JPS61276949A - Manufacture of sintered parts - Google Patents

Manufacture of sintered parts

Info

Publication number
JPS61276949A
JPS61276949A JP11751885A JP11751885A JPS61276949A JP S61276949 A JPS61276949 A JP S61276949A JP 11751885 A JP11751885 A JP 11751885A JP 11751885 A JP11751885 A JP 11751885A JP S61276949 A JPS61276949 A JP S61276949A
Authority
JP
Japan
Prior art keywords
weight
sintered
nitriding
hardness
green compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11751885A
Other languages
Japanese (ja)
Inventor
Masahide Unno
正英 海野
Eijiro Tamura
田村 英二郎
Isamu Karasuno
烏野 勇
Koichi Kamishiro
神代 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11751885A priority Critical patent/JPS61276949A/en
Publication of JPS61276949A publication Critical patent/JPS61276949A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sintered parts having superior hardening characteristics during nitriding by incorporating Cr into a sintered steel having a specified composition such as a sintered Cu-C or Ni-Mo-C steel and by specifying the structure before nitriding. CONSTITUTION:A green compact consisting of, by weight, 0.5-6.0% Cr, 0.2-0.6% C, one or more among 0.3-1.5% Mn, 0.1-2.0% Mo, 0.2-2.0% Cu and 0.2-3.0% Ni and the balance Fe or further contg. 0.2-1.0% V and one or more among 0.035-0.500% S, <=0.3% Se and <=0.3% Te is prepd. The green compact is sintered in an atmosphere of an inert or reducing gas or in vacuum, and the sintered body is cooled so as to form a bainite or martensite structure. The sintered body is then ion-nitrided or soft-nitrided in a salt bath.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化硬化特性の優れた焼結部品をi7J造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing i7J sintered parts with excellent nitridation hardening properties.

(従来の技術およびその問題点) 近年、製品の寸法精度が良く、また不良品の発生も少な
いという理由で焼結鋼が機械部品の構成材料として汎用
されてきている。
(Prior Art and its Problems) In recent years, sintered steel has been widely used as a constituent material for mechanical parts because of its good dimensional accuracy and low incidence of defective products.

ところで、ガス軟窒化、塩浴軟窒化、イオン窒化などの
表面窒化硬化処理は、処理温度が480〜580°Cと
低いために高い寸法精度を必要とする焼結品に適した熱
処理方法である。
By the way, surface nitriding hardening treatments such as gas soft nitriding, salt bath soft nitriding, and ion nitriding are heat treatment methods suitable for sintered products that require high dimensional accuracy because the processing temperature is as low as 480 to 580°C. .

しかしなから、Cu−C系、Ni−Mo−C系等の従来
の焼結鋼では前記窒化により十分な表面硬さが得られて
いなかった。
However, in conventional sintered steels such as Cu-C series and Ni-Mo-C series, sufficient surface hardness was not obtained due to the nitriding.

また、Crを含有した焼結品を窒化処理すれば表面硬さ
が上昇することは知られているのであるが、窒化処理前
の組織と窒化処理性の関係は明らかでなく、確実に所望
の硬さが得られるとは限らなかった。
Furthermore, it is known that nitriding a sintered product containing Cr increases its surface hardness, but the relationship between the structure before nitriding and nitriding properties is not clear, and it is difficult to ensure that the desired result is achieved. Hardness was not always achieved.

本発明は、上記問題点に鑑めで成されたものであり、イ
■れた窒化硬化特性を有する焼結部品を製造する方法を
提供せんとするものである。
The present invention was made in view of the above-mentioned problems, and it is an object of the present invention to provide a method for manufacturing a sintered part having improved nitridation hardening properties.

(問題点を解決するための手段) 本発明者は、種々実験、研究の結果、窒化硬さは、Cr
等の成分に依存する他、窒化処理前の&、11織に大き
く影響されることを知見した。ずなわ0、十分な窒化硬
さを胃るためには、窒化処理前の組織をベイナイトある
いはマルテンザイ1〜8;11 織とする必要があり、
パーライト組織では窒化硬さが低いのである。
(Means for Solving the Problems) As a result of various experiments and research, the present inventor found that the nitriding hardness of Cr
It has been found that in addition to depending on the components such as, it is greatly influenced by & and 11 weave before nitriding treatment. In order to obtain sufficient nitriding hardness, the structure before nitriding must be bainite or martenzai 1 to 8;11 weave.
The pearlite structure has low nitriding hardness.

