JPS61280675A - Complementary semiconductor device - Google Patents

Complementary semiconductor device

Info

Publication number
JPS61280675A
JPS61280675A JP60122226A JP12222685A JPS61280675A JP S61280675 A JPS61280675 A JP S61280675A JP 60122226 A JP60122226 A JP 60122226A JP 12222685 A JP12222685 A JP 12222685A JP S61280675 A JPS61280675 A JP S61280675A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
semiconductor
electrode
electron affinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60122226A
Other languages
Japanese (ja)
Other versions
JPH0758760B2 (en
Inventor
Keiichi Ohata
恵一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60122226A priority Critical patent/JPH0758760B2/en
Publication of JPS61280675A publication Critical patent/JPS61280675A/en
Publication of JPH0758760B2 publication Critical patent/JPH0758760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/432Heterojunction gate for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To facilitate high-current operation with a simple structure by providing the second semiconductor layer with a low impurity concentration which has smaller electron affinity and a larger summation of the electron affinity and a band gap than the first semiconductor layer. CONSTITUTION:An Fe-doped semi-insulating InP substrate is employed as a substrate 11 and, by an MBE method, an undoped N<-> type In0.53Ga0.47As layer and an undoped In0.52Ga0.48As layer are formed on the substrate 11 as the first semiconductor layer 12 and the second semiconductor 13 respectively. N<+> type InGaAs regions 16a and 17a and P<+> type InGaAs regions 18a and 19a are formed by Si ion implantation and Zn ion implatation respectively. Further, a P<+> type InAlAs layer 14 and N<+> type InAlAs layer 15 are formed from the surface to the depth of 700Angstrom by low energy cd ion implantation and low energy Sr ion implantation respectively. Then, electrodes 16b, 17b, 18b, 19b, 20 and 21 are formed by evaporation of AuGe/Pt. An inverter circuit composed of the complementary transistors produced as described above can operate satisfactorily with a high level of +1V and a low level of 0.1V and a mutual conductance between the respective transistors has a high-current driving capability of not less than 2,000ms/mm for the electrode width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速動作の半導体装置、特に相補型の半導体装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-speed operating semiconductor device, and particularly to a complementary semiconductor device.

〔従来の技術〕[Conventional technology]

近年、高速コンピュータ用素子として、超高速素子の研
究開発が盛んである。このような超高速素子の中で、大
きな電流駆動能力を有するものとして、バイポーラトラ
ンジスタが注目されている。
In recent years, research and development of ultrahigh-speed devices as devices for high-speed computers has been active. Among such ultra-high-speed devices, bipolar transistors are attracting attention as they have a large current driving capability.

特にGaAs等化合物半導体を用いた高性能バイポーラ
トランジスタとして、エミッタにペースよりバンドギャ
ップの大きい半導体を用いた、いわゆるヘテロバイポー
ラトランジスタ(I(BT )およびそのIC化が研究
されている。例えば、1981年国際電子デバイス会議
(Int’l Electron Devices M
eeting)ダイジェスト、629頁から632頁に
あるように、ペースにGaAa″f:、エミッタにAt
GaAsを用いたnpn型が良く研究されている。
In particular, as a high-performance bipolar transistor using a compound semiconductor such as GaAs, the so-called hetero-bipolar transistor (I(BT)), which uses a semiconductor with a larger band gap than PACE for the emitter, and its IC implementation are being researched.For example, in 1981 International Conference on Electronic Devices
GaAa″f: on the pace, At
The npn type using GaAs has been well studied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、HBTでは構造およびプロセスが極めて
複雑であり、高集積化には多くの問題点を残している。
However, HBTs have extremely complex structures and processes, and many problems remain in achieving high integration.

また特にコレクターペース間容量が大きく、高速性も限
定されている。さらに高集積化[fl、相補型構成のメ
リットが大であるが、正孔をキャリアとするpnp型は
得られていないのが現状であり、まして相補型の装置を
得るのは困難な状況にある。
In addition, the capacity between the collector paces is particularly large, and high speed performance is also limited. Furthermore, higher integration [fl, complementary type configuration has great advantages, but at present, a pnp type device that uses holes as carriers has not been obtained, and it is even more difficult to obtain a complementary type device. be.

