JPS61281070A - Silicon carbide base sintered body - Google Patents

Silicon carbide base sintered body

Info

Publication number
JPS61281070A
JPS61281070A JP60119343A JP11934385A JPS61281070A JP S61281070 A JPS61281070 A JP S61281070A JP 60119343 A JP60119343 A JP 60119343A JP 11934385 A JP11934385 A JP 11934385A JP S61281070 A JPS61281070 A JP S61281070A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
chromium
aluminum
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60119343A
Other languages
Japanese (ja)
Other versions
JPH0729849B2 (en
Inventor
彰 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60119343A priority Critical patent/JPH0729849B2/en
Publication of JPS61281070A publication Critical patent/JPS61281070A/en
Publication of JPH0729849B2 publication Critical patent/JPH0729849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は強度及び靭性特性に優れると共に高耐食性の炭
化珪素質焼結体の製法に関するものであり、殊に高温下
で鉄と当接するスキ・ノドボタンなど過酷な条件下にお
いても優れた耐食性が要求される当接部材に好適な炭化
珪素質焼結体の製法に関する。また、本発明は新規な微
細構造を有する炭化珪素質焼結体に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a silicon carbide sintered body that has excellent strength and toughness characteristics and is highly corrosion resistant. -Relates to a method for producing a silicon carbide sintered body suitable for contact members that require excellent corrosion resistance even under harsh conditions, such as throat buttons. The present invention also relates to a silicon carbide sintered body having a novel microstructure.

(従来技術) 炭化珪素質焼結体は耐酸化性、耐食性、耐熱性耐熱衝撃
性、高温強度等の種々の優れた特性により、高温ガスタ
ービン用部品、自動車エンジン用部品、耐食部材及び耐
摩耗部材などに好適な材料である。しかしながら、炭化
珪素質焼結体は難焼結性であるため各種焼結助剤を添加
して緻密質な焼結体を得ることが行われている。この焼
結助剤として、例えばボロン(B)−カーボン(C)系
添加物があるが、緻密質な焼結体を得るために比較的高
温な焼成が必要であり、また焼結体の結晶構造は一般に
等軸的粒子となると共に粒界相が極めて少なくなってい
る。従って、これに起因して焼結体の靭性が低く、そし
て高温下での耐食性の更に一層の向上が望めない。例え
ば高温にて鉄などに当接するスキッドボタンにおσ1て
はその材料として末だ十分に満足な耐食性が得られてい
ない。
(Prior art) Silicon carbide sintered bodies have various excellent properties such as oxidation resistance, corrosion resistance, heat resistance, thermal shock resistance, and high temperature strength, so they are used as high-temperature gas turbine parts, automobile engine parts, corrosion-resistant parts, and wear-resistant parts. It is a suitable material for parts etc. However, since silicon carbide sintered bodies are difficult to sinter, various sintering aids are added to obtain dense sintered bodies. Examples of this sintering aid include boron (B)-carbon (C)-based additives, but they require relatively high temperature firing to obtain a dense sintered body, and they also require crystallization of the sintered body. The structure is generally equiaxed grains with very few grain boundary phases. Therefore, due to this, the toughness of the sintered body is low, and further improvement in corrosion resistance at high temperatures cannot be expected. For example, the material σ1 of a skid button that comes into contact with iron or the like at high temperatures does not have sufficiently satisfactory corrosion resistance.

即ち、従来周知の通り、炭化珪素質焼結体をスキッドボ
タンに用いることにより、スキッドボタンの冷却源を不
要にすると共にスキッドマークの発生を少なくし且つ加
熱炉内の熱効率が改善されることになった。しかしなが
ら、上述したスキッドボタンの用途においては赤熱され
たスラブと炭化珪素質焼結体とが接触するに際して、炭
化珪素中のシリカ成分が鉄と反応して溶融物が形成され
、焼結体の腐蝕が進行する。
That is, as is conventionally known, by using a silicon carbide sintered body for the skid button, a cooling source for the skid button is not required, the occurrence of skid marks is reduced, and the thermal efficiency in the heating furnace is improved. became. However, in the above-mentioned skid button application, when the red-hot slab comes into contact with the silicon carbide sintered body, the silica component in the silicon carbide reacts with iron to form a molten material, which causes corrosion of the sintered body. progresses.

