JPS61279686A - Electroless silver plating solution - Google Patents

Electroless silver plating solution

Info

Publication number
JPS61279686A
JPS61279686A JP12116285A JP12116285A JPS61279686A JP S61279686 A JPS61279686 A JP S61279686A JP 12116285 A JP12116285 A JP 12116285A JP 12116285 A JP12116285 A JP 12116285A JP S61279686 A JPS61279686 A JP S61279686A
Authority
JP
Japan
Prior art keywords
plating
mol
silver
concentration
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12116285A
Other languages
Japanese (ja)
Inventor
Yoshinori Takakura
高倉 義憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12116285A priority Critical patent/JPS61279686A/en
Publication of JPS61279686A publication Critical patent/JPS61279686A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To obtain an electroless Ag plating soln. having superior stability and depositing Ag at a high rate by dissolving specified amounts of NaAg(CN)2 as an Ag ion source, NaCN, NaOH and KBH4 in water. CONSTITUTION:A soln. having a composition contg. 0.01-0.20mol NaAg(CN)2, 0.05-0.4mol NaCN, 0.05-0.5mol NaOH and 0.03-0.20mol KBH4 is used as an electroless Ag plating soln. A body to be plated is hung on a soluble base metal and immersed in the electroless Ag plating soln. at >=50 deg.C, and Ag plating is formed by electroless plating at a high deposition rate of >=15mum/hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、無電解銀めっき液およびこのめっき浴を使
用する方法に関するものでおる。その上特に、既知の無
電解銀めっき浴を用いて得らするよシも、析出速度が速
くしかも厚いめっき膜な提供する無電解銀めっき溶液に
関係がある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to an electroless silver plating solution and a method of using this plating bath. Moreover, it is particularly relevant to electroless silver plating solutions that provide fast deposition rates and thick coatings even when obtained using known electroless silver plating baths.

〔従来の技術〕[Conventional technology]

周知のように銀は美麗な白色光沢を有し、洋食器や装飾
品、美術工芸品に用いられるほか、金属中で最も電導度
がよく、かつ比較的安価なので接点をはじめとする電気
部品や航空機部品等の金属表面上にめっきが行われてい
る。
As is well known, silver has a beautiful white luster and is used in Western tableware, ornaments, and arts and crafts.It also has the highest conductivity among metals and is relatively inexpensive, so it is used in electrical components such as contacts. Plating is performed on metal surfaces such as aircraft parts.

今日、広く行わnている銀のめつきについては大別して
三つの方法がある。
There are three main methods of silver plating that are widely practiced today.

即ち、■電解めっきによる方法、(イ)蒸着による方法
、および(つ)無電解による方法等が挙げられる。
Namely, examples include (1) electrolytic plating method, (a) vapor deposition method, and (1) electroless method.

上記■の方法は、金属イオンを含む溶液から電解により
金属を析出させるのである。即ち、めっきされるべき金
属質物品は陰極K[気的に接続し陽極には極板となる金
属が電気的に接続される。
In method (1) above, metal is deposited by electrolysis from a solution containing metal ions. That is, the metallic article to be plated is electrically connected to the cathode K, and the metal serving as the electrode plate is electrically connected to the anode.

析出すべき金属塩を含む電解液中に陰極および陽極を対
置させる。ついで、陰極と陽極との間に直流電圧が印加
さルて、金属イオンが陰極へ移動し。
A cathode and an anode are placed opposite each other in an electrolytic solution containing the metal salt to be deposited. Then, a DC voltage is applied between the cathode and anode, and the metal ions move to the cathode.

そこで金属イオンは電荷を失い、めっきされるべき物品
上に金属被覆層となって析出する。
There, the metal ions lose their charge and are deposited as a metal coating layer on the article to be plated.

しかしながら、この方法によると、複雑な形状をした物
品上に均一に電気めっきすることは困難である。又、高
アスペクト比のブラインドホールには通常めっきするこ
とは不可能であり、めっきされるべき物品の尖端、又は
縁には厚いめっき層となシ、くぼんだ面には薄いめっき
層となる。しかも外部電源を必要とする。
However, according to this method, it is difficult to uniformly electroplate articles with complex shapes. Also, it is usually impossible to plate high aspect ratio blind holes, resulting in a thick layer of plating on the tips or edges of the article to be plated, and a thin layer on the recessed surfaces. Moreover, it requires an external power source.