つまり、バーライI・変態においては、フエライI−と
炭化物間でCrなどが分配し、フェライト中のCr9j
%度が低下する。このため、表面から拡flkした窒素
と化合物を生成する有効なCr量が低下し、Crを含有
した焼結体でも表面硬さの向−トが少なくなるのである
In other words, in the ferrite I transformation, Cr etc. are distributed between the ferrite I- and the carbide, and Cr9j in the ferrite is
% degree decreases. For this reason, the effective amount of Cr that forms a compound with nitrogen expanded from the surface decreases, and even in a sintered body containing Cr, the surface hardness decreases.

これに対し、ベイナイト変態では、Crなどがフェライ
トと炭化物間で分配されず、フェライト中のCr濃度は
高(窒化に有効に作用するのである。このことば、マル
テンサイト変態の場合も略同様である。
On the other hand, in bainitic transformation, Cr etc. are not distributed between ferrite and carbide, and the Cr concentration in ferrite is high (effectively acting on nitriding).This term is almost the same in the case of martensitic transformation. .

そこで、Crを含有した圧粉体を焼結し、該焼結後の冷
却速度を適正に制御してヘイナイ1−あるいはマルテン
サイ日且織とした焼結体を窒化処理することにより、高
い窒化硬さをIH’Bるのである。
Therefore, by sintering a green compact containing Cr, appropriately controlling the cooling rate after sintering, and nitriding the sintered body in the form of Heinai 1- or Martensai Ni-weave, it is possible to achieve a high nitriding hardness. It is IH'B.

ずなわら、本発明は、Cr : 0.5−6.0重量%
、C:O,2〜0.6重量%を含有すると共に、Mn:
0.3〜]、5重量%、Mo:0.1〜2.0重量%、
Cu:0.2〜2.0重量%。
However, in the present invention, Cr: 0.5-6.0% by weight
, C:O, 2 to 0.6% by weight, and Mn:
0.3~], 5% by weight, Mo: 0.1~2.0% by weight,
Cu: 0.2-2.0% by weight.

Ni:0.2〜3.0重量%のうちの1種以上を含有し
、かつ、残部がFeから成る圧粉体を不活性ガスあるい
は還元ガスの雰囲気中あるいは真空中にて焼結し、該焼
結品の組織がベイナイI・あるいはマルテン・す゛イト
となるように冷却した後、イオン窒化処理あるいは塩浴
軟窒化処理を行なうことを要旨とする焼結部品の製造方
法、および、前記圧粉体にV:0.2〜1.0重量%を
含有したものを使用して製造する方法、更には、圧粉体
として前記両者の圧粉体に夫々S:0.035〜0゜5
00重量%、Se:0.3重量%以下、Te:0.3重
量%以下のうちの1種以上を含有したものを使用して製
造する方法である。
Ni: Sintering a powder compact containing one or more of 0.2 to 3.0% by weight and the balance consisting of Fe in an atmosphere of an inert gas or reducing gas or in a vacuum, A method for producing a sintered part, the gist of which is to perform ion nitriding treatment or salt bath nitrocarburizing treatment after cooling so that the structure of the sintered product becomes Baini I or marten suite, and the pressure A method of manufacturing using a powder containing V: 0.2 to 1.0% by weight, and further, a method of manufacturing using a powder containing V: 0.2 to 1.0% by weight, and further, a method of manufacturing using a powder containing S: 0.035 to 0°5 for both of the green compacts, respectively.
00% by weight, Se: 0.3% by weight or less, and Te: 0.3% by weight or less.

本発明方法に使用する圧粉体の成分を前記した如く限定
したのは下記の理由による。
The reason why the components of the green compact used in the method of the present invention are limited as described above is as follows.

■Cr Crは窒化により窒化物を形成して表面硬さを高めるう
えて不可欠の元素であり、また、基地硬さを高める作用
も有する。しかし、0.5重量%未満では窒化硬さが低
く、また6、0重量%を超えても硬さの向」−は少なく
経済性も悪くなる。従って、0.5〜6.0重量%とす
る。
■Cr Cr is an essential element for increasing surface hardness by forming nitrides through nitriding, and also has the effect of increasing base hardness. However, if it is less than 0.5% by weight, the nitriding hardness will be low, and if it exceeds 6.0% by weight, the hardness will be small and the economy will be poor. Therefore, the content should be 0.5 to 6.0% by weight.