他方、アルミナ(Al□0.)などのアルミニウム系添
加物を用いると緻密化しやすいが、焼結体が大きな体積
を有するのに伴って、焼結体の内部と外部で緻密化の不
均一が生じることが判っている。
On the other hand, the use of aluminum-based additives such as alumina (Al□0.) facilitates densification, but as the sintered body has a large volume, densification becomes uneven between the inside and outside of the sintered body. It is known to occur.

即ち、アルミニウム系添加物を用いるにはアルミニウム
で3重量%以上添加する必要があり、粒界成分が多く且
つその分解量が大きくなっているため焼結体の内部と外
部で均一な緻密化が成されず、そして優れた耐食性が得
られていない。
In other words, in order to use aluminum-based additives, it is necessary to add 3% by weight or more of aluminum, and because there are many grain boundary components and the amount of decomposition is large, uniform densification cannot be achieved inside and outside the sintered body. and excellent corrosion resistance has not been obtained.

(問題を解決するための手段) 本発明の目的は焼結体の内部及び外部に亘って均一に緻
密化させ、優れた強度及び靭性特性を有する炭化珪素質
焼結体及びその製法を提供せんとするものである。
(Means for Solving the Problems) An object of the present invention is to provide a silicon carbide sintered body that is uniformly densified throughout the inside and outside of the sintered body and has excellent strength and toughness properties, and a method for producing the same. That is.

本発明の他の目的は高耐食性、特に鉄と高温下で接触し
たときの耐食性に優れた炭化珪素質焼結体及びその製法
を提供せんとするものであり、これにより特にスキッド
ボタンなどの高温下で鉄と当接する部材に好適な材料と
して炭化珪素質焼結体を提供するものである。
Another object of the present invention is to provide a silicon carbide sintered body that has high corrosion resistance, especially when it comes into contact with iron at high temperatures, and a method for producing the same. The present invention provides a silicon carbide sintered body as a material suitable for a member that comes into contact with iron at the bottom.

本発明によれば、アルミニウム元素換算で3.5乃至1
0重量%のアルミニウム成分、クロム元素換算で0.2
乃至5重量%のクロム成分及び炭化珪素の残量を含有し
て成る炭化珪素質焼結体であって、前記アルミニウム成
分及びクロム成分を含有する結晶粒界にはX線マイクロ
アナライザーによる分析でクロムを主成分としてアルミ
ニウム及びケイ素を含有し、且つ金属顕微鏡で高輝度を
示す粒子が存在することを特徴とする炭化珪素質焼結体
が提出される。
According to the present invention, 3.5 to 1 in terms of aluminum element
0% by weight aluminum component, 0.2 in terms of chromium element
A silicon carbide sintered body containing 5% by weight of a chromium component and a residual amount of silicon carbide, wherein the crystal grain boundaries containing the aluminum component and chromium component contain chromium as determined by analysis using an X-ray microanalyzer. A silicon carbide sintered body is proposed, which contains aluminum and silicon as main components and is characterized by the presence of particles that exhibit high brightness under a metallurgical microscope.

更に本発明によれば、アルミニウムの単体及び化合物か
ら選ばれる少なくとも1種をアルミニウム元素換算3.
5I3至10重景%、クロムの単体及び化合物から選ば
れる少なくとも1種をクロム元素換算で0.2乃至5重
量%含み、残部が炭化珪素から成る出発原料を混合した
後、この混合粉末を加圧成型及び焼結又は加圧焼結した
ことを特徴とする炭化珪素質焼結体の製法が提供される
Further, according to the present invention, at least one selected from aluminum alone and compounds has a value of 3.
After mixing starting materials containing 0.2 to 5 weight % of at least one element selected from 5I3 to 10 weight percent, chromium alone and compounds, and the balance consisting of silicon carbide, this mixed powder is added. Provided is a method for producing a silicon carbide sintered body characterized by pressure molding and sintering or pressure sintering.