本発明の目的は、電流駆動能力が大きく、かつ高速で、
構造の簡単な、超高速、高集積ICに適した新規な相補
型半導体装置を提供することにある。
The object of the present invention is to have large current drive capability, high speed,
The object of the present invention is to provide a novel complementary semiconductor device that has a simple structure, is suitable for ultra-high speed, and highly integrated ICs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は低不純物密度の第1の半導体層上に、該第1の
半導体よシ、電子親和力が小さく、かつ電子親和力とバ
ンドギヤングの和が大きい低不純物密度の第2の半導体
層金膜け、該第2の半導体層に正孔の注入電極と電子の
注入電極とを設は九ことを特徴とする相補型半導体装置
および、低不純物密度の第1の半導体層と、該第1の半
導体より電子親和力が小さく、かつ電子親和力とバンド
ギャップとの和が大きい低不純物密度の第2の半導体層
と、前記第1の半導体層に接して、該第2の半導体層の
反対側に設置した第1の半導体より、電子親和力が小さ
く、かつ電子親和力とバンドギャップとの和の大きい高
抵抗の第3の半導体層とを備え、前記第2の半導体層に
正孔の注入電極と、電子の注入電極とを設けたことを特
徴とする相補型半導体装置である。
The present invention provides a first semiconductor layer with a low impurity density, and a second semiconductor layer gold film with a low impurity density, which has a smaller electron affinity than the first semiconductor and a larger sum of the electron affinity and the bandgyan. a complementary semiconductor device, characterized in that the second semiconductor layer is provided with a hole injection electrode and an electron injection electrode; a first semiconductor layer with a low impurity density; a second semiconductor layer with a low impurity density that has a smaller electron affinity than the semiconductor and a larger sum of the electron affinity and the band gap; and a second semiconductor layer that is in contact with the first semiconductor layer and placed on the opposite side of the second semiconductor layer. a high-resistance third semiconductor layer having a lower electron affinity and a higher sum of electron affinity and band gap than the first semiconductor layer, and a hole injection electrode and an electron injection electrode in the second semiconductor layer. This is a complementary semiconductor device characterized by being provided with an injection electrode.

〔作用、原理〕[action, principle]

第1図は、本発明による半導体装置の基本構造を示すも
のである。ここで11は高抵抗基板、12は低不純物密
度の第1の半導体層、例えばアンドープInGaAs層
、13は第1の半導体より電子親和力が小さく、かつ電
子親和力とバンドギャップの和の大きい低不純物密度の
第2の半導体層、例えばInAtAa層、14はp+領
領域15はn 領域、16 、17f′i電子チヤネル
にオーム性の一対の電極で、例えばn” −InGaA
s領域16m 、 17mと、Au−Gaオーム性電極
16b 、 17bとよりなる電極、18 、19は正
孔チャネルにオーム性の一対の電極で、例えばp+−I
nGaAs領域18m 、 19aとAu −Znオー
ム電極18b。
FIG. 1 shows the basic structure of a semiconductor device according to the present invention. Here, 11 is a high resistance substrate, 12 is a first semiconductor layer with low impurity density, for example, an undoped InGaAs layer, and 13 is a low impurity density layer that has a lower electron affinity than the first semiconductor and a larger sum of electron affinity and band gap. 14 is a p+ region, 15 is an n region, and 16, 17f'i is a pair of ohmic electrodes for the electron channel, for example, an n''-InGaA layer.
Electrodes 18 and 19 consist of s regions 16m and 17m and Au-Ga ohmic electrodes 16b and 17b, and electrodes 18 and 19 are a pair of ohmic electrodes for the hole channel, for example, p
nGaAs regions 18m, 19a and Au-Zn ohmic electrode 18b.

