
で、開先深さの異なる2種類の開先を設け、第1表に示
す溶接条件で本発明法によるフィラーワイヤ送給制御を
行い、従来の制御を行わないものと比較した。
[Example] In 3-electrode submerged arc welding, JISG31
SM equivalent to 06, 50B material, plate thickness 12°7I! l
A steel plate of ff+ is used, and all groove angles of the steel plate are 90°.
Then, two types of grooves with different groove depths were provided, and filler wire feeding control according to the method of the present invention was performed under the welding conditions shown in Table 1, and compared with the conventional method without control.

第2表はフィラーワイヤ送給制御条件を示す。そして、
溶接後、溶接ビードを切断し、第8図に示すように溶込
みP、ビード幅W、余盛面積sy、母材側溶融断面積s
bを計測した。
Table 2 shows filler wire feeding control conditions. and,
After welding, the weld bead is cut, and as shown in Fig. 8, penetration P, bead width W, extra buildup area sy, and base metal side molten cross-sectional area s are determined.
b was measured.

その結果を第9.10図に示す。第9図は開先断面積変
化量に対する溶込みP、ビード幅Wの関係を示したもの
である。同図中に示すフィラーワイヤ送給制御しない場
合は、○印で示す溶込みPが開先断面積の増大とともに
、Δ印で示すビード幅Wは減少している。一方、同図中
・、ム印で示す本発明法では、はぼ溶込みP、ビード幅
Wとも−定に維持されている。
The results are shown in Figure 9.10. FIG. 9 shows the relationship between penetration P and bead width W with respect to the amount of change in groove cross-sectional area. In the case where filler wire feeding control is not performed as shown in the figure, the penetration P shown by the circle mark increases the groove cross-sectional area, and the bead width W shown by the Δ mark decreases. On the other hand, in the method of the present invention indicated by marks . and .mu. in the figure, both the weld penetration P and the bead width W are maintained constant.

また、第1θ図は開先断面積変化量に対する余盛面MS
y、母材側溶融断面Msbの関係を示したものである。
In addition, Fig. 1θ shows the reinforcement surface MS with respect to the amount of groove cross-sectional area change.
y and the molten cross section Msb on the base metal side.

同図中の比較例のO印で示す余盛面積syは、開先断面
積の増大とともに現象し、Δ印で示す母材側溶融断面積
sbは増加している。一方、同図中・、ム印で示す本発
明法ではほぼ全盛面積sy、母材側溶融断面積sbとも
、はぼ一定値が得られている。
The reinforcement area sy shown by O in the comparative example in the same figure increases as the groove cross-sectional area increases, and the base material side molten cross-sectional area sb shown by Δ increases. On the other hand, in the method of the present invention indicated by the marks . and .mu. in the same figure, almost constant values are obtained for both the prime area sy and the base metal side melting cross-sectional area sb.

第  1  表 次に本発明を仮付けCO□溶接に適用した例を示す。第
H図に示すごとき、フィニツシユパス側に開先角度90
′、開先深さa−1、a−2が5.0〜6.5m+n。
Table 1 Next, an example in which the present invention is applied to tack CO□ welding is shown. Bevel angle 90 on the finish pass side as shown in Figure H.
', groove depths a-1 and a-2 are 5.0 to 6.5 m+n.

ルートフェイスbが2.5〜4 am、バックパス側に
開先角度90°、開先深さCが3.71のX形の突き合
わせ開先を設けた板厚12.711101のSM 50
B鋼板を用いて、フィニツシユパス側に第3表に示す溶
接条件、第4表に示すフィラーワイヤ送給速度で溶接を
行い、第1+図に示す溶込みP、全盛面積SY、及び残
開先面積Sxを計測した。なお、第4表において、試験
No9〜11はフィラーワイヤを添加しない比較例であ
る。
SM 50 with a plate thickness of 12.711101 with a root face b of 2.5 to 4 am, a groove angle of 90° on the back pass side, and an X-shaped butt groove with a groove depth C of 3.71.
Using steel plate B, welding was performed on the finish pass side under the welding conditions shown in Table 3 and the filler wire feeding speed shown in Table 4, and the penetration P, full-rise area SY, and residual opening shown in Figure 1+ were obtained. The tip area Sx was measured. In addition, in Table 4, Test Nos. 9 to 11 are comparative examples in which no filler wire was added.