本発明による炭化珪素質焼結体は、炭化珪素の結晶粒界
にクロム成分及びアルミニウム成分が存在し、しかもク
ロム成分がこの結晶粒界に一定の粒度の塊り乃至粒子と
して存在することが顕著な特徴である。即ち、本発明は
炭化珪素質焼結体の結晶粒界に前述した形で存在するク
ロム成分が高温下において、炭化珪素質焼結体と接触す
る鉄と、炭化珪素中に含有されるケイ案分(実際には表
面に酸化ケイ素として存在する)との反応を抑制して該
焼結体の腐蝕が顕著に抑制されることにより、緒特性の
低下も有効に解消されるという新規知見に基づくもので
ある。
In the silicon carbide sintered body according to the present invention, a chromium component and an aluminum component are present at the grain boundaries of silicon carbide, and it is remarkable that the chromium component is present at the grain boundaries as lumps or particles of a certain grain size. It is a characteristic. That is, the present invention allows the chromium component present in the above-mentioned form at the grain boundaries of the silicon carbide sintered body to interact with the iron in contact with the silicon carbide sintered body and the silica contained in the silicon carbide at high temperatures. Based on the new knowledge that the corrosion of the sintered body is significantly suppressed by suppressing the reaction with silicon oxide (which actually exists as silicon oxide on the surface), thereby effectively eliminating the deterioration in the properties of the sintered body. It is something.

本発明の炭化珪素質焼結体においては、炭化珪素は実質
上球状で平均粒径が0.5乃至2μmの範囲内で且つ焼
結体の大きさにもよるが、最大粒径20μm以下、特に
5μm以下のα型結晶構造の粒子として存在する。即ち
、この焼結体では、焼結時に粗大な粒成長は生じていす
、粒径がほぼ均斉であり、また粒子形状も、等軸晶のほ
ぼ球状であり、1ケの粒子における最大寸法/最小寸法
の比は、2以下である。
In the silicon carbide sintered body of the present invention, silicon carbide has a substantially spherical shape and an average grain size within the range of 0.5 to 2 μm, and a maximum grain size of 20 μm or less, depending on the size of the sintered body. In particular, it exists as particles with an α-type crystal structure of 5 μm or less. In other words, in this sintered body, coarse grain growth occurs during sintering, the grain size is almost uniform, and the grain shape is almost spherical with equiaxed crystals, with the maximum dimension of one grain / The ratio of the minimum dimensions is 2 or less.

物が存在する。A thing exists.

即ち、本発明の炭化珪素質焼結体はクロム成分を配合し
ない炭化珪素質焼結体と比較すると本発明による焼結体
では金属顕微鏡による観察で炭化珪素結晶粒子と比べて
著しく輝度の高い粒径0.5乃至20μm、特に0.5
乃至5μmの粒子が存在しているという事実が明らかと
なる。この粒子はX線マイクロアナライザーの分析結果
ではクロムを主成分としており、他にアルミニウム及び
ケイ素を含有することが明らかとなった。
That is, the silicon carbide sintered body of the present invention has grains with significantly higher brightness than silicon carbide crystal particles when observed with a metallurgical microscope when compared to a silicon carbide sintered body that does not contain a chromium component. Diameter 0.5 to 20μm, especially 0.5
The fact that particles of 5 μm to 5 μm are present becomes clear. Analysis results using an X-ray microanalyzer revealed that the particles mainly contained chromium, and also contained aluminum and silicon.

本発明において、粒界に存在するクロム含有粒子が、焼
結体と鉄が高温で接触する場合にも、焼結体自体の腐蝕
を防止するのに有効に作用する理由は未だ解明されるに
至っていないが、本発明者は、炭化珪素結晶粒子が粒界
化合物乃至組成物で保護されていること、及び鉄酸化物
、酸化珪素にクロム成分が混入するとその融点が向上し
、これにより溶融反応の生成が制御されることに原因が
あるものと推定している。
In the present invention, the reason why the chromium-containing particles present at the grain boundaries effectively act to prevent corrosion of the sintered body itself even when the sintered body and iron come into contact at high temperatures remains to be elucidated. Although this has not yet been achieved, the present inventor has found that silicon carbide crystal particles are protected by grain boundary compounds or compositions, and that when a chromium component is mixed into iron oxide or silicon oxide, the melting point increases, and this causes a melting reaction. It is presumed that this is due to the fact that the generation of is controlled.

