JPS61279685A - Electroless gold plating solution - Google Patents

Electroless gold plating solution

Info

Publication number
JPS61279685A
JPS61279685A JP12116185A JP12116185A JPS61279685A JP S61279685 A JPS61279685 A JP S61279685A JP 12116185 A JP12116185 A JP 12116185A JP 12116185 A JP12116185 A JP 12116185A JP S61279685 A JPS61279685 A JP S61279685A
Authority
JP
Japan
Prior art keywords
plating
gold
electroless
gold plating
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12116185A
Other languages
Japanese (ja)
Inventor
Yoshinori Takakura
高倉 義憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12116185A priority Critical patent/JPS61279685A/en
Publication of JPS61279685A publication Critical patent/JPS61279685A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To obtain an electroless Au plating soln. having a high plating rate and superior stability by dissolving KAu(CN)2 as an Au ion source and specified amounts of KOH, KCN and KBH4 in water. CONSTITUTION:A soln. contg. KAu(CN)2 as an Au ion source, 0.1-0.4mol KOH, 0.05-0.15mol KCN and 0.1-0.2mol KBH4 as a pH adjusting agent, a reducing agent, etc. is used as an electroless Au plating soln. A body to be plated is hung on a soluble base metal and immersed in the electroless Au plating soln. at 70 deg.C, and thick Au plating is formed by electroless plating at >=10mum/hr rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無電解金めつき浴組成およびこのめっき浴を
使用する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field] This invention relates to electroless gold plating bath compositions and methods of using this plating bath.

〔従来の技術〕[Conventional technology]

周知のように、金めつきは光珠、腕輪などの装飾品、装
身具等に古くから適用されている。
As is well known, gold plating has been applied to ornaments such as beads and bracelets, and jewelry since ancient times.

最近では2種々の工業品の種々の応用面において、より
よい外観、耐食性被膜を得るために、またけ良好な電気
伝導被膜を得るために金属物体の表面に金めつきを実施
している。             (今田広く行わ
れている金のめつきについては      )大別して
三つの方法がある。               1
:即ち、(7)電解めっきによる方法、(イ)蒸着によ
る方法、およびゆ)無電解による方法等が挙げられる。
Recently, in various applications of two types of industrial products, gold plating has been carried out on the surface of metal objects in order to obtain a better appearance, a corrosion-resistant coating, and an electrically conductive coating with good spread. (As for gold plating, which is widely practiced in Imada), there are three main methods. 1
Namely, examples include (7) electrolytic plating method, (a) vapor deposition method, and (y) electroless method.

上記(7)の方法では、金属イオンを含む溶液から  
    、、)′電解により金属を析出させるのである
。即ち、め      6′つきされるべき金属質物品
は陰極に電気的に接続     );。
In method (7) above, from a solution containing metal ions,
,,)' The metal is deposited by electrolysis. That is, the metallic article to be plated is electrically connected to the cathode.

し、陽極には極板となる金属が電気的に接続され;b、
 @asf<@*pt4*t@tr*W4Mmltc@
&>z    、・び陽極を対置さゞる・″・陰極と陽
極と0間     、。
and a metal serving as an electrode plate is electrically connected to the anode; b.
@asf<@*pt4*t@tr*W4Mmltc@
&>z ,・Place the anode opposite・”・Between the cathode, the anode, and 0.

に直流電圧が印加されて、金属イオンが陰極へ移   
  )動し、そこで金属イオンは電荷を失い、めっきさ
れるべき物品上に金属被覆層となって析出する。   
   ・、、1しかしながら、この方法によると、複雑
な形状     1′i;1をした物品上に均一に電気
めっきすることは困難     :1である。また、高
アスペクト比のブラインドホールには通常めっきするこ
とは不可能であり、めっきされるべき物品の尖端、また
は縁には厚いめっき層とな夛、くぼんだ面には薄いめっ
き層となる。
A DC voltage is applied to the metal ions, which transfer metal ions to the cathode.
), where the metal ions lose their charge and are deposited as a metal coating layer on the article to be plated.
・,,1 However, according to this method, it is difficult to uniformly electroplate an article having a complicated shape. Also, it is usually impossible to plate high aspect ratio blind holes, resulting in a thick layer of plating on the tips or edges of the article to be plated, and a thin layer on the recessed surfaces.

しかも、外部電源を必要とする。Moreover, it requires an external power source.