■C Cは炭化物を形成することにより基地硬さを高める作用
を有する。しかし、0.2重量%未満では、炭化物が少
ない為硬さも低く、また0、6重量%を超えると窒化性
が著しく低下する。従って、0.2〜0.6重量%とす
る。
■CC C has the effect of increasing base hardness by forming carbides. However, if it is less than 0.2% by weight, the hardness will be low due to the small amount of carbides, and if it exceeds 0.6% by weight, the nitriding property will be significantly reduced. Therefore, the content should be 0.2 to 0.6% by weight.

■Mn\Mo、Cu、、Ni これらの元素はいずれも基地硬さを向−1−させる作用
があり、Crと共に所定の硬さを得るのに重要な成分で
ある。従って、1種板−七の添加を欠かせないものであ
る。
(2) Mn\Mo, Cu, Ni These elements all have the effect of increasing the hardness of the base material, and together with Cr, are important components for obtaining a predetermined hardness. Therefore, the addition of Type 1 plate-7 is essential.

すなわち、Mnは焼入性を高め、基地硬さを高める作用
を有するものであるが、0.3重量%未満ではその効果
が少なく、1.5重量%を超えてもその効果の増加割合
は少ない。従って、0.3〜1.5重量%とする。
That is, Mn has the effect of increasing hardenability and base hardness, but if it is less than 0.3% by weight, the effect is small, and even if it exceeds 1.5% by weight, the rate of increase in the effect is small. few. Therefore, the content should be 0.3 to 1.5% by weight.

次にMoは、バーライ1−析出ノーズを遅らせる作用を
有する為、これを添加すればベイナイト組織が得られや
すい。また、Moは基地硬さを高める作用も有する。し
かし、0.1重星%未満でばその効果が少なく、また、
2.0重量%を超えても効果の増加割合は少ない。従っ
て、0.1〜2゜0重量%とする。
Next, since Mo has the effect of delaying the barley 1 precipitation nose, adding Mo makes it easier to obtain a bainite structure. Moreover, Mo also has the effect of increasing base hardness. However, if it is less than 0.1% of double stars, the effect is small, and
Even if it exceeds 2.0% by weight, the rate of increase in the effect is small. Therefore, the content should be 0.1 to 2.0% by weight.

Cuは、マトリックスの硬さを高める効果があるが、0
.2重量%未満ではその効果が少なく、また、2.0重
量%を超えると靭性が低下する。
Cu has the effect of increasing the hardness of the matrix, but 0
.. If it is less than 2% by weight, the effect will be small, and if it exceeds 2.0% by weight, the toughness will decrease.

従って、0.2〜2,0重量%とする。Therefore, the content should be 0.2 to 2.0% by weight.

Niは、基地硬さの増加の他、靭性を向上させる効果が
あるが、0.2重量%未満ではその効果が少なく、また
、3.0重量%を超えても顕著な改善はなく、また経済
性も悪い。従って、0.2〜3.0重量%とする。
Ni has the effect of increasing base hardness and improving toughness, but if it is less than 0.2% by weight, the effect is small, and if it exceeds 3.0% by weight, there is no significant improvement. Economic efficiency is also bad. Therefore, the content should be 0.2 to 3.0% by weight.

■■ VはCrと同様に、窒化物を形成し、表面硬さを高める
と共に、基地硬さの改善にも効果を有する。しかし、0
.2重県%未満でば窒化硬さの向1−は少なく、また、
1.0重量%を超えてもその改善効果は少ない。従って
、0.2〜1.0重啜%とする。
■■ Like Cr, V forms nitrides, increases surface hardness, and has the effect of improving base hardness. However, 0
.. If it is less than 20%, the nitriding hardness is less likely to be 1-, and
Even if it exceeds 1.0% by weight, the improvement effect is small. Therefore, the content should be 0.2 to 1.0% by weight.

■S、Se及び1゛e これらの元素は、Mnの存在下で、かつ酸素含有量の低
減下において、いずれも焼結鋼製品の被削性を向上させ
る顕著な作用があり、快削鋼製品を実現するうえて1押
収」−の添加を欠かせないものである。
■S, Se, and 1゛e These elements all have a remarkable effect of improving the machinability of sintered steel products in the presence of Mn and with a reduced oxygen content. In order to realize the product, it is essential to add 1.