本発明の炭化珪素質焼結体において、炭化珪素は97乃
至85重量%、特に90乃至95重量%を占めているの
が望ましい。但し本発明の焼結体中、該炭化珪素の占有
比率には炭化珪素の他にクロムやアルミニウムのシリコ
ン化合物も若干台まれると考えられる。またクロム成分
はクロム元素換算で0゜2乃至5重量%、特に0.4乃
至3.5重量%で存在することが耐食性の点で重要であ
り、一方アルミニウム成分はアルミニウム元素換算で3
.5乃至10重量%、特に3乃至6重量%で存在するの
がよい。
In the silicon carbide sintered body of the present invention, silicon carbide preferably accounts for 97 to 85% by weight, particularly 90 to 95% by weight. However, in the sintered body of the present invention, it is thought that in addition to silicon carbide, silicon compounds of chromium and aluminum may also be included to some extent in the occupation ratio of silicon carbide. In addition, it is important from the viewpoint of corrosion resistance that the chromium component is present in an amount of 0.2 to 5% by weight, especially 0.4 to 3.5% by weight in terms of chromium element, while the aluminum component is present in an amount of 0.2 to 5% by weight in terms of aluminum element.
.. It is preferably present in an amount of 5 to 10% by weight, especially 3 to 6% by weight.

本発明に係る炭化珪素質焼結体の製法について以下に説
明する。
A method for producing a silicon carbide sintered body according to the present invention will be described below.

原料粉末として用いる炭化珪素はα相、β相のいずれで
もよいが、安価で大量に生産できるα相が望ましい。又
、その平均粒径は1.0μm以下が望ましく、好適には
0.5μm以下がよい。
The silicon carbide used as the raw material powder may be either α-phase or β-phase, but α-phase is preferable because it is inexpensive and can be produced in large quantities. Further, the average particle diameter is desirably 1.0 μm or less, preferably 0.5 μm or less.

アルミニウム単体又は化合物(第1成分)にはアルミニ
ウム金属、酸化物、炭化物、窒化物、硫化物などがあり
、例えばアルミナ粉末、アルミナゾル、アルミナゲル、
炭化アルミニウム(AltCs)、窒化アルミニウム(
AIN)などがあり、他に硫酸アルミニウム、硝酸アル
ミニウム(AI (N(h) 3)、炭酸アルミニウム
(Ah(COi)i)などが考えられる。これらのアル
ミニウム成分は、炭化珪素の焼結を促進し、それ自体結
晶粒の粒界を形成するものである。本発明においては、
これらの内でもアルミナ及び窒化アルミニウムを用いる
ことが特に望ましい。即ち、アルミナは高融点で、しか
も炭化珪素質の焼結温度に近接してこれより低い温度で
溶融することから、均質且つ緻密な焼結体を得ることが
できる。また、窒化アルミニウムはアルミナよりも高融
点で、しかも焼結に際して酸化物のように酸素を放出し
てボイド等を生成する傾向が少ないために、耐熱性と緻
密さとに最も優れた焼結体を製造するという目的に最も
優れている。
Aluminum alone or compound (first component) includes aluminum metal, oxide, carbide, nitride, sulfide, etc. For example, alumina powder, alumina sol, alumina gel,
Aluminum carbide (AltCs), aluminum nitride (
Other examples include aluminum sulfate, aluminum nitrate (AI (N(h) 3), and aluminum carbonate (Ah(COi)i). These aluminum components promote the sintering of silicon carbide. However, it itself forms grain boundaries of crystal grains.In the present invention,
Among these, it is particularly desirable to use alumina and aluminum nitride. That is, since alumina has a high melting point and melts at a temperature close to or lower than the sintering temperature of silicon carbide, a homogeneous and dense sintered body can be obtained. In addition, aluminum nitride has a higher melting point than alumina, and unlike oxides, it has less tendency to release oxygen and create voids during sintering, making it a sintered body with the best heat resistance and density. Best suited for manufacturing purposes.

