JPS59223526A - Dc feeder system - Google Patents

Dc feeder system

Info

Publication number
JPS59223526A
JPS59223526A JP9727083A JP9727083A JPS59223526A JP S59223526 A JPS59223526 A JP S59223526A JP 9727083 A JP9727083 A JP 9727083A JP 9727083 A JP9727083 A JP 9727083A JP S59223526 A JPS59223526 A JP S59223526A
Authority
JP
Japan
Prior art keywords
rail
current
sections
diode
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9727083A
Other languages
Japanese (ja)
Other versions
JPH0351610B2 (en
Inventor
Ryojiro Murata
村田 良二郎
Shoji Hattori
昭治 服部
Keiki Fujita
敬喜 藤田
Tsugio Mizutani
水谷 次雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOTSU DENKI SEKKEI KK
Mitsubishi Electric Corp
Original Assignee
KOTSU DENKI SEKKEI KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOTSU DENKI SEKKEI KK, Mitsubishi Electric Corp filed Critical KOTSU DENKI SEKKEI KK
Priority to JP9727083A priority Critical patent/JPS59223526A/en
Publication of JPS59223526A publication Critical patent/JPS59223526A/en
Publication of JPH0351610B2 publication Critical patent/JPH0351610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PURPOSE:To restrain current leak in a DC feeder system of an electric car by providing both insulation sections and diodes for each of an electric rope and a rail so as to make adjacent feeder sections electrically independent from each other. CONSTITUTION:When an electric car passes through insulation sections 6a to 8a, the current of a pantograph 13a is fed from a rectifier 2a via an electric rope 3a and fed back thereto after sequentially flowing through wheels 14a and 14c, rail sections 4b and 5b, rail impedance bond 11c, wheels 14b and 14d, rail sections 4c and 5c, a bond 11d and a diode 10a. On the other hand, the current of a pantograph 13b is fed from said rectifier via a diode 9a and fed back thereto after sequentially passing through 14b, 14d, 4c, 5c, 11d, diode 10a, 14a, 14c and 11c. The current only leaks into the ground but will not run back to the rail sections 4d to 4f and 5d to 5f since they are electrically isolated from the rectifier 2b by the insulation sections 6a to 8a. The current leak is therefore restrained.

Description

【発明の詳細な説明】 この発明は、電車への直流き電システム、特に電車線、
レール及び変電所のシステム構成に関するものである。
[Detailed Description of the Invention] This invention provides a direct current feeding system for electric trains, particularly for electric contact lines,
It concerns the system configuration of rails and substations.

従来の電気鉄道では電車線を運転用電流の往路とし、走
行レールを該主電流の帰路として使っており、枕木や道
床の絶縁性がはなはだ不完全なため、レールの導体抵抗
が低いにもかかわらずレールと大地間の絶縁抵抗は天候
により大きく左右され、雨天、特に嵐等の状態では絶縁
抵抗が著しく低下し、レールから大地への漏洩電流が著
しく増加する。このレールからの漏洩電流は電車負荷電
流、帰線抵抗、変電所間隔の2乗に比例し、漏れ抵抗に
反比例する。したがって漏れ電流を小さくするKは原理
的[は前者を小さくシ、後者を大きくすればよい。漏洩
電流の大きさは数100A から100OAに達するこ
ともある。
In conventional electric railways, the overhead contact lines are used as the outgoing route for operating current, and the running rails are used as the return route for the main current, and because the insulation of the sleepers and trackbed is extremely imperfect, the conductor resistance of the rails is low. The insulation resistance between the rail and the ground is greatly affected by the weather, and in rainy weather, especially during storms, the insulation resistance drops significantly and the leakage current from the rail to the ground increases significantly. This leakage current from the rail is proportional to the train load current, return resistance, and the square of the substation spacing, and inversely proportional to the leakage resistance. Therefore, in principle, K to reduce the leakage current can be set by decreasing the former and increasing the latter. The magnitude of the leakage current can range from several 100 A to 100 OA.