その結果を第12.13図に示す。これらの図中では本
発明な・印、比較例をO印で表示し、X印は比較例で溶
は落ちが発生した条件でプロットは従来の経験から推定
した値で表示している。第12図は開先深さa−1,a
−2に対する溶込みPの変化を示した図で、同図中の一
点鎖線は鋼板厚さからバックパス側の開先深さCを差し
引いた値であり、仮付けCO,溶接の溶込みが該−点鎖
線より大なる場合には溶は落ちが発生ずる。同図におい
て、比較例ではa−2が6mm以上で溶は落ちが発生し
ているのに対し、本発明法ではa−2が6.6mmでも
ほぼ、一定の溶込みが維持されている。
The results are shown in Figure 12.13. In these figures, the present invention is indicated by a mark, the comparative example is indicated by an O mark, the X mark is a comparative example under conditions where melt drop occurred, and the plots are indicated by values estimated from conventional experience. Figure 12 shows groove depth a-1, a
This is a diagram showing the change in penetration P for -2, and the dashed-dotted line in the diagram is the value obtained by subtracting the groove depth C on the backpass side from the steel plate thickness, and the penetration of tack CO and welding is If it is larger than the - dotted chain line, melting will occur. In the same figure, in the comparative example, melt drop occurs when a-2 is 6 mm or more, whereas in the method of the present invention, almost constant penetration is maintained even when a-2 is 6.6 mm.

又、第13図は開先深さa−1、a−2に対する全盛面
積sy、及びへ開先面積Sxの変化を示した図で、本発
明法では比較例に比べ全盛面積増大により、残開先面積
は、開先深さa−2が増加してもさほど増大していない
。これは後工程の本溶接の開先変動を小さくさせるため
、本溶接をより安定して行わしめることも可能となる。
In addition, FIG. 13 is a diagram showing changes in the prime area sy and groove area Sx with respect to the groove depths a-1 and a-2. In the method of the present invention, the remaining groove area is increased by increasing the prime area compared to the comparative example. The groove area does not increase much even if the groove depth a-2 increases. This reduces groove fluctuations in the final welding process in the subsequent process, making it possible to perform the actual welding more stably.

[発明の効果] 上記に述べた技術により、両面−層サブマージドアーク
溶接のごとき溶込み深さ管理が重要なアーク溶接法にお
いて、大規模な設備変更を必要とせず、パーソナルコン
ピュータと開先形状検知器、及び、フィラーワイヤ送給
装置を付加せしめることにより、従来、困難であった溶
込み、余盛双方を同時に制御することが容易に可能とな
った。したがって、無人溶接を行なう際においても、溶
込み不良や余盛過不足といった溶接不良品製造の恐れが
なくなり、後工程の検査の省略など省人化も可能となり
、産業上の価値は極めて高い。
[Effect of the invention] With the above-mentioned technology, in arc welding methods such as double-sided layered submerged arc welding where penetration depth control is important, there is no need for large-scale equipment changes, and personal computers and groove shapes can be easily used. By adding a detector and a filler wire feeding device, it has become possible to easily control both penetration and overfill at the same time, which was difficult in the past. Therefore, even when performing unmanned welding, there is no fear of producing defective welded products such as insufficient penetration or excess or insufficient overfill, and it is possible to save labor by omitting post-process inspections, which is of extremely high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