クロムの単体又は化合物(第2成分)にはクロム金属、
酸化物、炭化物などがあり、他にクロム酸塩、ハロゲン
化クロムなども考えられる。 しかしながら、本発明に
おいては炭化クロムを用いることが最も望ましい。即ち
、酸化クロムを使用すると、焼結時に酸素が離脱して放
出され、クロムのシリサイドが形成され易く、焼結体中
にボイドが発生し易く、機械的強度が低下し易い。この
炭化クロムには高融点を有するCr5Ctの組成のもの
が最も有利に使用されるが、この組成以外の炭化クロム
としてCr、C3やCrz:+C6も考えられる。
Chromium alone or compound (second component) includes chromium metal,
There are oxides, carbides, etc., and chromates, chromium halides, etc. can also be considered. However, in the present invention, it is most desirable to use chromium carbide. That is, when chromium oxide is used, oxygen is separated and released during sintering, silicide of chromium is likely to be formed, voids are likely to occur in the sintered body, and mechanical strength is likely to decrease. The chromium carbide having a composition of Cr5Ct having a high melting point is most advantageously used, but chromium carbide having a composition other than this may also include Cr, C3, and Crz:+C6.

前記の原料粉末においては、第1成分をアルミニウム元
素換算で3.5乃至10重量%特に3乃至6重量%用い
るのがよく、上記範囲よりも少ないと焼結性が不満足で
十分な緻密体が得られず、また上記範囲よりも多いと、
高温での強度が低下すると共に耐食性も低下し易い。ま
た第2成分をクロム元素換算で0.2乃至5重量%、特
に0.4乃至3重量%で用いることにより、本発明の目
的が有利に達成される。
In the raw material powder described above, it is preferable to use the first component in an amount of 3.5 to 10% by weight, especially 3 to 6% by weight in terms of aluminum element; if the amount is less than the above range, the sinterability will be unsatisfactory and a sufficiently dense body will not be formed. If the amount is not obtained or exceeds the above range,
The strength at high temperatures decreases, and the corrosion resistance also tends to decrease. Further, the object of the present invention can be advantageously achieved by using the second component in an amount of 0.2 to 5% by weight, particularly 0.4 to 3% by weight, calculated as chromium element.

本発明によれば、前述した通りの第1成分及び第2成分
については、それぞれ所定範囲内の添加量に設定すると
共に各成分をそれぞれ単独で或いは組合せて使用し得る
。また出発原料の段階で溶液のものであれば焼結体の緻
密化を促すものであるが、粉末であればその粒径を小さ
くするのが望ましい。その平均粒径は特に厳密な範囲設
定を必要としないが、1.011rn以下が望ましい。
According to the present invention, the amounts of the first component and the second component as described above are set within predetermined ranges, and each component can be used alone or in combination. Further, if the starting material is a solution, it will promote densification of the sintered body, but if it is a powder, it is desirable to reduce the particle size. The average particle size does not require a particularly strict range setting, but is preferably 1.011rn or less.

本発明に係る炭化珪素質焼結体は第1成分及び第2成分
を必須成分として含有するが、この焼結体は上記成分以
外の成分の含有を排除するものではない。
Although the silicon carbide sintered body according to the present invention contains the first component and the second component as essential components, this sintered body does not exclude the inclusion of components other than the above-mentioned components.

例えば添加成分の混合粉砕時にボール等の粉砕媒体を使
用する時には、この粉砕媒体を構成する成分が混合粉砕
物中に必然的に含有されるようになる。この混入される
成分が焼結時に炭化珪素や第1成分及び第2成分と反応
し或いは悪影響を及ぼさない限り、このような成分の混
入は勿論許容される。
For example, when a grinding medium such as a ball is used when mixing and grinding additive components, the components constituting this grinding medium will inevitably be contained in the mixed and pulverized product. As long as the mixed component does not react with or have an adverse effect on silicon carbide, the first component, and the second component during sintering, the mixing of such a component is of course allowed.

本発明の炭化珪素質焼結体中に混入されることが許容さ
れる成分は、ジルコニア(ZrOz)、タングステンカ
ーバイド(WC)、窒化珪素(SiJ4)等がある。ま
た上記ボールにアルミナなどの添加成分を含有させるか
、アルミナボールを用いることにより混合粉砕物中に第
1成分及び第2成分を含有させることは差支えない。
Components that are allowed to be mixed into the silicon carbide sintered body of the present invention include zirconia (ZrOz), tungsten carbide (WC), silicon nitride (SiJ4), and the like. Further, the first component and the second component may be contained in the mixed pulverized material by incorporating an additive component such as alumina into the balls or by using alumina balls.