すなわち、Sは焼結銅製品の被削性を向上するための極
めて安価な成分であり、その効果ば0゜035重量%の
含有量で既に認められることから、Sの含有量の下限を
0.035%と定めた。一方、S含有量が0.500%
を超えろと粉末特性が低下することから、その含有量を
0.035〜0゜500%とする。なお、この範囲内で
あれば窒化性は阻害されない。
In other words, S is an extremely inexpensive component that improves the machinability of sintered copper products, and its effect is already observed at a content of 0.035% by weight, so the lower limit of the S content should be set at 0. It was set at .035%. On the other hand, S content is 0.500%
Since the powder properties deteriorate if the content exceeds 0.035 to 0.500%. Note that within this range, nitriding properties are not inhibited.

次に、Se、Teも前記Sと同様に焼結鋼製品の被削性
を向上する作用があり、高強度製品においても、そして
痕跡程度の極めて微量の含有量であってもその効果を確
認できるものであるが、その含有量が夫々0.3重量%
を超えると粉末特性の劣化を招来するようになることか
ら、Se及びTeの含有量を、夫々Se:0.3重量%
以下。
Next, like S, Se and Te also have the effect of improving the machinability of sintered steel products, and this effect has been confirmed even in high-strength products and even in very small amounts, such as traces. However, the content is 0.3% by weight each.
If the content of Se and Te exceeds 0.3% by weight, the powder properties will deteriorate.
below.

Te:0.3重量%以下と定めた。なお、Se。Te: determined to be 0.3% by weight or less. In addition, Se.

Teもこの範囲内であれば窒化性は阻害されない。If Te is also within this range, nitriding properties will not be inhibited.

なお、このような圧粉体の組成はCを除いてプレアロイ
鋼粉とした方が均一な組織を得ることができるので好ま
しい。但し、純鉄粉にF e−Cr。
In addition, it is preferable that the composition of such a green compact is a pre-alloyed steel powder, excluding C, since a uniform structure can be obtained. However, pure iron powder contains Fe-Cr.

Fe−Mn、Cu、Mo、Ni粉などを混合して成形し
てもさしつかえない。また、Cは圧縮性を著しく阻害す
るため、一般には黒鉛を合金鋼粉に添加したものを使用
する。
It is also possible to mix and mold Fe-Mn, Cu, Mo, Ni powder, etc. Furthermore, since C significantly inhibits compressibility, graphite is generally used in alloyed steel powder.

次に前記圧粉体を焼結するのであるが、当該焼結はCC
Mn、Vが酸化しない雰囲気、例えばH2ガス雰囲気、
アンモニア分解ガス雰囲気、N2ガス雰囲気等、あるい
は真空中で行なう。吸熱型変成ガス雰囲気中ではCCM
n、Vが酸化するために適用できない。
Next, the green compact is sintered, and the sintering is performed using CC
An atmosphere in which Mn and V do not oxidize, for example, an H2 gas atmosphere,
This is carried out in an ammonia decomposition gas atmosphere, a N2 gas atmosphere, etc., or in a vacuum. CCM in an endothermic metamorphic gas atmosphere
It cannot be applied because n and V are oxidized.

焼結温度・焼結時間は圧粉体の3、■成、寸法等で変化
するが、概ね1100〜1300℃、10〜60分の範
囲で行なわれる。
The sintering temperature and time vary depending on the shape, size, etc. of the green compact, but are generally carried out at 1100 to 1300°C for 10 to 60 minutes.

焼結処理後の冷却速度は、ベイナイトあるいはマルテン
サイト組織が得られる速度を選定する。
The cooling rate after the sintering process is selected to be a rate at which a bainite or martensitic structure is obtained.

例えば、0.6%C−0,7%Mn−1,0%Cr−0
,2%Mo鋼の場合には10°C/m1n(Ac3から
500℃までの平均冷却速度)以−トで冷却すればベイ
ナイト組織が得られる。
For example, 0.6%C-0,7%Mn-1,0%Cr-0
, 2% Mo steel, a bainitic structure can be obtained by cooling at 10°C/m1n (average cooling rate from Ac3 to 500°C) or higher.

最終工程の窒化処理としてし才、イオン窒化、塩浴軟窒
化、ガス軟窒化処理があるが、焼結品の場合には、前二
者の処理が適している。すなわち、ガス軟窒化の場合に
はNH,ガスあるいは吸熱型変成ガスが空孔内に侵入し
、窒化が表面のみならず内部まで進行して内部まで著し
く硬化するからである。
The final step of nitriding treatment includes ion nitriding, salt bath soft nitriding, and gas soft nitriding, and the first two treatments are suitable for sintered products. That is, in the case of gas nitrocarburizing, NH, gas, or endothermic modified gas enters into the pores, and nitriding progresses not only to the surface but also to the inside, causing significant hardening to the inside.