第1図及び第2図は従来のき型構成を示す。図において
tllは変電所、(2)は電車線、(3)はレール、(
4)は電車を示している。第1図(atにおいて変電所
Il+よりDK−離れた位置において電車(4)が運転
電流Ipをとっているとする。この場合、電車(4)の
存在する付近のレール(3)の対地電位は正電位となり
、変電所(1)の付近のレール(3)の対地電位は負電
位となる。電車(4)の存在する伺近ではレール(3)
から大地に電流が漏れ、変電所fil付近では大地に漏
れた電流がレール(3)に帰ってくる。第1図(b)〜
fd)はその時の各電流、即ちレール(3)・大地間漏
れ電流11レール(3)を流れる電流11大地を流れる
電流Iと変電所及び電車の位置との閃係を示す。
1 and 2 show a conventional mold configuration. In the figure, tll is a substation, (2) is a contact line, (3) is a rail, (
4) shows a train. Assume that the train (4) has an operating current Ip at a position DK− away from the substation Il+ in Figure 1 (at).In this case, the ground potential of the rail (3) near the train (4) is becomes a positive potential, and the ground potential of the rail (3) near the substation (1) becomes a negative potential.In the vicinity where the train (4) is located, the ground potential of the rail (3) becomes a negative potential.
Current leaks to the ground from the substation fil, and the current that leaks to the ground returns to the rail (3) near the substation fil. Figure 1(b)~
fd) indicates the relationship between each current at that time, that is, the leakage current between rail (3) and the ground, the current flowing through the rail (3), the current I flowing through the ground, and the locations of the substation and the train.

この漏洩?Ii流、の作用として通常知られているのは
、レールやその付属品及びケーブル、水道管、ガス管等
の地中埋設金属体の電蝕であるが、さらに、jmm綿線
対する誘導障害あるいは地磁気観測所に対するしよう徨
の問題等がある。
This leak? What is commonly known as the effect of Ii flow is galvanic corrosion of underground metal objects such as rails, their accessories, cables, water pipes, gas pipes, etc., but also induction disturbance to Jmm cotton wire or There are problems such as interference with geomagnetic observatories.

大地電流に関して電気設備技術基準第257条に規定さ
れているように地磁気観測所または地1球電気観、測所
に対して観測上の障害を及ぼさないようにする必要があ
る。
Regarding earth currents, as stipulated in Article 257 of the Electrical Equipment Technical Standards, it is necessary to ensure that they do not interfere with the observation of geomagnetic observatories or earth electrical observation stations.

従来の直流電気鉄道の直流き電回路は第2図に示すよう
に並列き電を行っており、−fit気的に正、負極とも
並列につながっている。従ってレールより大地に洩れた
漏洩電流は広範囲に及び、漏洩電流1によって生ずる磁
力が自然界の地磁気に大きく影響を及ぼす。電気鉄道か
ら波及する磁界はビオ・サバールの法則によって計算さ
れるが、電車線(2)の電流方向とレール(3)の電流
方向は反対であるから遠方において大部分の磁界は互い
に打消すが、上記電車線(2)の電流とレール(3)の
電流との差の電流及びレール(3)・大地間の漏洩電流
による磁界が地磁気に影響する。上記差電流は地表・面
に磁界の垂直分力を生じ、漏洩電流の地中に向かう成分
が、磁界の水平分力を生じる。
The conventional DC feeding circuit of a DC electric railway performs parallel feeding as shown in FIG. 2, and both the positive and negative poles are electrically connected in parallel. Therefore, the leakage current leaking from the rail to the ground spreads over a wide range, and the magnetic force generated by the leakage current 1 has a large influence on the earth's magnetism in the natural world. The magnetic field that spreads from an electric railway is calculated by the Biot-Savart law, but since the current direction of the overhead contact line (2) and the current direction of the rail (3) are opposite, most of the magnetic fields cancel each other out in the distance. , the magnetic field due to the current difference between the current in the overhead contact line (2) and the current in the rail (3) and the leakage current between the rail (3) and the earth influences the earth's magnetism. The above-mentioned difference current produces a vertical component of the magnetic field on the surface of the earth, and a component of the leakage current directed underground produces a horizontal component of the magnetic field.

変電所Il+からの漏洩電流を抑制するには帰線抵抗の
減少、変電所間隔の短縮、レールと大地間の絶縁抵抗の
増加、あるいは第4軌条方式、交流電化方式の採用が考
えられる。
In order to suppress the leakage current from the substation Il+, it is possible to reduce the return resistance, shorten the distance between substations, increase the insulation resistance between the rail and the ground, or adopt the fourth rail system or AC electrification system.

新線計画あるいは電化区間であれば、第4軌条方式の採
用、新計画であればレールと大地間の絶縁抵抗の増加が
可能であり、新線計画でかつ、運転間隔、駅間隔、表定
速度等の大きい輸送網であれば交流電化方式の採用が考
えられる。−力、都市近郊、郊外等の輸送交通網におけ
る電化、直流区間の延長あるいけ直流電車の乗入れ等の
区間に対しては直流電化となる。          
  1、漏洩電流を抑制するだめ、帰線抵抗を減らすに
はレールにき電線を併設すれば原理的にはIv能である
が併設き電線のサイズが非常に大きくなり経済的でなく
、また変電所間隔を短縮すれば、涌れ電流はある程度抑
制できるが、電車負荷電流の大きい場合あるいは、運転
間隔が短かい場合等においてはレールが全線にわたりつ
ながっているため大地電流を広範囲にばらまいてし甘い
、あまり効果が得られない間v■がある。
If it is a new line plan or an electrified section, it is possible to adopt the fourth rail system, and if it is a new plan, it is possible to increase the insulation resistance between the rail and the ground. For transportation networks with high speeds, etc., it is conceivable to adopt AC electrification. - DC electrification will be applied to electrification of transportation networks in areas such as urban areas, suburbs, etc., extensions of DC sections, and sections where DC trains are installed.
1. In order to suppress leakage current and reduce return resistance, it is theoretically possible to install a feeder line alongside the rail, but the size of the attached feeder line becomes extremely large, making it uneconomical and requiring substations. By shortening the distance between ground currents, the overflow current can be suppressed to some extent, but in cases where the train load current is large or the running intervals are short, the ground current may be spread over a wide range because the rails are connected all the way. , there is a period v■ where not much effect is obtained.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、電車線に絶縁セクションとダイオ
ード、レールに絶縁セクションとダイオードを設けて、
電車が電車線及びレール絶縁セクション通過時において
も、上記電車線及びレールで構成される隣接き電区間を
互いに電気的に独立させて漏洩電流を抑制し地磁気に対
する杉庁を軽減できる軌道回路を提供することを目的と
している。又、レール切損の場合にも信号の誤現示を発
生しない軌道回路を構成、している。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by providing an insulating section and a diode on the overhead contact line and an insulating section and a diode on the rail,
To provide a track circuit capable of suppressing leakage current by making adjacent feeder sections made up of the above-mentioned contact lines and rails electrically independent from each other even when a train passes through the contact line and rail insulation section, and reducing the influence of cedar force against geomagnetism. It is intended to. Furthermore, a track circuit is constructed that will not cause erroneous signal display even in the event of rail breakage.

以下、この発明の一実施例を第3図に示す。図において
、(la)、(lb)は変圧器、(2a)、(2b)は
整流器、(3a) 〜(3d)は電車線、(4a )”
(4f )、(5a)〜(5f)はレール、(6a )
(’ 6 c )は電車線絶縁セクションで各電車線(
3a )(3d )を電気的に絶縁している。
An embodiment of the present invention is shown in FIG. 3 below. In the figure, (la) and (lb) are transformers, (2a) and (2b) are rectifiers, (3a) to (3d) are contact lines, and (4a).
(4f), (5a) to (5f) are rails, (6a)
('6c) is the contact line insulation section for each contact line (
3a) (3d) are electrically insulated.

(7a )(7e入(8a)枢8e)はレール絶)眩セ
クションで各レール(4a )−(4f入(5a)〜(
5f)を電気的に絶縁している。(9a)、(9b)は
電車線ダイオード、(10a)。
(7a) (7e entry (8a) pivot 8e) is a rail absolute) Each rail (4a) - (4f entry (5a) ~ (
5f) is electrically insulated. (9a) and (9b) are overhead line diodes, (10a).

(10b)はレールダイオード、(lla)−(11j
)はレールインピーダンスボンドでレール(4a)械4
f)、(5a)(5f)を電気的に接続している。(1
21は車体、(13a)。
(10b) is a rail diode, (lla)-(11j
) is the rail impedance bond and the rail (4a) machine 4
f), (5a) and (5f) are electrically connected. (1
21 is the vehicle body (13a).

(13b)はづンタグラフ、(14a)、(14d)は
車輪である。
(13b) is a tag graph, (14a) and (14d) are wheels.

かかる構成におけるこめ発明の作用効果を以下に説明す
る。電車線ダイオード(9a)、(9b)は陰極をそれ
ぞれ電車線(3a)、(3d) VC接続し、陽極をそ
れぞれ電車線(3b)、(3c)に接続する。レールダ
イオード(10a ) 、 (10b)は陽極をそれぞ
れレールインピーダンスボンド(llc)、(llh)
の中性点に接続し、陰極をそれぞれレールインピーダン
スボンド(lid)、(l1g)の中性点に接続する。
The effects of the invention in this configuration will be explained below. The contact line diodes (9a) and (9b) have their cathodes connected to the contact lines (3a) and (3d) VC, respectively, and their anodes connected to the contact lines (3b) and (3c), respectively. Rail diodes (10a) and (10b) connect their anodes to rail impedance bonds (llc) and (llh), respectively.
and the cathode to the neutral point of the rail impedance bond (lid) and (l1g), respectively.

第3図(alは電車線及びレール絶縁セクションが3個
の場合で、電車がダイオードを設けた絶縁セクションを
通過中の例を示す。図においてパンクグラフ(13a)
の電流は整流器(2a)から電車線(3a)を通じて供
給されその電流はそれぞれ車輪(14a)。
Figure 3 (al shows an example where there are three contact line and rail insulation sections, and the train is passing through the insulation section provided with diodes. In the figure, the puncture graph (13a)
The current is supplied from the rectifier (2a) through the contact line (3a), and the current is supplied to each wheel (14a).

(14C)、レール(4b)、(5b)、レールインピ
ーダンスボンド(llc)を通り整流器(2a)へ帰っ
て行くものと車i倫(14b)、(14d)、レール(
4C)、(5C)、レールインピーダンスボンド(ll
d) 、レールダイオード(10a)をJIDり整び1
器(2a)へ・浦って行くものとになる。パンタグラフ
(13b)の電流は整流器(2a)から電車線ダイオー
ド(9a)電車線(3b)を1mじて供給されその電流
はそれぞれ車輪(14b) 、(14d)レール(4c
)、(5c)、レールインピーダンスボンド(lid)
、レールダイオード(10a)を通り整が1−、器(2
a)へ・滑って行くものと車’l’1itl (14a
)、(14c)、レール(sb)。
(14C), rails (4b), (5b), rails (14b), (14d), rail (
4C), (5C), rail impedance bond (ll
d) , JID alignment of the rail diode (10a) 1
It becomes something that goes to the vessel (2a). The current of the pantograph (13b) is supplied from the rectifier (2a) to the contact line diode (9a) and the contact line (3b) 1 m apart, and the current is supplied to the wheels (14b), (14d) and the rail (4c), respectively.
), (5c), rail impedance bond (lid)
, passing through the rail diode (10a), the voltage is 1-, the voltage is 2.
A) A thing sliding towards a) and a car 'l'1itl (14a
), (14c), rail (sb).

(5b)、レールインピーダンスボンド(llc) ヲ
通’)整tit器(2a)へ帰って行くものとになる。
(5b), the rail impedance bond (llc) will return to the regulator (2a).

又、この7.7車46’lはレール(4b)、(4c)
、(sb)、(5c)から大地に洩れCよするが整流器
(2b)とはr1工屯、線絶縁セクション(6b)、レ
ールに色線セクション(7c)、(8c)にて電気1勺
に区分されている為、レール(4d)、(4e)。
Also, this 7.7 car 46'l has rails (4b), (4c)
, (sb), (5c) leaks to the ground, but the rectifier (2b) is r1 ton, wire insulation section (6b), and color wire section (7c), (8c) on the rail. Rails (4d) and (4e).

(4f)、(5d)、(5e)、(5f)にはぎ11洩
電流は帰らない為漏洩電流が広範囲に広がることを防止
できる。
(4f), (5d), (5e), and (5f) Since the leakage current does not return to the clip 11, it is possible to prevent the leakage current from spreading over a wide range.

第3図(blは電車線及びレールセクションが3個の場
合で、電車がダイオードを設けない絶縁セクションを通
過中の例を示す。図においてパンタグラフ(13a )
の電流U整流器(2a)から電車線グイオード(9a)
、電車線(3b)を通じて供給されその電流は車輪(1
4a)、(14c)レール(4C)、(5C)、レール
インピーダンスボンド(lld) 、レールダイオード
(10a)を通り整流器(2a)へ帰って行く。パンタ
グラフ(13b)の電流は整流器(2b)から電車線ダ
イオード(9b)、電車線(3c)を涌じて供給されそ
の電流1ri車輪(14b)、(14d)、レール(4
a)、(5d)、レールインピーダンスボンド(l1g
)レールダイオード(1ob)を通り整流器(2b)へ
帰って行く。又、この電車電流はレール(4c)、(4
d)、(5c)、(5d)から大地に洩れはするが、大
地に洩れた電流、の内整流器(2a)から供給された電
流はレール(4c)、(5c)、レ     1−ルイ
ンビーダンスボンド(lid)、レールダイオード(1
0a)を通り整流器(2a)へ帰るものと、レール(4
b)、(sb)、レールインピーダンスボンド(llc
)を通り楽流器(2a)へ帰るものしかなく、整流器(
2b)から供給された電流はレール(4d)、(5d)
、レールインピーダンスボンド(l1g) 、レールダ
イオード(10b)を通り整流器(2b)へ帰るものと
、レール(4e)、(5e)レールインピーダンスボン
ド(llb)を曲り整流器(2b)へ帰るものしかない
。よって漏洩’rat流が広範囲に広がることを防止で
きる。
Figure 3 (bl shows an example where there are three contact lines and three rail sections, and the train is passing through an insulated section without a diode. In the figure, the pantograph (13a)
The current U from the rectifier (2a) to the contact line guide (9a)
, the current is supplied through the overhead contact line (3b) and the current is supplied to the wheels (1
4a), (14c), the rails (4C), (5C), the rail impedance bond (lld), and the rail diode (10a) before returning to the rectifier (2a). The current of the pantograph (13b) is supplied from the rectifier (2b) through the contact line diode (9b) and the contact line (3c), and the current 1ri is supplied to the wheels (14b), (14d), and the rail (4).
a), (5d), Rail impedance bond (l1g
) passes through the rail diode (1ob) and returns to the rectifier (2b). Also, this train current is applied to the rails (4c) and (4
d), (5c), (5d) leaks to the ground, but of the current leaked to the ground, the current supplied from the rectifier (2a) is connected to the rails (4c), (5c), and the rails. Dance bond (lid), rail diode (1
0a) and return to the rectifier (2a), and the rail (4
b), (sb), rail impedance bond (llc
) and return to the instrument (2a) through the rectifier (
2b) The current supplied from rails (4d), (5d)
, rail impedance bond (l1g), one that returns to the rectifier (2b) through the rail diode (10b), and one that bends the rail impedance bond (llb) of rails (4e), (5e) and returns to the rectifier (2b). Therefore, it is possible to prevent the leakage rat flow from spreading over a wide area.

以上より明らかなように、この実施例によれば従来方式
のものより′11(車が絶縁セクション通過時において
も漏洩電流1を広範囲に広がることが防止できる。これ
は市りX線に絶、1″7セクシヨンとダイオード、レー
ルに絶縁セクションとダイオードを設けることにより得
られるものである。
As is clear from the above, this embodiment can prevent leakage current 1 from spreading over a wide range even when a vehicle passes through an insulated section. This is obtained by providing a 1"7 section and a diode, and an insulating section and a diode on the rail.

その池、この発明は上記しかつ図面に示す実施例に限定
されるものでfd h < 、(7+1えば図では単線
路線で1列車が絶縁セクションを通過する場合を示すが
i線の路、席で複数列屯が絶縁セクションを通過する場
合でも同じ効果を得ると七ができる。
However, this invention is limited to the embodiments described above and shown in the drawings. The same effect can be obtained even if multiple rows pass through the insulating section.

又、図では整流器に接続する変圧器は独立した1次、2
次巻線で構成した場合を示すが1次巻線を共用した多数
巻線変圧器(低圧側2巻線以上)によりそれぞれの整流
器へ電気を供給する場合でも同じ効果を奏し、経済的に
変電所を構成することができる。これらはこの発明の要
旨を変更しないで実施できる範囲であることは勿論であ
る。
In addition, in the figure, the transformer connected to the rectifier has independent primary and secondary transformers.
Although this example shows a configuration with a secondary winding, the same effect can be achieved even when electricity is supplied to each rectifier using a multi-winding transformer (two or more windings on the low-voltage side) that shares the primary winding, resulting in economical substation. can be configured. Of course, these are within the range that can be implemented without changing the gist of the invention.

以上のように、この発18!lJによれば電車線に絶縁
セクションとダイオード、レールに絶縁セクションとダ
イオ−Fを設けて、電車が111.車線及びレール絶縁
セクション通過時においても、上記■l;車線及びレー
ルで構成される隣接き電区間を互いに電気的に独立させ
て漏洩電流を抑制し地磁気に対する影響を軽減できる効
果がある。
As mentioned above, this issue is 18! According to LJ, an insulating section and a diode are installed on the overhead contact line, and an insulating section and a diode-F are installed on the rail, so that the train can reach 111. Even when passing through the lane and rail insulating sections, there is an effect of (1) mentioned above: Adjacent feeder sections made up of lanes and rails are made electrically independent of each other to suppress leakage current and reduce the influence on geomagnetism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1M洩電流の発生原理図、第2図は従来の直流き電シ
ステムを示す図、第3図(a) 、 [blはこの発明
の一実施例による直流き電シスデムを示す図である。 図中(la)、(lb)は変圧器、(2a) 、(2b
)は整流器、(3a )〜(3d )は電車線、(4a
)枢4f)、(5a )n 5 f )はレール、(6
a)、(6c) I″i電車線絶縁セクション、(7a
)−(7e)、(8a )< 8e )はンール絶縁セ
クション、(9a)、(9b)は電車線ダイオード、(
10a) 、(10b)はレールダイオード、(lla
)〜(llj)はレールインビータ。 ンスボンド、02)は車体、(13a)、(13b) 
kよ・櫂ンクク゛ラフ、(14a)〜(14d)は車輪
である。なお、図中、同一符号は同一、又は相当部分を
示す。 代理人  大 岩 増 雄 第114
FIG. 2 is a diagram showing a conventional DC feeding system, and FIGS. 3(a) and 3(b) are diagrams showing a DC feeding system according to an embodiment of the present invention. In the figure, (la) and (lb) are transformers, (2a) and (2b)
) is a rectifier, (3a) to (3d) are contact lines, (4a
) pivot 4f), (5a)n 5f) is the rail, (6
a), (6c) I″i overhead wire insulation section, (7a
) - (7e), (8a) < 8e) are the coil insulation sections, (9a), (9b) are the contact line diodes, (
10a), (10b) are rail diodes, (lla
)~(llj) are rail in beaters. Bond, 02) is the car body, (13a), (13b)
K-Yo, paddle, (14a) to (14d) are wheels. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Masuo Oiwa No. 114

Claims (1)

【特許請求の範囲】[Claims] 電車へ直流電力を供給する直流き電システムにおいて、
電車線およびレールに絶縁セクションを設け、且つ直流
電力供給源に接続されると共に上記絶縁セクションと電
気的に並列接続され電車への給電回路を形成するダイオ
ードを設けて上記電車線及びレールで構成される隣接き
電区間を互いに電気的に独立させて直流を供給すること
を特徴とする直流き電システム。
In a DC feeding system that supplies DC power to trains,
The overhead contact line and rails are provided with an insulated section, and a diode connected to a direct current power supply source and electrically connected in parallel with the insulated section to form a power supply circuit to the electric train. A direct current feeding system characterized by supplying direct current to adjacent feeding sections that are electrically independent from each other.
JP9727083A 1983-05-31 1983-05-31 Dc feeder system Granted JPS59223526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9727083A JPS59223526A (en) 1983-05-31 1983-05-31 Dc feeder system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9727083A JPS59223526A (en) 1983-05-31 1983-05-31 Dc feeder system

Publications (2)

Publication Number Publication Date
JPS59223526A true JPS59223526A (en) 1984-12-15
JPH0351610B2 JPH0351610B2 (en) 1991-08-07

Family

ID=14187835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9727083A Granted JPS59223526A (en) 1983-05-31 1983-05-31 Dc feeder system

Country Status (1)

Country Link
JP (1) JPS59223526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180078A (en) * 2011-03-03 2012-09-20 Railway Technical Research Institute Control system and control method of regenerative electric power absorbing device
JP2021132504A (en) * 2020-02-20 2021-09-09 株式会社日立製作所 Rail-to-ground voltage suppression system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766033A (en) * 1980-10-09 1982-04-22 Mitsubishi Electric Corp Controlling system of semiconductor type feeder section apparatus for electric railway

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766033A (en) * 1980-10-09 1982-04-22 Mitsubishi Electric Corp Controlling system of semiconductor type feeder section apparatus for electric railway

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180078A (en) * 2011-03-03 2012-09-20 Railway Technical Research Institute Control system and control method of regenerative electric power absorbing device
JP2021132504A (en) * 2020-02-20 2021-09-09 株式会社日立製作所 Rail-to-ground voltage suppression system

Also Published As

Publication number Publication date
JPH0351610B2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
Oura et al. Railway electric power feeding systems
WO2015192645A1 (en) Electric railway coaxial cable power supply system
White AC 25kV 50 Hz electrification supply design
JPS59223526A (en) Dc feeder system
Natarajan et al. Analysis of grounding systems for electric traction
Milesevic et al. Electromagnetic fields and induced voltages on underground pipeline in the vicinity of ac traction system
Bahra et al. Earthing and bonding of electrified railways
RU2492074C1 (en) Electric power supply system of electrified ac railways
JPS61278435A (en) Direct current feeding system for tramcar
RU2703925C1 (en) Method of amplification of alternating current traction power supply system
JPS641337B2 (en)
JPH0840116A (en) Direct current feeding system of railway
JPS58194631A (en) Direct current feeding system for tramcar
EP1124705B1 (en) Traction power supply systems
JPS60104431A (en) Dc feeding system for electric railway
JPS5963231A (en) Direct current feeding system for electric car
CN209261319U (en) Three loop high-voltage DC line polar conductors and metal reflow line are the same as tower arragement construction
JPS641338B2 (en)
JPS60191835A (en) Direct current feeding system for electric car
Buyakova et al. Electromagnetic safety of high voltage traction networks
Ross A survey of Western European AC electrified railway supply substation and catenary system techniques and standards
JPS61278436A (en) Direct current feeding system for tramcar
JPH0142852B2 (en)
SU1643226A1 (en) Alternating current railway power transmission line
Zalesova Determination of electromagnetic influence of 25 kV AC electric traction network on 10 kV high-voltage overhead line