本発明の製法においては、上述に従って得られた原料を
湿式混合し、成形用バインダー等が添加され、乾燥造粒
の後、プレス法等により所望形状に成型される。
In the manufacturing method of the present invention, the raw materials obtained as described above are wet-mixed, a molding binder and the like are added, and after drying and granulation, it is molded into a desired shape by a pressing method or the like.

次いで、この成形体をアルゴン雰囲気もしくは含窒素雰
囲気下の非酸化性雰囲気中で焼結する。
Next, this compact is sintered in a non-oxidizing atmosphere such as an argon atmosphere or a nitrogen-containing atmosphere.

或いは成形と焼結を同時に行う加圧焼結(ホットプレス
など)でもよい。
Alternatively, pressure sintering (hot press, etc.) may be used to perform molding and sintering at the same time.

本発明によれば焼成温度を1850〜2050’C,特
に1900〜1950’Cの範囲(ホットプレスにおい
ては1750〜20509Cの温度範囲)に設定すれば
よく、18509C未満では焼結不足になると共に均一
な組織の焼結体が得られず、2050 ’ Cを越える
と焼成時の分解が激しくなると共に異常な粒成長がおき
、得られた焼結体の特性が著しく劣化することを実験上
確認した。又、焼成時間は0.5〜10時間位でよい。
According to the present invention, the firing temperature may be set in the range of 1850 to 2050'C, especially 1900 to 1950'C (temperature range of 1750 to 20509C in hot press); if it is less than 18509C, sintering will be insufficient and uniform. It was experimentally confirmed that if the temperature exceeds 2050'C, decomposition becomes intense during firing, abnormal grain growth occurs, and the properties of the obtained sintered body deteriorate significantly. . Further, the firing time may be about 0.5 to 10 hours.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

α相炭化珪素粉末(平均粒径0.5μm)に第1成分(
平均粒径0.6μm)及び、第2成分(平均粒径0.8
μIm)を添加し、第1表に示すような配合組成比にな
るようにした。
The first component (
average particle size: 0.6 μm) and the second component (average particle size: 0.8 μm)
μIm) was added to achieve a composition ratio as shown in Table 1.

この配合粉末を回転ミルにて湿式混合し、この混合スラ
リーに有機バインダーを溶液で適量加えた後、噴霧式乾
燥造粒を行った。次いで、120×120 X 10m
mの平板に成型し、脱バインダー後、不活性雰囲気中第
1表に示す通りの焼成温度で雰囲気焼成することにより
試料1乃至20を得た。
This blended powder was wet mixed in a rotary mill, and an appropriate amount of an organic binder was added as a solution to this mixed slurry, followed by spray dry granulation. Then 120 x 120 x 10m
Samples 1 to 20 were obtained by molding the sample into a flat plate having a diameter of m and after removing the binder, it was fired in an inert atmosphere at the firing temperature shown in Table 1.

かくして得られた焼結体を4 x 3 x35mm (
J IS規格による抗折用形状)に切出した後、JIS
 −R−1601の4点曲げ試験法により常温及び13
00 ”Cでの曲げ強度を測定した。靭性特性はピンカ
ース圧子を用いて各試料に一定荷重による圧痕のエツジ
より生じる亀裂の長さから破壊靭性として測定した。ま
た耐食性試験は100 xlOOX 5mmの平板に切
出し、同形状の酸化処理した鋼片を乗せ、12506C
1水蒸気20Vo1%の酸化雰囲気中で24時間10S
ec/Cycleの割合で鋼片の上げ降ろしを繰り返し
、その後、鋼片による侵食量を測定した。この侵食具合
を次の1.2.3,4.5の5段階に分けて評価した。
The sintered body thus obtained was 4 x 3 x 35 mm (
After cutting into a shape for anti-folding according to JIS standard,
- R-1601 4-point bending test method at room temperature and 13
The bending strength at 0.00" C was measured. Toughness properties were measured as fracture toughness from the length of cracks generated from the edge of the indentation under a constant load on each sample using a Pinkers indenter. Corrosion resistance tests were performed using a 100 x lOOX 5 mm flat plate. 12506C.
10S for 24 hours in an oxidizing atmosphere of 1% water vapor 20Vo
The steel slab was raised and lowered repeatedly at a ratio of ec/cycle, and then the amount of erosion caused by the steel slab was measured. The degree of erosion was evaluated according to the following five grades: 1, 2, 3, and 4.5.