7g1表は本発明を3電極サブマージドアーク溶接に通
用した一実施態様を示す模式側面図、第2〜4図はフィ
ラーワイヤの溶融現象をxis透視法によって観察した
結果を示す模式図、第5図は溶接進行とともにフィラー
ワイヤ送給速度を順次増大させたときのフィラーワイヤ
送給速度変化な示す図、第6図はフィラーワイヤに流れ
るアーク電流の変化を示した図、第7図は比較例として
フィラーワイヤを高速で送給したときのフィラーワイヤ
送給速度変化を示す波形図、第8図は溶接ビード横断面
の形状を示す正面図、第9図は開先断面積変化量に対す
る溶込み、ビード幅の関係を示した図、第1O図は開先
断面積変化量に対する余盛面積、母材側溶融断面積の関
係を示す図、第11図は開先断面形状、及び溶接ビード
形状を示す正面図、7jS12図は開先深さに対する溶
込みの変化を示した図、第13図は開先深さに対する余
盛面積、及び残開先面積の変化を示した図である。 1・・・開先を有する被溶接物、2・・・アーク、3〜
5・・・溶接電源、6〜8・・・消耗電極ワイヤ、9〜
11・・・送給モータ、12・・・フィラーワイヤ、1
3−・・フィラーワイヤ送給モータ、14・・・開先位
置検知装置、15・・・開先形状検知装置、+ 6−・
・演算・制御器、17・・・溶接金属、A・・・フィラ
ーワイヤ送給側アース接点、B・・・アークケーブル接
点、E・・・被溶接物終端、Q・・・第1電極ワイヤ先
端と開先底面までの距離、P・・・溶込み、W・・・ビ
ード幅、sy・・・余盛面積、sb・・・母材側溶融断
面積、S x−残開先面積、a−1,a−2・・・フィ
ニツシユパス側開先深さ、b・・・ルートフェイス、C
・・・バックパス側開先深さ。
Table 7g1 is a schematic side view showing an embodiment in which the present invention is applied to 3-electrode submerged arc welding, Figures 2 to 4 are schematic diagrams showing the results of observing the melting phenomenon of filler wire by XIS perspective method, The figure shows the change in filler wire feeding speed when the filler wire feeding speed is increased sequentially as welding progresses, Figure 6 shows the change in the arc current flowing through the filler wire, and Figure 7 shows a comparative example. Figure 8 is a waveform diagram showing changes in filler wire feeding speed when the filler wire is fed at high speed, Figure 8 is a front view showing the shape of the weld bead cross section, and Figure 9 is a waveform diagram showing the change in groove cross-sectional area. , a diagram showing the relationship between the bead width, Figure 1O is a diagram showing the relationship between the groove cross-sectional area change, the reinforcement area, and the base metal side fusion cross-sectional area, and Figure 11 is the groove cross-sectional shape and weld bead shape. 7jS12 is a diagram showing changes in penetration with respect to groove depth, and FIG. 13 is a diagram showing changes in reinforcement area and remaining groove area with respect to groove depth. 1... Workpiece having a groove, 2... Arc, 3...
5... Welding power source, 6-8... Consumable electrode wire, 9-
11... Feeding motor, 12... Filler wire, 1
3-... Filler wire feeding motor, 14... Bevel position detection device, 15... Bevel shape detection device, + 6-...
・Calculation/controller, 17... Weld metal, A... Filler wire feeding side earth contact, B... Arc cable contact, E... Termination of the welded object, Q... First electrode wire Distance between the tip and the bottom of the groove, P...penetration, W...bead width, sy...retention area, sb...melted cross-sectional area on the base metal side, S x - remaining groove area, a-1, a-2... Finish pass side groove depth, b... Root face, C
...back pass side groove depth.

Claims (1)

【特許請求の範囲】[Claims] 1、被溶接物の開先形状を連続的に検知し、該検知情報
に従って送給速度が制御された、直径1.6mm〜3.
2mmのフィラーワイヤを第1電極前方より第1電極ア
ークに向かって送給し、かつ、該フィラーワイヤに第1
電極アース電流の一部を流すことを特徴とする消耗電極
式アーク溶接方法。
1. Diameter 1.6 mm to 3. The groove shape of the workpiece is continuously detected and the feeding speed is controlled according to the detected information.
A 2 mm filler wire is fed from the front of the first electrode toward the first electrode arc, and the filler wire is
A consumable electrode type arc welding method characterized by flowing a part of the electrode earth current.
JP2269089A 1989-02-02 1989-02-02 Consumable electrode arc welding method Pending JPH02205267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269089A JPH02205267A (en) 1989-02-02 1989-02-02 Consumable electrode arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269089A JPH02205267A (en) 1989-02-02 1989-02-02 Consumable electrode arc welding method

Publications (1)

Publication Number Publication Date
JPH02205267A true JPH02205267A (en) 1990-08-15

Family

ID=12089871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269089A Pending JPH02205267A (en) 1989-02-02 1989-02-02 Consumable electrode arc welding method

Country Status (1)

