JPH0142852B2 - - Google Patents

Info

Publication number
JPH0142852B2
JPH0142852B2 JP17346782A JP17346782A JPH0142852B2 JP H0142852 B2 JPH0142852 B2 JP H0142852B2 JP 17346782 A JP17346782 A JP 17346782A JP 17346782 A JP17346782 A JP 17346782A JP H0142852 B2 JPH0142852 B2 JP H0142852B2
Authority
JP
Japan
Prior art keywords
rail
substation
rails
current
train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17346782A
Other languages
Japanese (ja)
Other versions
JPS5963232A (en
Inventor
Tsugio Mizutani
Kikuji Kotaki
Toshio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17346782A priority Critical patent/JPS5963232A/en
Publication of JPS5963232A publication Critical patent/JPS5963232A/en
Publication of JPH0142852B2 publication Critical patent/JPH0142852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

【発明の詳細な説明】 この発明は、電車へ直流電力を供給する直流き
電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC feeding device for supplying DC power to electric trains.

従来の電気鉄道では、走行レールを運転用主電
流の帰路として使つている。しかるに、枕木や道
床の絶縁性は、はなはだ不完全なものであり、レ
ールの導体抵抗が低いにもかかわらず大地への漏
洩電流が生じてしまう。即ち、レールと大地間の
絶縁抵抗は天候により左右され、雨天、特に嵐等
の状態では絶縁抵抗が著しく低下して、レールか
ら大地への漏洩電流が著しく増加し、数100A〜
1000Aに達することもある。レールからの漏洩電
流は電車負荷電流、帰線抵抗、変電所間隔の2
乗、に比例し、漏れ抵抗に反比例する。したがつ
て、漏れ電流を小さくするには原理的には前者を
小さくし、後者を大きくすればよい。
Conventional electric railways use the running rails as a return path for the main operating current. However, the insulation properties of sleepers and trackbeds are extremely imperfect, and even though the conductor resistance of the rails is low, leakage current to the ground occurs. In other words, the insulation resistance between the rail and the ground is affected by the weather, and in rainy weather, especially during storms, the insulation resistance drops significantly and the leakage current from the rail to the ground increases significantly, reaching hundreds of amperes or more.
It can reach 1000A. Leakage current from the rails is determined by two factors: train load current, return resistance, and substation spacing.
and is inversely proportional to leakage resistance. Therefore, in principle, the leakage current can be reduced by reducing the former and increasing the latter.

第1図及び第2図は、従来のき電構成を示す図
である。図において1は変電所、2は電車線、3
はレール、4は電車を示している。第1図aにお
いて変電所1よりDKm離れた位置において電車4
が運転電流IPをとつているとする。この場合、
電車4の存在する付近のレール3の対地電位は正
電位となる。一方、変電所1の付近のレール3の
対地電位は負電位となる。電車4の存在する付近
ではレール3から大地に電流が漏れ、変電所1付
近では大地に漏れた電流がレール3に帰つてく
る。第1図b〜dはその時の各電流IL、IN、IE
位置との関係を示す。
FIG. 1 and FIG. 2 are diagrams showing a conventional power feeding configuration. In the diagram, 1 is a substation, 2 is a contact line, and 3 is a substation.
indicates a rail, and 4 indicates a train. In Figure 1 a, train 4 is located at a distance of DKm from substation 1.
Suppose that the operating current IP is taken. in this case,
The ground potential of the rail 3 near where the train 4 is present becomes a positive potential. On the other hand, the ground potential of the rail 3 near the substation 1 becomes a negative potential. In the vicinity where the train 4 is present, current leaks from the rail 3 to the ground, and in the vicinity of the substation 1, the current leaked to the ground returns to the rail 3. FIGS. 1b to 1d show the relationship between the currents I L , I N , I E and the positions at that time.

この漏洩電流が悪影響を及ぼす作用として通常
知られているのは、レールやその付属品及びケー
ブル、水道管、ガス等の地中埋設金属体の電食で
あるが、さらに、通信線に対する誘導障害あるい
は地磁気観測所に対するじよう乱の問題等があ
る。
The negative effects of this leakage current are usually known to be electrolytic corrosion of underground metal objects such as rails, their accessories, cables, water pipes, gas, etc., but they can also cause inductive damage to communication lines. There is also the problem of disturbances to geomagnetic observatories.

大地電流に関しては、電気設備技術基準第257
条に規定されているように、地磁気観測所または
地球電気観測所に対して、観測上の障害を及ぼさ
ないようにする必要がある。
Regarding ground current, please refer to Electrical Equipment Technical Standards No. 257.
As stipulated in Article 1, it is necessary to ensure that there is no obstruction to observation of geomagnetic observatories or geoelectrical observatories.