上記(イ)の方法では、減圧した容器の中にめっきされ
るべき物品を上記容器の上部に置き、蒸着すべき金属ペ
レット、または粉末を上記容器の下部に置き、直接的、
または間接的にこれらの金属ベレット、または粉末を加
熱すると、物品上に金属層が積層されるのである。
In the method (a) above, the article to be plated is placed in a reduced-pressure container at the top of the container, the metal pellets or powder to be vapor-deposited are placed at the bottom of the container, and
Alternatively, heating these metal pellets or powders indirectly results in the deposition of a metal layer on the article.

従って、この方法によると、厚いめっき層を得ることは
困難であシ、物品への付着力も弱く、高7スペクト比の
ブラインドホールにはめっきができない。しかも、装置
は非常に高価なものである。
Therefore, according to this method, it is difficult to obtain a thick plating layer, the adhesion to the article is weak, and blind holes with a high 7 aspect ratio cannot be plated. Moreover, the equipment is very expensive.

上記(つ)の方法では、溶液中における異種金属の電位
差を利用する置換めっき、即ち電気化学的に責の金属イ
オンを含む溶液中に電気化学的に卑な金属素地を浸漬す
ると、その卑金属の溶解によって放出される電子が、溶
液中の貴金属イオンへ転移し、卑金属表面上に貴金属の
被膜が形成されるものである。
In method (1) above, displacement plating utilizes the potential difference between different metals in a solution. Electrons released by dissolution are transferred to noble metal ions in the solution, forming a noble metal coating on the surface of the base metal.

他方、化学還元めっき、即ち金属塩と可溶性の還元剤の
共存する溶液にめっきされるべき物品を浸漬すると、還
元剤の酸化によって放たれる電子が溶液中の金属イオン
に転移し、物品上に金属被覆層となって析出するものと
がある。
On the other hand, in chemical reduction plating, that is, when the article to be plated is immersed in a solution in which a metal salt and a soluble reducing agent coexist, the electrons released by the oxidation of the reducing agent are transferred to the metal ions in the solution, causing plating to occur on the article. Some may precipitate as a metal coating layer.

上記置換めっきは異種金属の電位差を利用したものでア
シ、析出する金属は薄く(例えば約0.5μF−以下)
ピンホールカ多い。
The above displacement plating uses the potential difference between different metals, and the deposited metal is thin (for example, about 0.5 μF or less).
There are many pinholes.

しかも、物品への付着力も弱く実用に供することができ
ない。
Furthermore, the adhesion to articles is weak and cannot be put to practical use.

上記の化学還元めっきにおいては、特許公報昭49−4
3173.  および昭50−3743にみられるよう
に、可溶性還元剤として脂肪族アミンポラン、またはホ
ウ水素化物を用いた化学還元浴(または無電解めっき浴
)が種々公知となっているが。
In the above chemical reduction plating, Patent Publication No. 49-4
3173. Various chemical reduction baths (or electroless plating baths) using aliphatic amine poranes or borohydrides as soluble reducing agents have been known, as seen in 1983-3743.

めっき析出速度が一時間当シ2μm以下という遅いもの
であシ、また出願人の確認実験では、めっき浴の安定性
が悪く実用に供することができない。
The plating deposition rate is slow, less than 2 μm per hour, and the applicant's confirmation experiments show that the plating bath is too unstable to be put to practical use.

従って、めっき析出速度が速く、シかもめつき浴の安定
性がよい(少なくとも8時間以上)ものにすることは制
約されている用途を切り開くものであり、技術的発展に
寄与するものである。
Therefore, creating a plating bath with a fast plating deposition rate and good stability (at least 8 hours) will open up restricted applications and contribute to technological development.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は上記した無電解金めつき浴組成およびこのめ
っき浴を使用する方法に係る技術的諸問題を改善する目
的でなされたものであシ、その目的はめつき析出速度が
1時間当υ約10μmと速く厚くめっきができ、めっき
浴の安定性のよい無電解金めつき浴組成およびこのめっ
き浴を使用する方法を提供するにある。
This invention was made for the purpose of improving the technical problems associated with the above-mentioned electroless gold plating bath composition and method of using this plating bath. It is an object of the present invention to provide an electroless gold plating bath composition that allows fast plating as thick as 10 μm and has good plating bath stability, and a method for using this plating bath.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無電解金めつき浴組成およびこのめっき
浴の使用方法は、鋭意検討を重ねた結果。
The electroless gold plating bath composition and method of using this plating bath according to this invention are the result of extensive research.