ハ       前車 1゜鉄−シリカ溶融反応物の生成により、試料焼結体の
上面の侵食が3mmを越え、コーナ一部は侵食されて丸
くなり、下面も溶融反応物により侵食される。
C. Front car 1° Due to the production of iron-silica molten reactants, the upper surface of the sample sintered body eroded by more than 3 mm, some corners were eroded and became rounded, and the lower surface was also eroded by the molten reactants.

2、上面の侵食は2mmのオーダーに達し、上面コーナ
一部は丸くなる。反応溶融物は支持台であるアルミナ板
上にも流れる。
2. The erosion on the top surface reaches the order of 2 mm, and some corners of the top surface become rounded. The reaction melt also flows onto the alumina plate that serves as a support.

3、試料焼結体の上面全面が侵食され、反応溶融物が側
面へ流れ落ちる。侵食t1mm以内。
3. The entire upper surface of the sample sintered body is eroded, and the reaction melt flows down to the side. Erosion t within 1mm.

4、径1mm以内程度の侵食された部分(点)が数個発
生する。他の部分では侵食は全く認められない。
4. Several eroded parts (points) with a diameter of 1 mm or less occur. No erosion is observed in other parts.

5、試料焼結体には鉄もしくは酸化鉄との反応による侵
食は全く認められない。
5. No corrosion due to reaction with iron or iron oxide is observed in the sample sintered body.

第1表より明らかな通り、本発明の試料N014.6乃
至9.12乃至17においては、強度が30kg/mm
”以上、靭性が5MN/m2以上であり、且つ優れた耐
食性を示すことが判った。また、いずれの試料について
も焼結体の中心部及び外周部からの切出し品の比重と硬
度を測定したところ、その差はほとんど認められず、均
一な緻密体であった。
As is clear from Table 1, in the samples Nos. 014.6 to 9.12 to 17 of the present invention, the strength was 30 kg/mm.
``From the above, it was found that the toughness was 5 MN/m2 or more and that it exhibited excellent corrosion resistance.In addition, for each sample, the specific gravity and hardness of the cut pieces from the center and outer periphery of the sintered body were measured. However, almost no difference was observed, and it was a uniform dense body.

然るに試料NO5では焼成温度が低いため焼結不良とな
り、また試料NOI、2.10.11はアルミニウム成
分の配合比率が、試料N03.18.19.20ではク
ロム成分の配合比率が本発明の範囲から外れているため
強度、靭性または耐食性について優れた特性が得られな
かった。
However, in sample NO5, the sintering temperature was low, resulting in poor sintering, and in sample NOI, 2.10.11, the blending ratio of the aluminum component was within the range of the present invention, and in sample No. 3, 18, 19, 20, the blending ratio of the chromium component was within the range of the present invention. Excellent properties in terms of strength, toughness, or corrosion resistance could not be obtained because of the deviation from the standard.

試料N021.22によれば、本発明に係る添加成分が
欠けたり、他の焼結助剤を用いては本発明の如き優れた
特性が得られないことが明白である。
According to sample No. 021.22, it is clear that the excellent properties of the present invention cannot be obtained if the additive components according to the present invention are missing or other sintering aids are used.