19bとよりなる電極、20はp領域14へのオーム性
電極、21はn+領域15へのオーム性電極で、p+領
域14および電極20とで正孔の注入電極を成し、n 
領域15と電極21とで電子の注入電極を成す。第2図
および第3図は電極20下におけるバンドダイヤグラム
2示すもので、それぞれ熱平衡状態および電極20に正
電圧を印加して正孔を注入した場合を示す。また第4図
および第5図は電極21下におけるバンドダイヤグラム
を示すもので、それぞれ熱平衡状態および電極21に負
電圧全印加して電子を注入した場合を示す。ここでEC
* EF 、 EVはそれぞれ伝導帯下端、フェルミレ
ベル、価電子帯上端のエネルギーレベルを表わす。
20 is an ohmic electrode to the p region 14; 21 is an ohmic electrode to the n+ region 15; the p+ region 14 and the electrode 20 form a hole injection electrode;
The region 15 and the electrode 21 form an electron injection electrode. 2 and 3 show band diagrams 2 below the electrode 20, respectively, showing a thermal equilibrium state and a case where a positive voltage is applied to the electrode 20 and holes are injected. Further, FIGS. 4 and 5 show band diagrams under the electrode 21, respectively, showing a thermal equilibrium state and a case where a full negative voltage is applied to the electrode 21 and electrons are injected. EC here
*EF and EV represent the energy levels of the lower end of the conduction band, the Fermi level, and the upper end of the valence band, respectively.

さて第3図のように、第2の半導体層13から、第1の
半導体層12にかけて正孔を矢印のように注入すると、
電荷中性となる様に電子が誘起されるが、第2の半導体
層13のほうが第1の半導体層12より電子親和力が小
さいため、この電子はエネルギー的に低い、該第1と第
2の半導体層12 、13のへテロ界面の第1の半導体
層側に蓄積され電子チャネルを形成する。この量は正孔
の注入量?増すほど増加し、導電性が極めて増大される
。一方第5図に示すように、電子を注入した場合も同様
に正孔が誘起される。この場合も第2の半導体層13の
ほうが、第1の半導体層12より、電子親和力とバンド
ギャップとの和が大きいため、この正孔もエネルギー的
に低い該第1と第2の半導体層12 、13のへテロ界
面の第1の半導体層12側に蓄積される。この鎗はやは
り電子の注入量を増すほど増加し、導電性が極めて増大
される。すなわち、同一の半導体へテロ接合界面に高導
電度の電子チャネルおよび正孔チャネルが形成されるこ
とが解る。
Now, as shown in FIG. 3, when holes are injected from the second semiconductor layer 13 to the first semiconductor layer 12 in the direction of the arrow,
Electrons are induced to be charge neutral, but since the second semiconductor layer 13 has a lower electron affinity than the first semiconductor layer 12, these electrons are lower in energy than the first and second semiconductor layers. The electrons are accumulated on the first semiconductor layer side of the hetero interface between the semiconductor layers 12 and 13, forming an electron channel. Is this amount the amount of holes injected? The higher the value, the more the conductivity increases. On the other hand, as shown in FIG. 5, holes are similarly induced when electrons are injected. In this case as well, since the second semiconductor layer 13 has a larger sum of electron affinity and band gap than the first semiconductor layer 12, these holes are also lower in energy than the first and second semiconductor layers 12. , 13 on the first semiconductor layer 12 side. This spear also increases as the amount of electron injection increases, and the conductivity increases significantly. That is, it can be seen that highly conductive electron channels and hole channels are formed at the same semiconductor heterojunction interface.

ここで、これら電子チャネルおよび正孔チャネルを用い
る相補型インバータを構成し、電源電圧全印加した場合
を第6図に示す。ここで、電極19bは正の電源に、電
極16bは接地される。また31はインバータの入力、
32はインバータの出力である。ここでは注入されたキ
ャリアとチャネルのキャリアとの動きを矢印で示す。ま
ず入力31に正電圧(Hレベル)が印加された場合を考
える。
FIG. 6 shows a case where a complementary inverter using these electron channels and hole channels is constructed and the full power supply voltage is applied. Here, electrode 19b is connected to a positive power source, and electrode 16b is grounded. Also, 31 is the input of the inverter,
32 is the output of the inverter. Here, the movement of the injected carriers and the channel carriers is shown by arrows. First, consider the case where a positive voltage (H level) is applied to the input 31.