従来の直流電気鉄道の直流き電回路は、第2図
に示すように通常、並列き電を行つており、電気
的に正、負極とも並列につながつている。従つ
て、レールより大地に漏れた漏洩電流は各変電所
に向つて流れることになり、この漏洩電流によつ
て広範囲に生ずる磁力が自然界の地磁気に影響を
およぼす。電気鉄道から波及するビオ・サバール
の法則によつて計算されるが、電車線とレールの
電流方向が反対であるから、遠方において大部分
の磁界は互いに打消し、その差電流及び漏洩電流
が地磁気に影響する。
As shown in FIG. 2, the conventional DC feeding circuit of a DC electric railway usually performs parallel feeding, and both the positive and negative poles are electrically connected in parallel. Therefore, leakage current leaking from the rails to the ground flows toward each substation, and the magnetic force generated over a wide area by this leakage current affects the earth's magnetism in the natural world. It is calculated by the Biot-Savart law that spreads from electric railways, but since the current directions in the overhead contact line and the rail are opposite, most of the magnetic fields cancel each other out in the distance, and the difference current and leakage current are caused by the geomagnetic field. affect.

電鉄変電所からの漏洩電流を抑制するには帰線
抵抗の減少、変電所間隔の短縮、レールと大地間
の絶縁抵抗の増加、あるいは第4軌条方式、交流
電化方式の採用が考えられる。
Possible ways to suppress leakage current from railway substations include reducing return resistance, shortening the distance between substations, increasing the insulation resistance between the rails and the ground, or adopting a fourth rail system or AC electrification system.

新線計画であれば、第4軌条方式の採用によ
り、レールと大地間の絶縁抵抗の増加が可能であ
り、新線計画でかつ、運転間隔、駅間隔、表定速
度等の大きい輪送網であれば交流電化方式の採用
が可能になる。しかし、都市近郊、郊外等の輪送
交通網における電化、直流区間の延長あるいは直
流電車の乗入れ等の区間に対しては上記の方式が
採用できず、結局、従来の直流電化となる。
If it is a new line plan, it is possible to increase the insulation resistance between the rail and the ground by adopting the fourth rail system, and it is possible to increase the insulation resistance between the rail and the ground. If so, it will be possible to adopt an AC electrification system. However, the above method cannot be applied to electrification of wheel transportation networks in urban areas or suburbs, extensions of DC sections, or sections where DC trains are to be run, and in the end, conventional DC electrification is used.

漏洩電流を抑制するため、帰線抵抗を減らすに
は、レールにき電線を併設すれば原理的には可能
であるが併設き電線のサイズが非常に大きくなり
経済的でなく、また変電所間隔を短縮すれば、漏
れ電流はある程度抑制できるが、電車負荷電流の
大きい場合あるいは運転間隔が短かい場合等にお
いてはレールが全線にわたりつながつているため
大地電流を広範囲にばらまいてしまい、あまり効
果が得られない問題があつた。
In order to suppress leakage current and reduce return resistance, it is theoretically possible to install a feeder line alongside the rail, but the size of the attached feeder line becomes extremely large, making it uneconomical, and the spacing between substations increases. Leakage current can be suppressed to some extent by shortening the current, but in cases where the train load current is large or the running intervals are short, the ground current will be scattered over a wide area because the rails are connected all the way, and this will not be very effective. I had a problem that I couldn't solve.

この発明は、上記のような従来のものの欠点を
除去するためになされたものでレールに絶縁セク
シヨンを設けるとともに絶縁セクシヨンで分割さ
れたレール単位毎にき電線を布設し、き電線と変
電所の間に対応するレール単位に電車が存在する
とき導通するサイリスタ装置を接続することによ
り漏洩電流を抑制できる直流き電装置を提供する
ことを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it provides an insulated section on the rail and lays a feeder line for each rail unit divided by the insulated section, and connects the feeder line and substation. It is an object of the present invention to provide a DC feeding device capable of suppressing leakage current by connecting a thyristor device that becomes conductive when a train is present between corresponding rail units.