Country Link
JP (1) JPH02205267A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447164A1 (en) * 2003-02-07 2004-08-18 MCE VOEST GmbH & Co. Process and device for welding or coating of workpieces
CN1319694C (en) * 2005-01-13 2007-06-06 上海交通大学 Full-digital speed change control method for wire feeding for submerged arc welding
WO2014026698A1 (en) 2012-08-14 2014-02-20 Esab Ab Method and system for submerged arc welding
WO2014102202A1 (en) * 2012-12-28 2014-07-03 Esab Ab Arc welding method and arc welding arrangement with first and second electrodes
US20160031034A1 (en) * 2010-09-29 2016-02-04 Esab Ab Welding apparatus and a method for welding
JP2017205786A (en) * 2016-05-18 2017-11-24 川田工業株式会社 Welding apparatus, and manufacturing method for welded structure
GB2601784A (en) * 2020-12-10 2022-06-15 Univ Cranfield Processes for additive manufacture and surface cladding

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447164A1 (en) * 2003-02-07 2004-08-18 MCE VOEST GmbH & Co. Process and device for welding or coating of workpieces
CN1319694C (en) * 2005-01-13 2007-06-06 上海交通大学 Full-digital speed change control method for wire feeding for submerged arc welding
US20160031034A1 (en) * 2010-09-29 2016-02-04 Esab Ab Welding apparatus and a method for welding
US10625362B2 (en) * 2010-09-29 2020-04-21 Esab Ab Welding apparatus and a method for welding
WO2014026698A1 (en) 2012-08-14 2014-02-20 Esab Ab Method and system for submerged arc welding
US11135670B2 (en) 2012-08-14 2021-10-05 Esab Ab Method and system for submerged arc welding
CN104428099A (en) * 2012-08-14 2015-03-18 依赛彼公司 Method and system for submerged arc welding
KR20150101453A (en) * 2012-12-28 2015-09-03 이에스에이비 아베 Arc welding method and arc welding arrangement with first and second electrodes
US10486256B2 (en) 2012-12-28 2019-11-26 Esab Ab Arc welding method and arc welding arrangement with first and second electrodes
CN104321157A (en) * 2012-12-28 2015-01-28 依赛彼公司 Arc welding method and arc welding arrangement with first and second electrodes
WO2014102202A1 (en) * 2012-12-28 2014-07-03 Esab Ab Arc welding method and arc welding arrangement with first and second electrodes
US11389889B2 (en) 2012-12-28 2022-07-19 Esab Ab Arc welding method and arc welding arrangement with first and second electrodes
JP2017205786A (en) * 2016-05-18 2017-11-24 川田工業株式会社 Welding apparatus, and manufacturing method for welded structure
GB2601784A (en) * 2020-12-10 2022-06-15 Univ Cranfield Processes for additive manufacture and surface cladding

Similar Documents

Publication Publication Date Title
US9539662B2 (en) Extraction of arc length from voltage and current feedback
EP3160675B1 (en) System and method for controlling wire feed speed
JP4933935B2 (en) Single-side welding apparatus and single-side welding method
JP4420863B2 (en) Control method of laser arc composite welding
US4816639A (en) Automatic arc-welding method
CN104853876B (en) Narrow groove gas shield welding connector
US4816641A (en) Automatic arc-welding method
CN112809184A (en) laser-GMA electric arc composite heat source wire-filling self-adaptive welding method
JP4109911B2 (en) Multi-layer welding method
JPH02205267A (en) Consumable electrode arc welding method
JP2004025270A (en) Method for estimating arc generating position in consumable electrode type arc welding, and welding condition control method
CN107249804B (en) Penetration welding method
KR101608975B1 (en) Tandem GMAW device for welding thick plate
US6534746B1 (en) Narrow gap welding method and welding apparatus
KR20230021579A (en) One-side submerged arc welding method for multielectrode
BR112013028260A2 (en) method for operating a welding power source and a welding power source
SU1320030A1 (en) Current-conducting nozzle
JP2002336982A (en) Composite welding method for thin plate structural joint
JP3160745B2 (en) Welding equipment for steel pipe sheet pile joints
JPS6128428B2 (en)
SU1731508A1 (en) Method of two-arc welding and fusion-on by consumable electrodes
JP3323784B2 (en) Control method of bead lap welding
JP3235506B2 (en) Welding method by arc welding
JP7481940B2 (en) Extremely narrow gap submerged arc welding method and extremely narrow gap submerged arc welding device
KR100313484B1 (en) Optimum fill area control method according to variation of groove area by using constant voltage characteristic