めっき浴の安定性を保ち、めっき金属の析出速度を速く
するには、めっき浴の温度を上げるか、または適当なP
H,または還元剤の量を見つけ、さらにめっき物品を常
に卑電位にすることによシ上記目的が達成できることを
みいだし1本発明を完成するに到った。
To maintain the stability of the plating bath and increase the rate of precipitation of the plating metal, increase the temperature of the plating bath or add an appropriate amount of P.
The present inventors have found that the above object can be achieved by determining the amount of hydrogen or reducing agent and by keeping the plated article at a base potential at all times, and have completed the present invention.

即ち1本発明の無電解金めつき液は、シアン化金カリウ
ムと、水酸化カリウムと、シアン化カリウムとを含む水
溶液に水素化ホウ素カリウムを還元剤として入れたもの
に被めっき物品に可溶な卑金属を接触しながら、上記め
っき液中に浸漬することによってめっきすることを特徴
とする。
Namely, the electroless gold plating solution of the present invention is an aqueous solution containing potassium gold cyanide, potassium hydroxide, and potassium cyanide, and potassium borohydride as a reducing agent. Plating is carried out by immersing the plate in the plating solution while contacting the plate.

以下において本発明をさらに詳しく説明する。The invention will be explained in more detail below.

本発明の無電解金めつき浴組成およびこのめっき浴の使
用方法は、出願人において檀々の実験の結果決定したも
のである。
The composition of the electroless gold plating bath of the present invention and the method of using this plating bath were determined by the applicant as a result of extensive experiments.

即ち、めっき液の温度を70’Cにすると金の析出が活
発になり、80℃以上に上げると、めっき液が分解しや
すくなるので注意する必要がある。
That is, when the temperature of the plating solution is set to 70'C, gold precipitation becomes active, and when it is raised to 80°C or higher, the plating solution becomes easily decomposed, so care must be taken.

水酸化カリウムはめっき液のPHを調整するため、およ
び金の析出速度を制御するために用いられる。第1図に
は、水酸化カリウムの濃度変化による金の析出膜厚がど
のように変化するかを示しである。
Potassium hydroxide is used to adjust the pH of the plating solution and to control the rate of gold precipitation. FIG. 1 shows how the thickness of the deposited gold film changes as the concentration of potassium hydroxide changes.

水酸化カリウム!190.2モル迄金の析出が増加し、
0.3モル以上になると金の析出速度は低下し。
Potassium hydroxide! Gold precipitation increased to 190.2 mol,
When the amount exceeds 0.3 mol, the rate of gold precipitation decreases.

析出速度は1時間当シ4μmとなった。The deposition rate was 4 μm per hour.

この結果により、水酸化カリウム濃度は0.1〜0.4
モルを最適とする。
Based on this result, the potassium hydroxide concentration is 0.1 to 0.4
Mole is optimal.

第2図には、還元剤としての水素化ホウ素カリウム濃度
変化による金の析出膜厚がどのように変化するかを示し
である。水素化ホウ素カリウム濃度の増加と共に金の析
出膜厚は増加するが、0.3モル以上添加するとめつき
液が分解しやすくなるので、水素化ホウ素カリウム濃度
を0.1〜0.2モルとした。
FIG. 2 shows how the thickness of the deposited gold film changes as the concentration of potassium borohydride as a reducing agent changes. The thickness of the deposited gold film increases as the potassium borohydride concentration increases, but if more than 0.3 mol is added, the plating solution will easily decompose, so the potassium borohydride concentration should be set at 0.1 to 0.2 mol. did.

〔作用〕[Effect]

この発明においては、めっき析出速度が1時間当シ10
μmと速く、厚いめっき層を得ることができ、しかもめ
つき浴の安定性がよい。
In this invention, the plating deposition rate is 10 per hour.
It is possible to obtain a thick plating layer as fast as μm, and the stability of the plating bath is good.

〔実施例〕〔Example〕

以下において実施例を掲げこの発明をさらに詳しく説明
する。
The present invention will be explained in more detail below with reference to Examples.

実施例1 次の組成を有する浴を調整した。Example 1 A bath with the following composition was prepared.

KAu (CN)2   1  Q、OI/IKCN 
      6.511/I KOH11,O11// KBH45,0171 浴温    T5±2℃ 上記組成の溶液をマグネチツクス、ターラーを使用して
撹拌しながら、被めつき試片を可溶の卑金属に引掛け、
上記溶液に浸漬してめっきを行った。      。
KAu (CN)2 1 Q, OI/IKCN
6.511/I KOH11, O11 // KBH45,0171 Bath temperature T5 ± 2°C While stirring the solution with the above composition using magnetics and a roller, hook the coated specimen on the soluble base metal,
Plating was performed by immersing it in the above solution. .