上記0)の方法では、減圧した容器の中にめっきされる
べき物品を上記容器の上部に置き、蒸着すべき金属ベレ
ット、又は粉末を上記容器の下部に置き直接的、又は間
接的にこれらの金属ベレット又は粉末を加熱すると、物
品上に金属層が積層さnるのである。
In method 0) above, the article to be plated is placed in a reduced pressure container at the top of the container, and the metal pellet or powder to be deposited is placed at the bottom of the container and these are directly or indirectly placed. Heating the metal pellet or powder deposits a metal layer on the article.

従って、この方法によると、厚いめっき層を得ることは
困難でアシ、物品への付着力も弱く、高アスペクト比の
ブラインドホールにはめっきができない しかも、装置
は非常に高価なものでおる。
Therefore, according to this method, it is difficult to obtain a thick plating layer, the adhesion to reeds and articles is weak, blind holes with high aspect ratios cannot be plated, and the equipment is very expensive.

上記(つ)の方法では、溶液中における異種金属の電位
差を利用する置換めっき、即ち電気化学的に責の金属イ
オンを含む溶液中に電気化学的に卑な金属素地を浸漬す
ると、その卑金属の溶解によって放出される電子が8溶
液中の貴金属イオンへ転移し、卑金属表面上に貴金属の
被膜が形成さ詐るものである。
In method (1) above, displacement plating utilizes the potential difference between different metals in a solution. Electrons released by dissolution are transferred to noble metal ions in the solution, forming a coating of noble metal on the surface of the base metal.

他方、化学還元めっき、即ち金属塩と可溶性の還元剤の
共存する溶液にめっきされるべき物品を浸漬すると、還
元剤の酸化によって放たれる電子が溶液中の金属イオン
に転移し、物品上に金属被種層となって析出するものと
がある。
On the other hand, in chemical reduction plating, that is, when the article to be plated is immersed in a solution in which a metal salt and a soluble reducing agent coexist, the electrons released by the oxidation of the reducing agent are transferred to the metal ions in the solution, causing plating to occur on the article. Some may precipitate as a metal seed layer.

上記の置換めっきは、異種金属間の電位差を利用したも
ので、多数の実施例があるが、析出する金属膜は薄い。
The displacement plating described above utilizes the potential difference between different metals, and there are many examples, but the deposited metal film is thin.

例え、厚い皮膜が得られても皮膜の表面は粗く、よいも
のが得られない。しかもめつき液は爆発性の雷銀(例え
ばAgNH2,N!、5N などの混合物)が発生する
ので管理が困難である。
Even if a thick film is obtained, the surface of the film is rough and a good quality film cannot be obtained. Moreover, the plating solution is difficult to manage because it generates explosive lightning (for example, a mixture of AgNH2, N!, 5N, etc.).

上記の化学還元めっきにおいては1例えば特許公報昭5
2−28729にみられるように可溶性還元剤としてア
ミンボラン、又はボロハイドライドを用いた化学還元浴
(又は無電解めっき浴)が公知となっているが、めっき
析出速度が1時間当92μm以下という遅いものであり
、又出願人の確認実験ではめつき浴の安定性が悪く、実
用に供することができない。
In the above chemical reduction plating, 1, for example, Patent Publication No. 5
As shown in No. 2-28729, chemical reduction baths (or electroless plating baths) using amine borane or borohydride as soluble reducing agents are known, but the plating deposition rate is as slow as 92 μm per hour or less. According to the applicant's confirmation experiment, the stability of the plating bath was poor and it could not be put to practical use.

従って、めっき析出速度が速り、シかもめつき浴の安定
性がよいものにすることは制約さ詐ている用途を切夛開
くものであり、技術的発展に寄与するものである。
Therefore, increasing the plating deposition rate and improving the stability of the plating bath will open up many restricted applications and contribute to technological development.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は上記した無電解銀めっき浴組成およびこのめ
っき浴を使用する方法に係る技術的諸問題を改善する目
的でなされたものであり、その目的はめつき析出速度が
1時間当り15βmと速く厚くめっきができ、めっき浴
の安定性のよい無電解銀めっき浴組成およびこのめっき
浴を使用する方法を提供するにある。
This invention was made for the purpose of improving the technical problems associated with the above-mentioned electroless silver plating bath composition and method of using this plating bath. An object of the present invention is to provide an electroless silver plating bath composition that allows plating and has good plating bath stability, and a method of using this plating bath.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無電解銀めっき浴組成およびこのめっき
浴の使用方法は、鋭意検討を重ねた結果。
The electroless silver plating bath composition and method of using this plating bath according to this invention are the result of extensive research.