この時、電極20からは正孔が電極16のほうに向かっ
て注入され、電子チャネルが第1の半導体層12中に形
成される。この電子はn型の電極16と17との間の電
界で電極17の方へ加速され、電極16と17間は大電
流が流れ、オン状態となる。一方電極21からは電子は
注入されず、電極18と19間には正孔チャネルは形成
されず、オフ状態である。すなわちインバータの出力は
零電位付近でLレベルとなる。次に入力31が零電位(
Lレベル)になった時には、以上とは逆に電極21から
電子が電極19の方に向かって注入され、正孔チャネル
が、第1の半導体層12中に形成される。この正孔は、
p型の電極18と19との間の電界で電極18の方へ加
速され、電極18と19間は大電流が流れてオン状態と
なる。一方電極20からは正孔は注入されず、電極16
と17間には電子チャネルは形成されず、オフ状態であ
る。すなわちインバータの出力は電源電圧付近でHレベ
ルとなる。以上により良好なインバータ動作が実現され
る。
At this time, holes are injected from the electrode 20 toward the electrode 16, and an electron channel is formed in the first semiconductor layer 12. These electrons are accelerated toward electrode 17 by the electric field between n-type electrodes 16 and 17, and a large current flows between electrodes 16 and 17, resulting in an on state. On the other hand, no electrons are injected from the electrode 21, no hole channel is formed between the electrodes 18 and 19, and the electrode 21 is in an off state. That is, the output of the inverter becomes L level near zero potential. Next, the input 31 is at zero potential (
(L level), contrary to the above, electrons are injected from the electrode 21 toward the electrode 19, and a hole channel is formed in the first semiconductor layer 12. This hole is
It is accelerated toward electrode 18 by the electric field between p-type electrodes 18 and 19, and a large current flows between electrodes 18 and 19, turning it on. On the other hand, no holes are injected from the electrode 20, and the electrode 16
An electron channel is not formed between and 17 and is in an off state. That is, the output of the inverter becomes H level near the power supply voltage. As described above, good inverter operation is realized.

さて、かかる動作状態において、電流の変調モードは、
正孔あるいは電子の注入による反対キャリアの誘起によ
る導電度変調であるが、チャネルは電界効果トランジス
タ(FET )的である。すなわち、チャネルはへテロ
接合界面のバリアを利用した2次元的チャネルであシ、
しかもチャネルの第1の半導体層12が低不純物密度で
あるため、正孔チャネルであってもチャネルは極めて高
速である。しかも構造はFETとほぼ同様なプレーナ型
である。また電極20と電極17問および電極21と電
極18間の第2の半導体層13はFETと同様に空乏化
しており、従ってこれら電極間の帰還容量は小さい、す
なわち本装置によシ、2次元チャネルを有するFITと
同様な構造の簡単さ、高速性、小さな寄生抵抗および寄
生容量上さらに、バイポーラトランジスタ並の大電流駆
動能力を、電子チャネル素子および正孔チャネル素子と
も有し、高性能な相補型集積回路を実現するものである
Now, in such an operating state, the current modulation mode is
The conductivity is modulated by inducing opposite carriers by injection of holes or electrons, but the channel is similar to a field effect transistor (FET). In other words, the channel is a two-dimensional channel that utilizes the barrier of the heterojunction interface.
Moreover, since the first semiconductor layer 12 of the channel has a low impurity density, the channel has extremely high speed even if it is a hole channel. Furthermore, the structure is a planar type that is almost similar to an FET. Further, the second semiconductor layer 13 between the electrode 20 and the electrode 17 and between the electrode 21 and the electrode 18 is depleted similarly to the FET, and therefore the feedback capacitance between these electrodes is small. In addition to having the same simple structure, high speed, and small parasitic resistance and capacitance as FITs with channels, they also have high current drive capability similar to that of bipolar transistors, as well as electron channel elements and hole channel elements, making them highly efficient complementary devices. It realizes a type integrated circuit.