めっき後の金めつき皮膜について、不純物の分析および
ピンホール試験を行った結果を各々第3図と第4図に示
す。
The results of an impurity analysis and a pinhole test performed on the gold-plated film after plating are shown in FIGS. 3 and 4, respectively.

第3図には、析出した金めつき皮膜の不純物の    
  1分析結果を示す。
Figure 3 shows impurities in the deposited gold plating film.
1 analysis results are shown.

これは約10μm金めつき皮膜のオージェ電子分光分析
の結果であり、金めつき膜表面から素地の方向に電子エ
ツチングをしながら実施したものである。検出元素はイ
オウ、金、ホウ素、炭素等であシ、金を除いた不純物の
内ホウ素は検出限界以下であった。
This is the result of Auger electron spectroscopy analysis of a gold-plated film of approximately 10 μm, and was carried out while electron etching was performed from the surface of the gold-plated film toward the substrate. The detected elements were sulfur, gold, boron, carbon, etc. Among the impurities except gold, boron was below the detection limit.

第4図には、析出した金めつき皮膜のピンホール試験の
結果を示す。
FIG. 4 shows the results of a pinhole test on the deposited gold plating film.

比較のために電気金めつき皮膜のピンホール試験を実施
したが、金めつき膜厚1.5μm以下では無電解金めつ
き皮膜の方がピンホールは多いが、1.5μm以上にな
ると電気金めつき皮膜と無電解金めつき皮膜とは同等と
なった。
For comparison, we conducted a pinhole test on the electroless gold plating film, and found that when the gold plating thickness is 1.5 μm or less, the electroless gold plating film has more pinholes, but when the gold plating thickness is 1.5 μm or more, the electroless gold plating film has more pinholes. The gold plating film and the electroless gold plating film are now equivalent.

実施例2 第5図に示す種々の液組成の溶液中に銅板を可溶な卑金
属に引掛け1m液中に浸漬して金めつきを行った。金め
つき後、銅板を溶解した後、十分洗浄し乾燥を行い、金
めつき皮膜の抵抗を測定し。
Example 2 A copper plate was hooked onto a soluble base metal in solutions having various liquid compositions as shown in FIG. 5, and immersed in the solution for 1 m to perform gold plating. After gold plating, the copper plate was melted, thoroughly washed and dried, and the resistance of the gold plated film was measured.

比抵抗を算出した。The specific resistance was calculated.

比較のため電気金めつき皮膜(Tempslex 4(
N )の抵抗を測定し、比抵抗を算出した。
For comparison, electrolytic gold plating film (Tempslex 4 (
The resistance of N ) was measured and the specific resistance was calculated.

この結果、電気金めつき皮膜の比抵抗は2.22X10
−6QrcrrL、無電解金めつき皮膜の比抵抗は2.
50x10  Ω−のであった。
As a result, the specific resistance of the electrolytic gold plating film was 2.22X10
-6QrcrrL, the specific resistance of the electroless gold plating film is 2.
It was 50x10 Ω-.

この値は実用上1問題とはならないものである。This value does not pose any problem in practice.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおシ、析出速度を1時間当り
10μmと速く厚いめっき層が得られ・得られためつき
皮膜も不純物の共析が少なく、電気金めつき皮膜と比較
し、ピンホールの数、比抵抗値等はほぼ同等である。ま
た、めっき浴も安定性がよく経済的に寄与すること大で
ある。
As explained above, this invention has a deposition rate as high as 10 μm per hour to obtain a thick plating layer, and the resulting impurity coating has less eutectoid impurities, and compared to electrolytic gold plating coating, there are no pinholes. The number, specific resistance value, etc. are almost the same. In addition, the plating bath has good stability and contributes greatly economically.

、、L、。、よよよ9.□いつあオあ、6□    1
雑な構造の物品へのめつきに大いに活用され、今迄制約
されていた用途を切夛開くものと期待できる。    
                         
  ゛・′5
,,L,. , Yoyoyo 9. □When, 6□ 1
It can be expected that it will be widely used for attaching objects with rough structures, opening up many uses that have been restricted until now.