めっき浴の安定性を保ち、めっき金属の析出速度を速く
するKはめつき浴の温度を上けるか、又は適当なPH,
又は還元剤の量を見つけ、さらにめつき物品を常に卑電
位にすることにより、上記目的が達成できることを見い
だし6本発明を完成するに到った。
To maintain the stability of the plating bath and increase the precipitation rate of the plating metal, increase the temperature of the plating bath or adjust the pH to an appropriate level.
Alternatively, they found that the above object can be achieved by finding the amount of reducing agent and keeping the plated article at a negative potential at all times, thus completing the present invention.6.

即ち2本発明の無電解銀めっき液は6 シアン化銀ナト
リウムと、水酸化ナトリウムと、シアン化ナトリウムと
を含む水溶液に水素化ホウ素カリウムな還元剤として入
nたものに被めっき物品に可溶な卑金属を接触しながら
上記めっき液中に浸漬することによってめっきすること
を特徴とする。
That is, the electroless silver plating solution of the present invention is soluble in the article to be plated in an aqueous solution containing sodium silver cyanide, sodium hydroxide, and sodium cyanide as a reducing agent such as potassium borohydride. The method is characterized in that plating is carried out by immersing a base metal in the above plating solution while contacting it.

以下において0本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明の無電解銀めっき浴組成およびこのめつき浴の使
用方法は出願人において種々の実験の結果決定したもの
である。
The composition of the electroless silver plating bath of the present invention and the method of using this plating bath were determined by the applicant as a result of various experiments.

即ち、第1図には、シアン化銀ナトリウム濃度変化によ
る銀の析出膜厚がどのように変化するかを示しである。
That is, FIG. 1 shows how the thickness of the deposited silver film changes as the concentration of silver sodium cyanide changes.

と同時に、析出速度に影響を与えろ水酸化ナトリウム濃
度、ホウ水素化カリウム濃       ゛[お、、5
イ’r:、i!−rfc dE、 ’/アフイ、いえ)
 !J ’)J、−1)z    □i増加する程、析
出膜厚は減少する傾向にあり、水酸化ナトリウム濃度お
よびホウ水素化カリウム濃度の増加によフ、シアン化銀
ナトリウム濃度0.08モルにて銀の析出膜厚の最大(
15μm/Hour)が得られた。さらに詳述すると、
シアン化銀ナトリウム濃度Q、01モルでは、析出物は
粉状とな夛、α03モルでは、無光沢の皮膜としての銀
の析出物が得られ、水酸化ナトリウム濃Ho、toモル
、ホウ水素化カリウム濃度a05モルで最高の析出速度
(9μm/Hour)を示し、水酸化ナトリウム濃度α
15モル。
At the same time, the concentration of sodium hydroxide and potassium borohydride will affect the precipitation rate.
i'r:, i! -rfc dE, '/afy, no)
! J ') J, -1) z □ As i increases, the deposited film thickness tends to decrease. The maximum thickness of silver deposited film at (
15 μm/Hour) was obtained. To elaborate further,
At a silver sodium cyanide concentration Q of 01 mol, the precipitate is powdery, and at a concentration of α03 mol, a silver precipitate is obtained as a matte film. It showed the highest precipitation rate (9 μm/Hour) at a potassium concentration of 05 mol, and at a sodium hydroxide concentration of α
15 moles.

ホウ水素化カリウム濃度0.05モルで粉状の析出物と
なった。
A powdery precipitate was formed at a potassium borohydride concentration of 0.05 mol.