ここで各チャネルの電流増幅率は、チャネルが高速であ
る程および、注入された電子あるいは正孔のチャネル域
からの流出が少い程大きくなる。
Here, the current amplification factor of each channel increases as the channel speed increases and as the flow of injected electrons or holes from the channel region decreases.

このため、電流増幅率を改善する方法として、第7図の
ように、チャネルの第1の半導体層12に接して、第2
の半導体層130反対側に、第1の半導体より、電子親
和力が小さく、かつ電子親和力とバンドギャップの和の
大きい高抵抗の第3の半導体層41、例えばアンドープ
InAtAsを設けることが有効である。この場合の正
孔を注入した場合と、゛電子を注入し九場合とのバンド
ダイヤグラムをそれぞれ、第8図と第9図に示す。この
場合は注入正孔あるいは注入電子は第3の半導体層41
によるバリアのために、結晶の奥の方(基板側)へ流出
することがない。さらに電子チャネルおよび正孔チャネ
ルも第3の半導体層41によるバリアによって拡がるこ
とがなく、高速性が増し、電流増幅率が改善される。ま
たこの時出力抵抗も大きくなる効果もある。
Therefore, as a method of improving the current amplification factor, as shown in FIG.
It is effective to provide a high-resistance third semiconductor layer 41, such as undoped InAtAs, which has a lower electron affinity and a larger sum of electron affinity and band gap than the first semiconductor, on the opposite side of the semiconductor layer 130. Band diagrams for the case in which holes are injected and the case in which electrons are injected are shown in FIGS. 8 and 9, respectively. In this case, the injected holes or injected electrons are transferred to the third semiconductor layer 41.
Because of the barrier caused by this, it does not leak to the back of the crystal (toward the substrate side). Further, the electron channel and hole channel are also prevented from spreading due to the barrier formed by the third semiconductor layer 41, increasing high speed and improving current amplification factor. Moreover, at this time, there is also the effect of increasing the output resistance.

〔実施例〕〔Example〕

以下に本発明の笑施例七示す。 Seven embodiments of the present invention are shown below.

(実施例1) 第1図において、基板11としてFe−ドープ半絶縁性
InP基板を用い、MBE法にて第1の半導体層12と
してキャリア密度lX1015cfn−3厚さ3000
Xのアンドープn″″−InO,g Ga0.47As
層、第2の半導体層13として、キャリア密度I X 
10153−3、厚さ1000XのアンドープIn(1
,52Ga0.46As層を成長する。stのイオン注
入によp n+−InGaAs領域16&。
(Example 1) In FIG. 1, an Fe-doped semi-insulating InP substrate is used as the substrate 11, and the first semiconductor layer 12 is formed by MBE with a carrier density of lX1015cfn-3 and a thickness of 3000.
X undoped n″″-InO,g Ga0.47As
layer, as the second semiconductor layer 13, the carrier density I
10153-3, undoped In(1
, 52Ga0.46As layer is grown. p n+ -InGaAs region 16 & by ion implantation of st.

17a f、またZnのイオン注入によp p+−In
GaAa領域18m 、 19a f形成する。さらに
Cdの低エネルギーイオン注入によ#) p+−InA
tAs 14 t−1Snの低エネルギーイオン注入に
よシn” −InAtA115を表面から7001の深
さまで形成する。次いで電極16b 、 17b 、 
18b 、 19b 、 20 、21をAuGa/p
 tを蒸着して形成する。以上のように製作した相補型
トランジスタを用いて、第6図のように形成したインバ
ータ回路は%Hレベル+IV、Lレベル0.I Vで良
好に動作し、また各トランジスタの相互コンダクタンス
は電極幅当り2000m5/ryun以上の高′亀流駆
動能力があった。
17a f, and p p+-In by Zn ion implantation
GaAa regions 18m and 19af are formed. Furthermore, by low energy ion implantation of Cd, p+-InA
By low-energy ion implantation of tAs 14 t-1Sn, n''-InAtA 115 is formed to a depth of 7001 mm from the surface. Next, electrodes 16b, 17b,
18b, 19b, 20, 21 with AuGa/p
t is formed by vapor deposition. Using the complementary transistors manufactured as described above, an inverter circuit formed as shown in FIG. 6 has a %H level +IV and an L level 0. It operated well under IV voltage, and the mutual conductance of each transistor had a high current drive capability of 2000 m5/ryun or more per electrode width.