゛・'5

【図面の簡単な説明】[Brief explanation of drawings]

:壷 第1図は水酸化カリウム濃度と金の析出速度と    
  :。 の関係を示す図、第2図はホウ水素化カリウム濃   
   [i、; 度と金の析出速度との関係を示す図、第3図は析   
   。 出した金やつき皮膜。オーク。電子分光分析結果   
   jlを示す図、第」図は析出した金めつき皮膜の
ピンホール試験結果を示す図、第5図は種々の組成に 
     パ)′□′1 よって得られた金めつき皮膜の比抵抗値の測定績   
   41、、・; 果を示す図である。                
    「:・; [;□ 代理人大岩増雄    ・1.! 第1図 第2!II めクセ時1lJ5(分) かそ展M−(μ−
: Figure 1 of the jar shows the relationship between potassium hydroxide concentration and gold precipitation rate.
:. Figure 2 shows the relationship between potassium borohydride and
[i,; Figure 3 shows the relationship between degree and gold precipitation rate.
. The gold film that was put out. Oak. Electron spectroscopy results
Figure 5 shows the pinhole test results of the deposited gold plating film, and Figure 5 shows the results of various compositions.
Pa)′□′1 Measurement results of the specific resistance value of the gold-plated film obtained
41,...; It is a figure showing the result.
``:・; [;□ Agent Masuo Oiwa ・1.! Figure 1 Figure 2! II Messy time 1lJ5 (min) Kasoten M-(μ-

Claims (2)

【特許請求の範囲】[Claims] (1)所定の量のシアン化金カリウムと、0.1〜0.
4モルの水酸化カリウムと、0.05〜0.15モルの
シアン化カリウムとを含む水溶液に0.1〜0.2モル
の水素化ホウ素カリウムを還元剤として入れ、その還元
反応によつて金を5μm以上析出させることを特徴とす
る無電解金めつき液。
(1) A predetermined amount of potassium gold cyanide and 0.1 to 0.
0.1 to 0.2 mol of potassium borohydride is added as a reducing agent to an aqueous solution containing 4 mol of potassium hydroxide and 0.05 to 0.15 mol of potassium cyanide, and the reduction reaction produces gold. An electroless gold plating solution characterized by depositing 5 μm or more.
(2)上記無電解金めつき液内で被めつき物品に可溶な
卑金属を接触さすか、または接触させながらめつきする
ことを特徴とする特許請求の範囲第(1)項記載の無電
解金めつき液。
(2) The invention as set forth in claim (1), characterized in that plating is carried out by bringing a soluble base metal into contact with the object to be plated in the electroless gold plating solution, or by contacting the object with a soluble base metal. Electrolytic gold plating solution.
JP12116185A 1985-06-04 1985-06-04 Electroless gold plating solution Pending JPS61279685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12116185A JPS61279685A (en) 1985-06-04 1985-06-04 Electroless gold plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12116185A JPS61279685A (en) 1985-06-04 1985-06-04 Electroless gold plating solution

Publications (1)

Publication Number Publication Date
JPS61279685A true JPS61279685A (en) 1986-12-10

Family

ID=14804353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12116185A Pending JPS61279685A (en) 1985-06-04 1985-06-04 Electroless gold plating solution

Country Status (1)

Country Link
JP (1) JPS61279685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601637A (en) * 1994-08-19 1997-02-11 Electroplating Engineers Of Japan, Limited Electroless gold plating solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601637A (en) * 1994-08-19 1997-02-11 Electroplating Engineers Of Japan, Limited Electroless gold plating solution

Similar Documents

Publication Publication Date Title
US9347147B2 (en) Method and apparatus for controlling and monitoring the potential
Schlesinger Electroless and electrodeposition of silver
Abys Palladium electroplating
Jin et al. Novel and Green Chemical Compound of HAu (Cys) 2: Toward a Simple and Sustainable Electrolyte Recipe for Cyanide-Free Gold Electrodeposition
CA2415772A1 (en) Electroless autocatalytic platinum plating
Gillesberg et al. Niobium plating processes in alkali chloride melts
JPH0422990B2 (en)
US4624754A (en) Ionic liquid compositions for electrodeposition
US4624755A (en) Preparation of ionic liquids for electrodeposition
CA1195645A (en) High-rate chromium alloy plating
US4437948A (en) Copper plating procedure
JPS61279685A (en) Electroless gold plating solution
JPS61238994A (en) Method for precipitating palladium-nickel alloy
US4624753A (en) Method for electrodeposition of metals
US3497426A (en) Manufacture of electrode
JP4803550B2 (en) Composition for electrolytic formation of silver oxide film
CA2415781A1 (en) Electroless rhodium plating
US3880730A (en) Electro-galvanic gold plating process
KR20070005332A (en) Electroless plating method and plating film obtained by the electroless plating method
KR20210023564A (en) Plating Solution Composition having Ruthenium and Method of plating using the same
JPS61279684A (en) Electroless gold plating solution
JPS6017096A (en) Production of electrode
JPS61279686A (en) Electroless silver plating solution
JPH0277595A (en) Electroplating alloy coating having stable alloy composition
KR100499793B1 (en) Electroless plating method