シアン化銀ナトリウム濃度0.05モルでに、銀の析出
物の外観は無光沢の皮膜で、水酸化ナトリウム濃度0.
1fiモル〜0.20モル、ホウ水素化カリウム濃1[
0,05〜0.10モルで最高の析出速度(131)w
′aour )を示し、水酸化ナトリウム濃度vOモル
At a silver sodium cyanide concentration of 0.05 mol, the silver precipitate appeared as a matte film, and at a sodium hydroxide concentration of 0.05 mol.
1 fi mole to 0.20 mole, potassium borohydride concentration 1 [
Highest precipitation rate at 0.05-0.10 mol (131)w
'aour) and the sodium hydroxide concentration vO mole.

ホウ水素化カリウム濃度0.15モルでは銀の析出物に
ざらつきが生じ、こn以上の水酸化ナトリウムホウ水素
カリウム濃度の添加は限界であった。
At a potassium borohydride concentration of 0.15 mol, the silver precipitate became rough, and addition of a potassium borohydride concentration of n or more was at the limit.

シアン化銀ナトリウム濃度0.08モルでは水酸化ナト
リウム濃度0.15〜a、20モル、ホウ水素化カリウ
ム濃度0.05〜0,15モルで、最高の析出速度(1
6μm/Hour)を示し、水酸化ナトリウム濃度0.
20モル、ホウ水素化カリウム濃度0.20モルで析出
物にざらつきおよび変色が生じた。
At a silver sodium cyanide concentration of 0.08 mol, the highest precipitation rate (1
6 μm/Hour), and the sodium hydroxide concentration was 0.
At a potassium borohydride concentration of 0.20 mol and a potassium borohydride concentration of 0.20 mol, roughness and discoloration occurred in the precipitate.

シアン化銀ナトリウム濃度010モルでに、水酸化ナト
リウム濃度1)20モル、ホウ水素化カリウム濃度0.
15モルで、最高の析出速度(鵞4μvi(ouりを示
し、水酸化ナトリウム濃度0.20モル、ホウ水素化カ
リウム濃度(120モルで析出物にざらつきおよび変色
が生じた。
Sodium cyanide concentration is 0.10 mol, sodium hydroxide concentration is 1) 20 mol, potassium borohydride concentration is 0.
At 15 mol, the highest precipitation rate (4 μvi) was observed, and at a sodium hydroxide concentration of 0.20 mol and a potassium borohydride concentration of 120 mol, the precipitate became rough and discolored.

シアン化銀ナトリウム濃度a15モルでに水酸化ナトリ
ウム濃度a、20モル、ホウ水素化カリウム濃度0.1
5モルで、最高の析出速度(9μm/HOur)を示し
、水酸化ナトリウム濃度020モル、ホウ水素化カリウ
ム濃度0.20モルでは析出物にざらつきおよび変色が
生じた。
Sodium cyanide concentration a is 15 mol, sodium hydroxide concentration a is 20 mol, and potassium borohydride concentration is 0.1.
At 5 mol, the highest precipitation rate (9 μm/Hour) was shown, and at a sodium hydroxide concentration of 020 mol and a potassium borohydride concentration of 0.20 mol, the precipitate became rough and discolored.

従って、シアン化銀ナトリウム濃度0.05〜vOモル
で銀の析出を速く厚くすることができる。
Therefore, it is possible to quickly and thickly deposit silver at a silver sodium cyanide concentration of 0.05 to vO mol.

第2図には、水酸化ナトリウム濃度変化において、銀の
析出膜厚がどのように変化するかを示しである。水酸化
ナトリウム濃度が0.03〜0.20モルの範囲では濃
度が増加するに従って銀の析出膜厚は増加する傾向にあ
り、a、15〜0.20モルで、最高の析出膜厚(15
μmAour)を示し、α20〜α50モルの範囲では
新派する傾向を示す。従って、水酸化ナトリウム濃度は
a、03〜a50モルを最適とした。
FIG. 2 shows how the thickness of the deposited silver film changes as the sodium hydroxide concentration changes. When the concentration of sodium hydroxide is in the range of 0.03 to 0.20 mol, the thickness of the deposited silver film tends to increase as the concentration increases, and the maximum thickness of the deposited film (15
μmAour), and shows a tendency to change in the range of α20 to α50 mol. Therefore, the optimum concentration of sodium hydroxide was set at 03 to 50 moles.

第3図には、ホウ水素化カリウム濃度変化において銀の
析出膜厚がどのように変化するかを示しである。ホウ水
素化カリウム濃度が増加するに従って銀の析出膜厚は増
加する傾向を示すが、ホウ水素化ナトリウム濃度0.2
0モルでは析出物にざらつき、および変色が生じやすい
ため、  cuOモルを限度とした。
FIG. 3 shows how the thickness of the deposited silver film changes as the concentration of potassium borohydride changes. The thickness of silver deposited film tends to increase as the potassium borohydride concentration increases, but at 0.2
Since 0 mole tends to cause roughness and discoloration of the precipitate, the limit was set at cuO mole.

第4図には、シアン化ナトリウム濃度変化において、銀
の析出膜厚がどのように変化するかを示しである。シア
ン化ナトリウム濃度の増加と共に銀の析出膜厚は減少す
るため0.4モルを限度とした。
FIG. 4 shows how the thickness of the deposited silver film changes as the sodium cyanide concentration changes. Since the thickness of the deposited silver film decreases as the sodium cyanide concentration increases, the upper limit was set at 0.4 mol.

〔作用〕[Effect]

この発明においては、めっき析出速度が1時間当〕15
μmと速く、厚いめっき層を得ることかでき、しかもめ
つき浴の安定性がよい。
In this invention, the plating deposition rate is 15 per hour.
It is possible to obtain a thick plating layer as fast as μm, and the stability of the plating bath is good.

〔実施例〕                    
  :以下において、実施例を掲げこの発明を更に詳 
     )しく説明する。
〔Example〕
: In the following, this invention will be explained in further detail by giving examples.
) Explain in detail.

実施例 次の組成を有する浴を調製した。Example A bath with the following composition was prepared.

ゞaAg(C9″°“M            !M
aON         0.05MNaOHO,15
M NBH40,10M 上記組成の溶液をマグネチツクスターラーを使用して攪
拌しながら、被めつき試片を可溶の卑金属に引掛け、上
記溶液に浸漬し、溶液の温度を変化させてめっきを行つ
fc。
ゞaAg(C9″°“M !M
aON 0.05M NaOHO, 15
M NBH40,10M While stirring the solution with the above composition using a magnetic stirrer, the plated specimen was hooked onto a soluble base metal, immersed in the above solution, and plated by changing the temperature of the solution. Two fc.

銀の析出膜厚の変化を第5図に示す。FIG. 5 shows the change in the thickness of the deposited silver film.

第51にはめつき溶液の温度変化において、銀の析出膜
厚がどのように変化するかを示す。めっ      霧
゛き溶液の温度上昇に従って、銀の析出膜厚は増加した
The 51st figure shows how the thickness of the deposited silver film changes as the temperature of the plating solution changes. As the temperature of the plating solution increased, the thickness of the deposited silver film increased.

めっき溶液の温度が50℃で銀の析出が開始し70′C
Kなるとホウ水素化カリウムの加水分解による水素ガス
が多量に発生すると共に、銀の析出膜厚が急激に増加す
る。本発明のめっき溶液は温度90℃以上に上昇させて
も、めっき溶液の分解はみられなかった。
Silver precipitation begins when the temperature of the plating solution reaches 50°C and reaches 70'C.
When the temperature is K, a large amount of hydrogen gas is generated due to the hydrolysis of potassium borohydride, and the thickness of the deposited silver film increases rapidly. Even when the plating solution of the present invention was raised to a temperature of 90° C. or higher, no decomposition of the plating solution was observed.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、析出速度を1時間当ル
15μmと速く厚いめっき層が得らn、又めつき浴も温
度90℃以上に上昇させても分解することなく安定でち
ゃ、経済的に寄与すること大である。
As explained above, this invention has a high deposition rate of 15 μm per hour to obtain a thick plating layer, and the plating bath is stable without decomposition even when the temperature is raised to 90°C or higher, making it economical. It is a great contribution to the

以上の効果によシ、電気伝導度の改善を必要とする複雑
な構造の物品へのめつきに大いに活用され、今迄制約さ
れていた用途を切り開くものと期待できる。
Due to the above-mentioned effects, it can be expected that it will be widely used in plating articles with complex structures that require improved electrical conductivity, opening up applications that have been limited until now.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシアン化銀ナトリウム濃度と銀の析出速度との
関係を示す図、第2図は水酸化ナトリウム濃度と銀の析
出速度との関係を示す図、第3図はホウ水素化カリウム
濃度と銀の析出速度との関係を示す図、第4図はシアン
化ナトリウム濃度と銀の析出速度との関係を示す図、第
5図はめつき浴温と銀の析出速度との関係を示す図であ
る。
Figure 1 shows the relationship between sodium silver cyanide concentration and silver precipitation rate, Figure 2 shows the relationship between sodium hydroxide concentration and silver precipitation rate, and Figure 3 shows the potassium borohydride concentration. Figure 4 is a diagram showing the relationship between sodium cyanide concentration and silver precipitation rate. Figure 5 is a diagram showing the relationship between plating bath temperature and silver deposition rate. It is.

Claims (2)

【特許請求の範囲】[Claims] (1)0.01〜0.20モルのシアン化銀ナトリウム
と0.05〜0.4モルのシアン化ナトリウムと、0.
05〜0.5モルの水酸化ナトリウムとを含む溶液に0
.03〜0.20モルの水素化ホウ素カリウムを還元剤
として用い、還元反応を生じさせて銀を析出させること
を特徴とする無電解銀のめつき液。
(1) 0.01 to 0.20 mol of sodium silver cyanide, 0.05 to 0.4 mol of sodium cyanide, and 0.01 to 0.20 mol of sodium cyanide;
0 to a solution containing 0.05 to 0.5 mol of sodium hydroxide.
.. An electroless silver plating solution characterized by using 0.3 to 0.20 mol of potassium borohydride as a reducing agent to cause a reduction reaction and deposit silver.
(2)上記無電解銀めつき液内で被めつき物品に可溶の
卑金属を接触さすか、又は接触させながらめつきするこ
とを特徴とする特許請求の範囲第(1)項記載の無電解
銀めつき液。
(2) The method according to claim (1), characterized in that plating is carried out by contacting or while contacting a soluble base metal with the article to be plated in the electroless silver plating solution. Electrolytic silver plating solution.
JP12116285A 1985-06-04 1985-06-04 Electroless silver plating solution Pending JPS61279686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12116285A JPS61279686A (en) 1985-06-04 1985-06-04 Electroless silver plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12116285A JPS61279686A (en) 1985-06-04 1985-06-04 Electroless silver plating solution

Publications (1)

Publication Number Publication Date
JPS61279686A true JPS61279686A (en) 1986-12-10

Family

ID=14804374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12116285A Pending JPS61279686A (en) 1985-06-04 1985-06-04 Electroless silver plating solution

Country Status (1)

Country Link
JP (1) JPS61279686A (en)

Similar Documents

Publication Publication Date Title
US4194913A (en) Electroless tin and tin-lead alloy plating baths
US4093466A (en) Electroless tin and tin-lead alloy plating baths
EP0358375B1 (en) Platinum or platinum alloy plating bath
US3480523A (en) Deposition of platinum-group metals
US3940319A (en) Electrodeposition of bright tin-nickel alloy
Schlesinger Electroless and electrodeposition of silver
JP2004502871A (en) Electroless silver plating
US3214292A (en) Gold plating
US4234631A (en) Method for immersion deposition of tin and tin-lead alloys
JPS61113781A (en) Cathode for generating hydrogen
USRE30434E (en) Electroless tin and tin-lead alloy plating baths
KR910004972B1 (en) Manufacturing method of tin-cobalt, tin-nickel, tin-lead binary alloy electroplating bath and electroplating bath manufactured by this method
EP0150402B1 (en) Method of depositing a metal from an electroless plating solution
US3637474A (en) Electrodeposition of palladium
JP2004502872A (en) Electroless self-catalytic platinum plating
US3274022A (en) Palladium deposition
EP0073236B1 (en) Palladium and palladium alloys electroplating procedure
GB2046794A (en) Silver and gold/silver alloy plating bath and method
US4159926A (en) Nickel plating
US4167459A (en) Electroplating with Ni-Cu alloy
WO2023201600A1 (en) Preparation method for feconicuzn high entropy alloy and feconicuzn high entropy alloy
EP0018165A1 (en) A bath and a process for electrodepositing ruthenium, a concentrated solution for use in forming the bath and an object having a ruthenium coating
JPS61279686A (en) Electroless silver plating solution
JPS585983B2 (en) Method and apparatus for stably producing metal complexes for electroless metal deposition
US2829059A (en) Electroless chromium plating