(実施例2) 第7図において、本実施例では実施例1に用いた、第1
の半導体層12のI nGaAa層Q 200Xと薄く
し、これを第3の半導体層41として、キャリア密度5
 X 1010l4’以上、抵抗率104Ω・譚以上の
高抵抗xncL52Ato、4aAa層25000Xの
基板11側に入れたものである。これにより、実施例1
の構造に較べて電流増幅率、相互コンダクタンス、出力
抵抗が向上し次。
(Example 2) In FIG. 7, in this example, the first
The InGaAa layer Q of the semiconductor layer 12 is made as thin as 200X, and this is used as the third semiconductor layer 41, and the carrier density is
The high resistance xncL52Ato, 4aAa layer 25000X with a resistivity of 1010l4' or more and a resistivity of 104Ω/tan or more is placed on the substrate 11 side. As a result, Example 1
The current amplification factor, mutual conductance, and output resistance are improved compared to the following structure.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、FETと同様な簡単な構造
で、高電流動作可能な相補型半導体装置が実現され高速
、高集積、低消費電力の高性能工Ct−実現できる効果
を有するものである。
As described above, according to the present invention, a complementary semiconductor device capable of high current operation is realized with a simple structure similar to that of an FET, and has the effect of realizing a high-performance design with high speed, high integration, and low power consumption. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体装置の基本構造を示す断面
図、第2図、第3図は第1図の半導体装置の電極20下
におけるバンドダイヤグラムを示す図、第4図、第5図
は第1図の半導体装置の電極21下におけるバンドダイ
ヤグラムを示す図、第6図は第1図の半導体装置に電源
電圧を印加した場合の断面図、第7図は電流増幅率を改
善した場合の半導体装置の構造を示す断面図、第8図、
第9図は、第7図の半導体装置に正孔を注入した場合と
、電子を注入した場合とのバンドダイヤグラムをそれぞ
れ示す図である。 11:高抵抗基板、12:第1の半導体層、13:第2
の半導体層、14 : p”−領域、’ 15 : n
+−領域、!6 、17 : n型オーム性電極、18
 、19 : p型オーム性電極、20:正孔注入用電
極、21:電子注入用電極、31:インバータ入力、3
2:インバータ出力、41:第3の半導体層。
FIG. 1 is a sectional view showing the basic structure of a semiconductor device according to the present invention, FIGS. 2 and 3 are band diagrams below the electrode 20 of the semiconductor device in FIG. 1, and FIGS. Figure 6 shows a band diagram under the electrode 21 of the semiconductor device shown in Figure 1, Figure 6 is a cross-sectional view when a power supply voltage is applied to the semiconductor device shown in Figure 1, and Figure 7 shows the case where the current amplification factor is improved. A cross-sectional view showing the structure of a semiconductor device, FIG.
FIG. 9 is a diagram showing band diagrams when holes are injected into the semiconductor device of FIG. 7 and when electrons are injected, respectively. 11: High resistance substrate, 12: First semiconductor layer, 13: Second
semiconductor layer, 14: p''-region, '15: n
+- area,! 6, 17: n-type ohmic electrode, 18
, 19: p-type ohmic electrode, 20: hole injection electrode, 21: electron injection electrode, 31: inverter input, 3
2: inverter output, 41: third semiconductor layer.