〔発明の効果〕〔Effect of the invention〕

上述の通り、本発明の製法により得られた炭化珪素質焼
結体は焼結体の内部及び外部に亘って均一に緻密化させ
ることにより優れた強度及び靭性特性を有するとかでき
た。更に高耐食性を示しており、高温下で鉄材と当接す
るスキッドボタンなど過酷な条件下においても優れた耐
食性が要求される当接部分を提供できるものである。
As described above, the silicon carbide sintered body obtained by the manufacturing method of the present invention has excellent strength and toughness characteristics by uniformly densifying the inside and outside of the sintered body. Furthermore, it exhibits high corrosion resistance and can provide contact parts that require excellent corrosion resistance even under harsh conditions, such as skid buttons that contact iron materials at high temperatures.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム元素換算で3.5乃至10重量%の
アルミニウム成分、クロム元素換算で0.2乃至5重量
%のクロム成分及び炭化珪素の残量を含有して成る炭化
珪素質焼結体であって、前記アルミニウム成分及びクロ
ム成分を含有する結晶粒界にはX線マイクロアナライザ
ーによる分析でクロムを主成分としてアルミニウムおよ
びケイ素を含有し、且つ金属顕微鏡で高輝度を示す粒子
が存在することを特徴とす炭化珪素質焼結体。
(1) A silicon carbide sintered body containing an aluminum component of 3.5 to 10% by weight in terms of aluminum element, a chromium component of 0.2 to 5% by weight in terms of chromium element, and a residual amount of silicon carbide. Therefore, analysis using an X-ray microanalyzer revealed that particles containing chromium as a main component, aluminum and silicon, and showing high brightness under a metallurgical microscope were present in the grain boundaries containing the aluminum and chromium components. Features: Silicon carbide sintered body.
(2)アルミニウムの単体及び化合物から選ばれる少な
くとも1種をアルミニウム元素換算で3.5乃至10重
量%、クロムの単体及び化合物から選ばれる少なくとも
1種をクロム元素換算で0.2乃至5重量%含み、残部
が炭化珪素から成る出発原料を混合した後、この混合粉
末を加圧成型及び焼結又は加圧焼結したことを特徴とす
る炭化珪素質焼結体の製法。
(2) 3.5 to 10% by weight of at least one selected from the simple substance and compounds of aluminum in terms of aluminum element, and 0.2 to 5% by weight of at least one selected from the simple substance and compounds of chromium in terms of chromium element. 1. A method for producing a silicon carbide sintered body, which comprises mixing starting materials containing silicon carbide with the remainder being silicon carbide, and then pressure molding and sintering or pressure sintering the mixed powder.
JP60119343A 1985-05-31 1985-05-31 Manufacturing method of silicon carbide sintered body Expired - Lifetime JPH0729849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60119343A JPH0729849B2 (en) 1985-05-31 1985-05-31 Manufacturing method of silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60119343A JPH0729849B2 (en) 1985-05-31 1985-05-31 Manufacturing method of silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS61281070A true JPS61281070A (en) 1986-12-11
JPH0729849B2 JPH0729849B2 (en) 1995-04-05

Family

ID=14759134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60119343A Expired - Lifetime JPH0729849B2 (en) 1985-05-31 1985-05-31 Manufacturing method of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPH0729849B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145960A (en) * 1984-01-10 1985-08-01 黒崎窯業株式会社 Anticorrosive ceramic sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145960A (en) * 1984-01-10 1985-08-01 黒崎窯業株式会社 Anticorrosive ceramic sintered body

Also Published As

Publication number Publication date
JPH0729849B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
WO1990009969A1 (en) Alumina ceramic, production thereof, and throwaway tip made therefrom
EP0153000A1 (en) Refractories of silicon carbide and related materials having a modified silicon nitride bonding phase
JP2006335594A (en) Oxide bonded silicon carbide-based material
US4681861A (en) Silicon carbide sintered body and process for production thereof
JP5192970B2 (en) Basic plate refractories for sliding nozzle devices
JPS60180950A (en) Manufacture of sliding nozzle plate
JP2971642B2 (en) Slide valve plate brick
JPS5950074A (en) Continuous casting refractories
JPS61281070A (en) Silicon carbide base sintered body
JP3031192B2 (en) Sliding nozzle plate refractories
JPS6247834B2 (en)
KR100308922B1 (en) Method of Manufacturing Silicon Nitride Bonded Silicon Carbide Composites by Silicon Nitriding Reaction
US4030891A (en) Sintered cermet containing ground monocrystals
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JPS60145954A (en) Chromium carbide sintered body for heated material supporting surface of heating furnace
JPH0745681B2 (en) Reduced iron powder with excellent machinability and mechanical properties after sintering
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
RU2348592C2 (en) Periclase - spinelled refractory material
JP2000191364A (en) Shaped magnesia-chrome refractory
JP3176836B2 (en) Irregular refractories
JPS6215505B2 (en)
JPH05238829A (en) Sintered silicone nitride ceramic
JPH07291710A (en) Graphite containing refractory