以下この発明の実施例を第3図により詳述す
る。図において1は変電所、2は電車線、3はレ
ール、4は電車、5はレール絶縁セクシヨン、6
はサイリスタ装置、7はき電線である。かかる構
成におけるこの発明の作用効果を以下に説明す
る。図はレール絶縁セクシヨン5a〜5cで分割
されたレール3a1〜3b2の中央部にき電線7a1
7b2を布設し、サイリスタ装置6a1〜6b2の陽極
をき電線7a1〜7b2に接続した例を示す。レール
3a1,3a2の接続点からのき電線7a1,7a2はサ
イリスタ装置6a1,6a2の陽極に接続し、サイリ
スタ装置6a1,6a2の陰極は変電所1a,1bの
負極にそれぞれ接続される。サイリスタ装置6
b1,6b2はレール3b1,3b2の接点からのき電線
7b1,7b2を通じて同様に変電所1a,1bに接
続される。図において電車4の電流は変電所1a
からは電車線2aを通じて、変電所1bからは電
車線2bを通じて供給される。この時電車の存在
しないレール3b1,3b2に接続されているサイリ
スタ装置6b1,6b2は阻止状態とし、電車の存在
するレール3a1,3a2に接続されているサイリス
タ装置6a1,6a2は導通状態としておく。従つて
電車4を経由した電流はレール3a1,3a2を流
れ、き電線7a1、サイリスタ装置6a1を通じて変
電所1a及びき電線7a2サイリスタ装置6a2を通
じて変電所1bに帰つて行き、電車の存在しない
レール3b1,3b2に電流が流れるのを防止でき
る。
An embodiment of the present invention will be described in detail below with reference to FIG. In the figure, 1 is a substation, 2 is a contact line, 3 is a rail, 4 is a train, 5 is a rail insulation section, and 6 is a substation.
is a thyristor device, and 7 is a feeder line. The effects of the present invention in such a configuration will be explained below. The figure shows feeder wires 7a1 to 7a1 to the center of rails 3a1 to 3b2 divided by rail insulation sections 5a to 5c.
7b 2 is installed and the anodes of the thyristor devices 6a 1 to 6b 2 are connected to the feeder lines 7a 1 to 7b 2 . The feeder wires 7a 1 and 7a 2 from the connection point of the rails 3a 1 and 3a 2 are connected to the anodes of the thyristor devices 6a 1 and 6a 2 , and the cathodes of the thyristor devices 6a 1 and 6a 2 are connected to the negative electrodes of the substations 1a and 1b. are connected to each other. Thyristor device 6
b 1 and 6b 2 are similarly connected to substations 1a and 1b through feeder lines 7b 1 and 7b 2 from the contact points of rails 3b 1 and 3b 2 . In the figure, the current of train 4 is at substation 1a
It is supplied from the substation 1b through the overhead contact line 2a, and from the substation 1b through the overhead contact line 2b. At this time, the thyristor devices 6b 1 , 6b 2 connected to the rails 3b 1 , 3b 2 where no train is present are in the blocking state, and the thyristor devices 6a 1 , 6a connected to the rails 3a 1 , 3a 2 where the train is present . 2 is kept in a conductive state. Therefore, the current that has passed through the train 4 flows through the rails 3a 1 and 3a 2 and returns to the substation 1b via the feeder line 7a 1 and the thyristor device 6a 1 through the substation 1a and the feeder line 7a 2 and the thyristor device 6a 2 , and then returns to the substation 1b via the feeder line 7a 2 and the thyristor device 6a 2. It is possible to prevent current from flowing to the rails 3b 1 and 3b 2 where no current exists.

従つて電車4によつて生じたレールからの漏洩
電流はレール3a1,3a2でしか生じない。
Therefore, the leakage current from the rails caused by the electric train 4 occurs only in the rails 3a 1 and 3a 2 .

その結果、漏洩電流を従来方式に比べて小さく
でき、又、大地電流も広範囲に広がることなく、
レール3bの範囲しか流れなく地磁気に対する磁
界の影響を非常に小さくできるメリツトがある。
As a result, the leakage current can be reduced compared to the conventional method, and the earth current does not spread over a wide area.
The flow only flows within the area of the rail 3b, which has the advantage of greatly minimizing the influence of the magnetic field on the earth's magnetism.

なお、この発明は、上記し、かつ図面に示す実
施例に限定されるものでなく、例えば図では電車
線の極性を正にレールを負にした場合を示すが、
電車線を負に、レールを正にしても同じ効果を得
るようにでき、要旨を変更しない範囲内で適宜変
形して実施し得ることはもち論である。
Note that the present invention is not limited to the embodiment described above and shown in the drawings; for example, the drawing shows a case where the polarity of the overhead contact line is positive and the polarity of the rail is negative;
It goes without saying that the same effect can be obtained even if the overhead contact line is made negative and the rail is made positive, and that modifications can be made as appropriate without changing the gist.

さらに効果を増すには、第4図に示すように、
分割されたレールの中央だけでなく、レールの数
ケ所にき電線を接続すれば、漏洩電流をより抑制
できる。
To further increase the effect, as shown in Figure 4,
Leakage current can be further suppressed by connecting feeder lines not only to the center of the divided rails but also to several locations on the rails.

以上のようにこの発明によれば、レールに絶縁
セクシヨンを設け、レール絶縁セクシヨンで分割
されたレール単位毎にき電線を布設し、き電線と
変電所の間に対応するレール単位に電車が存在す
るとき導通するサイリスタ装置を接続しているの
で漏洩電流を経済的に抑制することができる効果
がある。
As described above, according to the present invention, an insulating section is provided on the rail, a feeder line is laid for each rail unit divided by the rail insulator section, and a train exists on a corresponding rail unit between the feeder line and the substation. Since a thyristor device is connected which is conductive when a leakage current is generated, leakage current can be economically suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は漏洩電流の発生原理図、第2図は従来
の直流き電システムを示す図、第3図はこの発明
の一実施例による直流き電システムを示す図、第
4図はこの発明の他の実施例を示す図である。 図において、1……変電所、2……電車線、3
……レール、4……電車、5……レール絶縁セク
シヨン、6……サイリスタ装置、7……き電線。
なお、図中同一符号は同一、又は相当部分を示
す。
Figure 1 is a diagram showing the principle of leakage current generation, Figure 2 is a diagram showing a conventional DC feeding system, Figure 3 is a diagram showing a DC feeding system according to an embodiment of the present invention, and Figure 4 is a diagram showing the present invention. It is a figure which shows another Example of. In the diagram, 1...substation, 2...telephone line, 3
...Rail, 4...Train, 5...Rail insulation section, 6...Thyristor device, 7...Feeder line.
Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 電車へ直流電力を供給する直流き電装置にお
いて、レールに絶縁セクシヨンを設け絶縁セクシ
ヨンで分割されたレールの単位毎にき電線を布設
し、各き電線と変電所の間に対応するレール単位
に電車が存在するとき導通するサイリスタ装置を
それぞれ接続したことを特徴とする直流き電装
置。
1. In a DC feeding device that supplies DC power to trains, an insulating section is provided on the rail, a feeding line is laid for each rail unit divided by the insulating section, and a corresponding rail unit is installed between each feeding line and a substation. A direct current feeding device characterized by connecting thyristor devices which conduct when a train is present.
JP17346782A 1982-09-30 1982-09-30 Direct current feeding system for electric car Granted JPS5963232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17346782A JPS5963232A (en) 1982-09-30 1982-09-30 Direct current feeding system for electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17346782A JPS5963232A (en) 1982-09-30 1982-09-30 Direct current feeding system for electric car

Publications (2)

Publication Number Publication Date
JPS5963232A JPS5963232A (en) 1984-04-10
JPH0142852B2 true JPH0142852B2 (en) 1989-09-14

Family

ID=15961015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17346782A Granted JPS5963232A (en) 1982-09-30 1982-09-30 Direct current feeding system for electric car

Country Status (1)

Country Link
JP (1) JPS5963232A (en)

Also Published As

Publication number Publication date
JPS5963232A (en) 1984-04-10

Similar Documents

Publication Publication Date Title
CN107962982B (en) Three-phase traction power supply system and vehicle-mounted power supply system
Oancea et al. On the electromagnetic field in the surrounding area of railway equipment and installations
US1962696A (en) Method of and means for protecting pipe lines and other buried metallic structures from corrosion
Natarajan et al. Analysis of grounding systems for electric traction
JPH0142852B2 (en)
Bahra et al. Earthing and bonding of electrified railways
RU2492074C1 (en) Electric power supply system of electrified ac railways
JPS641337B2 (en)
JPH0351610B2 (en)
JPS61278435A (en) Direct current feeding system for tramcar
Charalambous et al. Modelling and assessment of short-term electromagnetic interference on a railway system from pole-to-ground faults on HVDC cable networks
JPH0840116A (en) Direct current feeding system of railway
SU1141026A1 (en) Device for grounding contact system supports
JPH045566B2 (en)
JPS641338B2 (en)
JPS60191835A (en) Direct current feeding system for electric car
JPS61278436A (en) Direct current feeding system for tramcar
Novitskiy et al. EMC Problems caused by combinations of EHV Transmission lines and electrified railway lines
Bhagat Earthing, Bonding, and Stray Current
Zalesova Determination of electromagnetic influence of 25 kV AC electric traction network on 10 kV high-voltage overhead line
Zhang et al. Research on the Magnetic Effect of Ground-laid Traction Net Protective Wire on the Signal Cable
Dekker Stray current control-an overview of options
JPS5963231A (en) Direct current feeding system for electric car
CN202308334U (en) Railway electrification section signal equipment earthing system
SU1643226A1 (en) Alternating current railway power transmission line