Claims (2)

【特許請求の範囲】[Claims] (1)低不純物密度の第1の半導体層に、該第1の半導
体より電子親和力が小さく、かつ電子親和力とバンドギ
ャップとの和が大きい低不純物密度の第2の半導体層を
設け、該第2の半導体層に、正孔の注入電極と、電子の
注入電極とを設けたことを特徴とする相補型半導体装置
(1) A first semiconductor layer with a low impurity density is provided with a second semiconductor layer with a low impurity density that has a smaller electron affinity than the first semiconductor and a larger sum of the electron affinity and the band gap, and A complementary semiconductor device characterized in that a hole injection electrode and an electron injection electrode are provided in the second semiconductor layer.
(2)低不純物密度の第1の半導体層と、該第1の半導
体より電子親和力が小さく、かつ電子親和力とバンドギ
ャップとの和が大きい低不純物密度の第2の半導体層と
、前記第1の半導体層に接して、該第2の半導体層の反
対側に設置した第1の半導体より、電子親和力が小さく
、かつ電子親和力とバンドギャップとの和の大きい高抵
抗の第3の半導体層とを備え、前記第2の半導体層に正
孔の注入電極と、電子の注入電極とを設けたことを特徴
とする相補型半導体装置。
(2) a first semiconductor layer with a low impurity density, a second semiconductor layer with a low impurity density that has a lower electron affinity than the first semiconductor and a larger sum of the electron affinity and the band gap; a high-resistance third semiconductor layer having a lower electron affinity and a larger sum of electron affinity and band gap than the first semiconductor layer, which is in contact with the semiconductor layer and is placed on the opposite side of the second semiconductor layer; A complementary semiconductor device comprising: a hole injection electrode and an electron injection electrode provided in the second semiconductor layer.
JP60122226A 1985-06-05 1985-06-05 Complementary semiconductor device Expired - Fee Related JPH0758760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122226A JPH0758760B2 (en) 1985-06-05 1985-06-05 Complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122226A JPH0758760B2 (en) 1985-06-05 1985-06-05 Complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPS61280675A true JPS61280675A (en) 1986-12-11
JPH0758760B2 JPH0758760B2 (en) 1995-06-21

Family

ID=14830686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122226A Expired - Fee Related JPH0758760B2 (en) 1985-06-05 1985-06-05 Complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPH0758760B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893380A (en) * 1981-11-30 1983-06-03 Fujitsu Ltd Semiconductor device
JPS58130574A (en) * 1982-01-29 1983-08-04 Hitachi Ltd Semiconductor device
JPS58147169A (en) * 1982-02-26 1983-09-01 Fujitsu Ltd High electron mobility transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893380A (en) * 1981-11-30 1983-06-03 Fujitsu Ltd Semiconductor device
JPS58130574A (en) * 1982-01-29 1983-08-04 Hitachi Ltd Semiconductor device
JPS58147169A (en) * 1982-02-26 1983-09-01 Fujitsu Ltd High electron mobility transistor

Also Published As

Publication number Publication date
JPH0758760B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US5705827A (en) Tunnel transistor and method of manufacturing same
KR890003379B1 (en) Compound semiconductor intergrated circuit device
JP2773487B2 (en) Tunnel transistor
JP2604349B2 (en) Semiconductor device
JPH027532A (en) Laminated channel field effect transistor
JPH024140B2 (en)
JPS5922367A (en) Semiconductor device
JPS62274783A (en) Semiconductor device
US4903091A (en) Heterojunction transistor having bipolar characteristics
JPH05315366A (en) Semiconductor device
JPH0665217B2 (en) Transistor
EP0136108B1 (en) Heterojunction semiconductor device
US4910562A (en) Field induced base transistor
JPS61147577A (en) Complementary semiconductor device
JPS61280675A (en) Complementary semiconductor device
JP2800675B2 (en) Tunnel transistor
JPH0227739A (en) Semiconductor device
JP2792295B2 (en) Tunnel transistor
JP2710312B2 (en) Semiconductor device
JP2870984B2 (en) Semiconductor device
JPS6246563A (en) Semiconductor device
JP2861590B2 (en) Tunnel transistor
JP2758611B2 (en) Bipolar transistor element
JPS6246564A (en) Semiconductor device
JPS59149063A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees