JPS61278435A - Direct current feeding system for tramcar - Google Patents

Direct current feeding system for tramcar

Info

Publication number
JPS61278435A
JPS61278435A JP11885485A JP11885485A JPS61278435A JP S61278435 A JPS61278435 A JP S61278435A JP 11885485 A JP11885485 A JP 11885485A JP 11885485 A JP11885485 A JP 11885485A JP S61278435 A JPS61278435 A JP S61278435A
Authority
JP
Japan
Prior art keywords
rail
tramcar
direct current
rails
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11885485A
Other languages
Japanese (ja)
Inventor
Teruyuki Ishitobi
石飛 輝行
Keiki Fujita
敬喜 藤田
Tsugio Mizutani
水谷 次雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11885485A priority Critical patent/JPS61278435A/en
Publication of JPS61278435A publication Critical patent/JPS61278435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To restrain leak economically and effectively by configurating a device in such a way that insulating sections are provided in both a tramcar feeder and a rail allowing them to be divided into the plural number of zones which are electrically independent, and the primary winding of a transformer at each of direct current feeding installations is made to be common. CONSTITUTION:Each of insulating sections 5a-5c, and 6a-6c are provided for each of tramcar feeders 2a-2d, and for each of rails 3a-3d respectively making both each of tramcar feeders 2a-2d and each of rails 3a-3d an electrically independent zone. Each of direct current feeding installations (substation) 1a-1c are provided for each of the said zone so as to feed direct current to each zone. These substations 1a-1c are provided with transducers 1a1, 1a2-1c1, and 1c2 including transformers, the primary winding of which is made to be common. In this configuration, tramcar load current for tramcars 4a and 4b leaks from the rail to ground. However, as there is no way for leak to return to the transducers (shown as 1a1 and 1b1, and 1b2 and 1c1 in the figure) located in the zone where the tramcar runs. This can prevents leak from spreading extensively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電車への直流き電システム、特に電車線、
レール及び変電所のシステム構成に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a direct current feeding system for electric trains, particularly a contact line,
It concerns the system configuration of rails and substations.

〔従来の技術〕[Conventional technology]

第2図及び第3図は例えば特開昭3;g−/991,3
/号に示されるような従来の電車への直流き電システム
の構成を示す。両図において(1)は直流き電設備であ
る変電所、(2)は電車線、(3)はレール、第2図の
(り)及び第3図の(”a ) + (”b )はそれ
ぞれ電車を示している。第2図(a)において変電所(
1)によシ距離D km離れた位置において電車(弘)
が運転電流工、をとうているとする。この場合、電車(
4=)の存在する付近のレール(3)の対地電位は正電
位となり、変電所(1)の付近のレール(3)の対地電
位は負電位となる。従って、レール(3)に電車(りか
ら変電所(1)に向って電流工、が流れ、また電車(l
I)の存在する付近のレール(3)から大地に漏れ電[
、が流れ、変電所(1)付近では大地に漏れた漏れ電流
工、がレール(3)に帰ってくる。第一図(b)〜(d
)はその時の各電流、即ちレール(3)と大地との間の
漏れ電流工5、レール(3)を流れる冗流工8、大地を
流れる電流工、と変電所(1)及び電車(り)の位置と
の関係を示す。
FIG. 2 and FIG.
This figure shows the configuration of a conventional DC feeding system for electric trains as shown in No. In both figures, (1) is a substation that is DC feeding equipment, (2) is an overhead contact line, (3) is a rail, (ri) in Figure 2 and (''a) + (''b) in Figure 3. each indicates a train. In Figure 2(a), the substation (
1) Train (Hiro) at a distance D km away
Suppose that a person is working as an electrician. In this case, the train (
The ground potential of the rail (3) near the substation (1) becomes a positive potential, and the ground potential of the rail (3) near the substation (1) becomes a negative potential. Therefore, a train (electrician) flows on the rail (3) towards the substation (1), and a train (l) flows on the rail (3).
Electricity leaks to the ground from the rail (3) near where I) exists [
, flows, and the leakage current that leaked into the ground near the substation (1) returns to the rail (3). Figure 1 (b) to (d)
) are the currents at that time, namely the leakage current 5 between the rail (3) and the ground, the redundant current 8 flowing through the rail (3), the current flowing through the ground, the substation (1) and the electric train (river). ) shows the relationship with the position.

従来の電気鉄道では電車線(2)を運転用電流の往路と
し、走行用のし−ル(3)を運転用電流の主電流の帰路
として使っておシ、枕木中道床の絶縁性がはなはだ不完
全なため、レール(3)の導体抵抗が低いにもかかわら
ずレール(3)と大地間の絶縁抵抗は天候によシ大きく
左右され、雨天、特に嵐等の状態では絶縁抵抗が著しく
低下し、レール(3)から大地への漏れ電流几が著しく
増加する。
In conventional electric railways, the overhead contact line (2) is used as the outgoing route for the operating current, and the running rail (3) is used as the return route for the main operating current. Due to the imperfection, the insulation resistance between the rail (3) and the ground is greatly affected by the weather, even though the conductor resistance of the rail (3) is low, and the insulation resistance decreases significantly in rainy weather, especially in stormy conditions. However, the leakage current from the rail (3) to the ground increases significantly.

このレール(3)からの漏れ電流工、は電車負荷電流、
帰線抵抗、変電所間隔の2乗に比例し、漏れ抵抗に反比
例する。したがって漏れ電流工、を小さくするには原理
的には前者を小さくし、後者を大きくすればよい。漏れ
電流工、の大きさは数100kから1oooAに達する
こともある。
The leakage current from this rail (3) is the train load current,
Return resistance is proportional to the square of the substation spacing and inversely proportional to leakage resistance. Therefore, in principle, to reduce the leakage current, the former should be reduced and the latter should be increased. The size of the leakage current can range from several 100K to 100A.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この漏れ電流、すなわち漏洩電流の作用として通常知ら
れているのは、レールやその付属品及びケーブル、水導
管、ガス管等の地中埋設金属体の電蝕であるが、さらに
、通信線に対する誘導障害、あるいは地磁気観測所に対
するしよう乱の問題等がある。また、大地電流に関して
電気設備技術基準第コ!r7条に規定されているように
地磁気観測所または地球電気観測所に対して観測上の障
害を及ぼさないようにする必要がある。
The effect of this leakage current is generally known as galvanic corrosion of underground metal objects such as rails, their accessories, cables, water pipes, gas pipes, etc. There are problems such as induction disturbances or disturbances to geomagnetic observatories. Also, regarding ground current, please refer to the Electrical Equipment Technical Standards No. 1! As stipulated in Article R7, it is necessary to ensure that there is no obstruction to observation of geomagnetic observatories or geoelectrical observatories.

従来の直流電気鉄道の直流き電回路は第3図に示すよう
に並列き電を行っておシ、電気的に正。
The conventional DC feeding circuit of a DC electric railway uses parallel feeding as shown in Figure 3, and is electrically positive.

負極とも並列につながっている。従ってレール(3)よ
シ大地に漏れた漏洩電流は広範囲K及び、漏洩電流によ
って生ずる磁力が自然界の地磁気に大きく影響をおよぼ
す。電気鉄道から波及する磁界はビオ・サバールの法則
によって計算されるが、電車線(コ)の電流方向とレー
ル(3)の電流方向は反対であるから遠方において大部
分の磁界は互いに打消すが、電車線(コ)の電流とレー
ル(3)の電流との差の電流及びレール(3)と大地間
の漏洩電流による磁界が地磁気に影響する。この差電流
は地表面に磁界の垂直分力を生じ、漏洩電流の地中に向
かう成分が、磁界の水平分力を生じる。
It is also connected in parallel with the negative electrode. Therefore, the leakage current leaking from the rail (3) to the ground has a wide range K, and the magnetic force generated by the leakage current has a large influence on the earth's magnetism in the natural world. The magnetic field that spreads from an electric railway is calculated by the Biot-Savart law, but since the current direction of the overhead contact line (C) and the current direction of the rail (3) are opposite, most of the magnetic fields cancel each other out in the distance. , the magnetic field due to the current difference between the current in the overhead contact line (C) and the current in the rail (3) and the leakage current between the rail (3) and the earth influences the earth's magnetism. This differential current produces a vertical component of the magnetic field on the earth's surface, and a component of the leakage current that goes underground produces a horizontal component of the magnetic field.

変電所(1)からの漏洩電流を抑制するには゛帰線抵抗
の減少、変電所間隔の短縮、レール(3)と大地間の絶
縁抵抗の増加、あるいは第ダ軌条方式、交流電化方式の
採用が考えられる。
To suppress leakage current from the substation (1), reduce the return resistance, shorten the distance between substations, increase the insulation resistance between the rail (3) and the ground, or adopt the second rail system or AC electrification system. is possible.

新線計画あるいは電化区間であれば、第1軌条方式の採
用、新線計画であればレール(3)と大−間の絶縁抵抗
の増加が可能であシ、新線計画でかつ、運転間隔、駅間
隔、表定速度等の大きい輸送網であれば交流電化方式の
採用が考えられる。一方、都市近郊、郊外等の輸送交通
網における電化、直流区間の延長あるいは直流電車の乗
入れ等の区間に対しては直流電化となる。
If it is a new line plan or an electrified section, it is possible to adopt the first rail system, and if it is a new line plan, it is possible to increase the insulation resistance between the rail (3) and the main rail. If the transportation network has large distances between stations, fixed speeds, etc., then AC electrification can be considered. On the other hand, electrification of transportation networks in the suburbs of cities, suburbs, etc., extension of DC sections, or sections where DC trains are installed will be electrified with DC.

漏洩電流を抑制するため、帰線抵抗を減らすにはレール
にき電線を併設すれば原理的には可能であるが、併設き
電線のサイズが非常に大きくなシ経済的でなく、また変
電所間隔を短縮すれば、漏洩電流はある程度抑制できる
が、電車負荷電流の大きい場合あるいは、運転間隔が短
かい場合等においてはレールが全線にわたシつながって
いるため大地電流を広範囲にばらまいてしまい、あまシ
効来が得られないという問題点がある。
In principle, it would be possible to suppress leakage current and reduce return resistance by installing a feeder line alongside the rail, but the size of the attached feeder line would be very large, making it uneconomical, and it would be difficult to install a feeder line at a substation. Leakage current can be suppressed to some extent by shortening the spacing, but in cases where the train load current is large or the running intervals are short, the ground current will be spread over a wide area because the rails are connected across the entire line. There is a problem in that a mild effect cannot be obtained.

この発明はかかる問題点を解決するためになされたもの
で、二次的障害が越きることのないようにして、漏洩電
流を経済的に、かつよシ効果的に抑制した電車への直流
き電システムを提供することを目的としている。
This invention was made to solve these problems, and it provides a direct current supply to trains that economically and effectively suppresses leakage current without causing secondary failures. The purpose is to provide electric power system.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる電車への直流き電システムでは、電車
線、レールに絶縁セクションを設けて電車線、レールの
何れも電気的に独立した複数の区間とすると共に、これ
らの絶縁セクションで分割された区間毎に設電され、こ
れらの区間にそれぞれ直流を供給する直流き電設備の変
圧器の1次巻線を共用にするようにした。
In the direct current feeding system for trains according to the present invention, insulating sections are provided on the contact line and the rails so that both the contact line and the rails are made into a plurality of electrically independent sections, and the contact line and the rails are divided by these insulating sections. Power is installed for each section, and the primary winding of the transformer of the DC feeding equipment that supplies direct current to each section is shared.

〔作用〕[Effect]

この発明においては、電車線及びレールに絶縁セクショ
ンを設けて複数の区間に分割し、かつこれらの絶縁セク
ションで分割された区間毎に直流を供給する直流き電設
備中の変圧器の一次巻線を共用にするようにしたことに
よシ、絶縁セクションで分割された区間毎に直流側が電
気的に独立したことにカシ、かつ直流き電設備の一次側
が共用されているので各区間の電位差を小さくできる。
In this invention, an insulating section is provided on the overhead contact line and the rail to divide it into a plurality of sections, and the primary winding of a transformer in a DC feeding facility supplies direct current to each section divided by these insulating sections. This makes it possible to make the DC side electrically independent in each section divided by the insulation section, and because the primary side of the DC feeding equipment is shared, it is possible to reduce the potential difference between each section. Can be made smaller.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図に示す。同図におい
て、(ia”)z(’h) 、(/C)は直流き電設備
である変電所、(/at)、(taコ) 、 (/bl
) 、 (/ba) 、 (/ct) 。
An embodiment of the present invention is shown in FIG. 1 below. In the same figure, (ia”)z('h), (/C) are DC feeding equipment substations, (/at), (tako), (/bl
), (/ba), (/ct).

(/CJ)は7次側が共用にされた変圧器を含む変換装
置、(2a) 、 (Jb) 、 (コc)、(2d)
は電車線、(3a) 、 (3b)。
(/CJ) is a conversion device including a transformer with a shared seventh side, (2a), (Jb), (c), (2d)
are electric train lines, (3a) and (3b).

(3c)、(、yci)はレール、(軸)、(ダb)は
電車、(よa)。
(3c), (, yci) are rails, (axis), (da b) are trains, (yo a).

(tb) 、 (jc)は電車線絶縁セクションで、各
電車線(2a)〜(2d)を電気的に絶縁している。(
xa) 。
(tb) and (jc) are contact wire insulating sections that electrically insulate each contact wire (2a) to (2d). (
xa).

(6b)、(I、c) ハレール絶縁セクションで、各
レール(3a)〜(3d)を電気的に絶縁している。
(6b), (I, c) Hallail insulation sections electrically insulate each rail (3a) to (3d).

電車線及びレールにそれぞれ電車線絶縁セクション(t
a) 、 (jb) 、 (sc )及びレール絶縁セ
クション(Aa)、(Ab)、(Ac)を設けているた
め、例えば電車(4’a) 、 (tIb)の電車負荷
電流はレール(、yb) 、 (3c)から大地に洩れ
はするが、電車(4’a) 、 (4th)の存在する
区間の変換装置(/al)、(Ibハ及び(/ba) 
、 (/C/)にしか漏洩電流は帰らないため、漏洩電
流が広範囲に広がることを防止できると共に、大地を流
れる漏洩電流も少なくなる。例えば、電車(Qa)の電
車負荷[流がレール(3b)から大地に漏れ、電車の存
在しない区間のレール(3a)→変換装置(/al)→
電車線(コa)を経由して、電車の存在する区間の電車
線(1)→変換装置(Ibりに帰ってくる回路は形成さ
れないので漏洩電流の広がる朝日が少なくなる。また、
レールが大地に電気的に接続される区間が短かくなるた
め、大地に対する漏洩抵抗も大きくなシ(大地に対する
漏洩抵抗は、複数の漏洩抵抗が並列接続されているので
)、漏洩電流を小さくすることができる。大地電流は絶
縁セクションで区切られた区間で発生し、その区間内で
消滅するため、地磁気に対する磁界の影響を極めて小さ
くできるメリットがある。
A contact line insulation section (t
a), (jb), (sc) and rail insulating sections (Aa), (Ab), (Ac), so for example, the train load current of trains (4'a), (tIb) is Although it leaks into the ground from yb) and (3c), the conversion device (/al), (Ibc and (/ba) in the section where trains (4'a) and (4th) exist)
Since the leakage current returns only to , (/C/), it is possible to prevent the leakage current from spreading over a wide range, and the leakage current flowing through the ground is also reduced. For example, the train load of the train (Qa) [flow leaks from the rail (3b) to the ground, and the rail (3a) in the section where there is no train → conversion device (/al) →
There is no circuit formed that goes from the overhead contact line (1) in the section where the train is present to the conversion device (Ib) via the overhead contact line (core a), so there is less chance of the morning sun spreading the leakage current.
Since the section where the rail is electrically connected to the ground is shortened, the leakage resistance to the ground is also large (the leakage resistance to the ground is because multiple leakage resistances are connected in parallel), which reduces the leakage current. be able to. Earth currents are generated in sections separated by insulating sections and disappear within those sections, which has the advantage of minimizing the influence of magnetic fields on geomagnetism.

また、変電所(ta)〜(/C)内の電源は変圧器/次
巻線を共用にしたため、電車線絶縁セクション(ja)
〜(5c)、レール絶縁セクション(6a)〜(6c)
で分割された電車線(コa)〜(コd)、レール(3a
)〜(3d)の区間の電位差が最小となるように電源供
給すれば、隣接する区間の電位差を最小とすることがで
き、特にこの場合、電車(4ta)もしくは(lIb)
が絶縁セクション(Qa)〜(!rc)、(6a)〜(
6c)を通過する際のアークの発生を抑制できる。
In addition, since the power supply within the substations (TA) to (/C) shared the transformer/secondary winding, the contact line insulation section (JA)
~ (5c), rail insulation section (6a) ~ (6c)
The overhead contact lines (core a) to (cod), rails (3a) divided by
) to (3d), the potential difference between adjacent sections can be minimized. Especially in this case, if the electric power is supplied so that the potential difference between the sections (4ta) and (1Ib) is minimized, the potential difference between adjacent sections can be minimized.
is the insulation section (Qa)~(!rc), (6a)~(
6c) The generation of arcs when passing through can be suppressed.

なお、この発明は上記し、かつ図面に示す実施例に限定
されるものではなく、要旨を変更しない範囲内で適宜変
形して実施し得ることはいうまでもない。
It goes without saying that the present invention is not limited to the embodiments described above and shown in the drawings, but can be practiced with appropriate modifications within the scope of the invention.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば電車線及びレールに絶
縁セクションを設けて電車線及びレールを電気的に独立
した複数の区間に分割し、かつこれらの区間毎に設置さ
れて各区間に直流を供給する直流き電設備の変圧器の/
次巻線を共用したこ最小にすることができるので、電気
車が絶縁セクションを通過する際のアークの発生を抑制
し、パンタグラフの損傷を軽減できるという効果が得ら
れる。
As described above, according to the present invention, an insulating section is provided on the overhead contact line and the rail to divide the overhead contact line and the rail into a plurality of electrically independent sections, and an insulating section is installed in each of these sections to provide direct current to each section. / of the transformer of the DC feeding equipment that supplies
Since the secondary winding can be shared to a minimum, the generation of arcs when the electric car passes through the insulating section can be suppressed, and damage to the pantograph can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による電車への直流き電システムの一
実施例を示す構成図、第2図は漏洩電流の発生原理を示
す図、第3図は従来の電車への直流き電システムの構成
図である。 図において、(ta)、(Ib) 、 (/C)は直流
き電設備である変電所、(/az) 、 (ta2) 
+ (/bz) + (Ib2)、 (/Ct’) +
(/CJ)は変換装置、(コa ) + (2b ) 
、(コc)、(2d)は電車線、(ja)、(jb)、
(jc)、(Jd)はレール、(ダa) 、 (4’b
)は電車、(ja)、(jb)、(jc)は電車線絶縁
セクション、(xa)、(Ab)、(Ac)はレール絶
縁セクションである。 なお、図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a block diagram showing an embodiment of the DC feeding system for trains according to the present invention, Fig. 2 is a diagram showing the principle of leakage current generation, and Fig. 3 is a diagram showing the conventional DC feeding system for trains. FIG. In the figure, (ta), (Ib), (/C) are DC feeding equipment substations, (/az), (ta2)
+ (/bz) + (Ib2), (/Ct') +
(/CJ) is a conversion device, (core a) + (2b)
, (c), (2d) are tram lines, (ja), (jb),
(jc), (Jd) are rails, (daa), (4'b
) is a train, (ja), (jb), (jc) are contact line insulation sections, and (xa), (Ab), (Ac) are rail insulation sections. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 直流き電設備から電車線及びレールを介して電車に直流
を供給するものにおいて、上記電車線及びレールに絶縁
セクションを設けて上記電車線及びレールの何れも電気
的に独立した複数の区間とし、これらの各区間に直流を
供給する上記直流き電設備の変圧器の1次巻線を共用し
たことを特徴とする電車への直流き電システム。
In a device that supplies direct current from DC feeding equipment to electric trains via overhead contact lines and rails, an insulating section is provided on the overhead contact lines and rails so that each of the overhead contact lines and rails has a plurality of electrically independent sections; A DC feeding system for a train, characterized in that the primary winding of the transformer of the DC feeding equipment that supplies DC to each of these sections is shared.
JP11885485A 1985-06-03 1985-06-03 Direct current feeding system for tramcar Pending JPS61278435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11885485A JPS61278435A (en) 1985-06-03 1985-06-03 Direct current feeding system for tramcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11885485A JPS61278435A (en) 1985-06-03 1985-06-03 Direct current feeding system for tramcar

Publications (1)

Publication Number Publication Date
JPS61278435A true JPS61278435A (en) 1986-12-09

Family

ID=14746782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11885485A Pending JPS61278435A (en) 1985-06-03 1985-06-03 Direct current feeding system for tramcar

Country Status (1)

Country Link
JP (1) JPS61278435A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177862A (en) * 2013-04-23 2013-06-26 铁道第三勘察设计院集团有限公司 Structure for changing existing direct supply traction transformer into AT (Auto-Transformer) traction transformer
CN103419680A (en) * 2013-07-29 2013-12-04 华北电力大学(保定) Direct-current traction power supply system based on distributed power supply
CN103448573A (en) * 2013-07-29 2013-12-18 华北电力大学(保定) High-voltage direct-current tractive power supply system of bidirectional interactive electrified railway
CN103552488A (en) * 2013-11-05 2014-02-05 西南交通大学 Bilateral power supply system for electrified railway

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103177862A (en) * 2013-04-23 2013-06-26 铁道第三勘察设计院集团有限公司 Structure for changing existing direct supply traction transformer into AT (Auto-Transformer) traction transformer
CN103419680A (en) * 2013-07-29 2013-12-04 华北电力大学(保定) Direct-current traction power supply system based on distributed power supply
CN103448573A (en) * 2013-07-29 2013-12-18 华北电力大学(保定) High-voltage direct-current tractive power supply system of bidirectional interactive electrified railway
CN103552488A (en) * 2013-11-05 2014-02-05 西南交通大学 Bilateral power supply system for electrified railway

Similar Documents

Publication Publication Date Title
EP3421289B1 (en) Railway transportation power supply construction
Oura et al. Railway electric power feeding systems
White AC 25kV 50 Hz electrification supply design
Oancea et al. On the electromagnetic field in the surrounding area of railway equipment and installations
JPS61278435A (en) Direct current feeding system for tramcar
Natarajan et al. Analysis of grounding systems for electric traction
Milesevic et al. Electromagnetic fields and induced voltages on underground pipeline in the vicinity of ac traction system
Bahra et al. Earthing and bonding of electrified railways
JP2000118270A (en) Superconducting feeding system for railway
Frazier et al. Transmission line, railroad and pipeline common corridor study
JPS61278436A (en) Direct current feeding system for tramcar
RU2521013C2 (en) Low-voltage power supply line for railway line or underground line supplied by direct current
Ross A survey of Western European AC electrified railway supply substation and catenary system techniques and standards
JPS59223526A (en) Dc feeder system
Santi et al. Stray current interference on high-speed rail transit systems and surrounding buried metallic structures
JPH0840116A (en) Direct current feeding system of railway
JPS60191835A (en) Direct current feeding system for electric car
JPS58194631A (en) Direct current feeding system for tramcar
Hanrob et al. Reducing Rail Potential and Stray Current with NEG-TPS in DC Electrified Railways
Bhagat Earthing, Bonding, and Stray Current
RU46979U1 (en) DEVICE FOR ELECTRIC SUPPLY OF NON-TRAFFIC CONSUMERS OF ELECTRIFIED RAILWAYS
JPS641337B2 (en)
JPH0142852B2 (en)
Natarajan et al. Approach to the analysis of Amtrak's systemwide grounding of the Northend Electrification Project
Case et al. Electrification of Taiwan main-line railway from Keelung to Kaohsiung