これに対し、イオン窒化はグロー放電が焼結品の表面の
みで発生する為、窒化は表面から進行する。また塩浴軟
窒化の場合には、空孔内に塩浴が侵入するが、空孔内で
は浴が攪拌されないため、内部での窒化はほとんど進行
せず、表面硬化が生じる。
In contrast, in ion nitriding, glow discharge occurs only on the surface of the sintered product, so nitriding progresses from the surface. In addition, in the case of salt bath nitrocarburizing, the salt bath enters the pores, but since the bath is not stirred within the pores, nitriding hardly progresses inside and surface hardening occurs.

なお、処理温度・処理時間は、要求される表面硬さ、硬
さ深さによって異なるが、概ね480〜580°C,1
,0〜30時間の範囲で行なわれる。
The processing temperature and processing time vary depending on the required surface hardness and hardness depth, but are generally 480 to 580°C, 1
, 0 to 30 hours.

(実施例) 下記表1に示ず成分の鋼粉を油アI・マイズ法で製造し
、それに黒鉛を添加した圧粉体(密度7゜0g/cJ)
を作成し、アンモニア分解ガス中、1130°C×30
分間焼結した。焼結後の冷却速度は15℃/minであ
った(なお、M3のみ5℃/minで冷却)。また、窒
化はイオン窒化処理を施した。この処理条件は550’
cx4hC圧カニ8TorCN2:Hz =7 : 3
であった。
(Example) A green compact (density 7゜0g/cJ) made by manufacturing steel powder with ingredients not shown in Table 1 below using the oil amalization method and adding graphite to it.
was prepared and heated at 1130°C x 30 in ammonia decomposition gas.
Sintered for minutes. The cooling rate after sintering was 15°C/min (only M3 was cooled at 5°C/min). Further, ion nitriding treatment was performed for nitriding. This processing condition is 550'
cx4hC pressure crab 8TorCN2:Hz =7:3
Met.

なお、下記表1のうち、陽1〜No、4は従来方法によ
り製造したもの、No、 5〜No、 26は本発明方
法により製造したものである。
In addition, in Table 1 below, numbers 1 to 4 are manufactured by the conventional method, and numbers 5 to 26 are manufactured by the method of the present invention.

また、第1図は表1のうちNo、]、 No、3. N
o、9の硬さ分布を示したものである。
In addition, FIG. 1 shows No. ], No., 3. in Table 1. N
This shows the hardness distribution of 0.9.

表1および第1図より明らかな如く、本発明力法により
製造した焼結部品は優れた窒化硬化特性を有している。
As is clear from Table 1 and FIG. 1, the sintered parts manufactured by the force method of the present invention have excellent nitridation hardening properties.

(以 1゛2・ 1′、) (発明の効果) 以」−説明した如く本発明方法によれば、優れた窒化硬
化特性を有する焼結部品を製造でき、産業上益するとこ
ろ大なる発明である。
(Effects of the Invention) As explained above, according to the method of the present invention, sintered parts with excellent nitriding hardening properties can be manufactured, and this invention is of great industrial benefit. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は従来方法で製造した焼結部品(11に+、1.N
。 3)と、本発明方法で製造した焼結部品(No、 9 
)との硬さ分布の比較図である。 特 許 出 願 人  住友金属工業株式会社表旬δ・
6の銀製 (mす
The drawings show sintered parts manufactured by conventional methods (11 +, 1.N
. 3) and the sintered parts manufactured by the method of the present invention (No. 9)
) is a comparison diagram of hardness distribution. Patent applicant Sumitomo Metal Industries Co., Ltd.
6 silver (msu)

Claims (4)

【特許請求の範囲】[Claims] (1)、Cr:0.5〜6.0重量%、C:0.2〜0
.6重量%を含有すると共に、Mn:0.3〜1.5重
量%、Mo:0.1〜2.0重量%、Cu:0.2〜2
.0重量%、Ni:0.2〜3.0重量%のうちの1種
以上を含有し、かつ、残部がFeから成る圧粉体を不活
性ガスあるいは還元ガスの雰囲気中あるいは真空中にて
焼結し、該焼結品の組織がベイナイトあるいはマルテン
サイトとなるように冷却した後、イオン窒化処理あるい
は塩浴軟窒化処理を行なうことを特徴とする焼結部品の
製造方法。
(1), Cr: 0.5-6.0% by weight, C: 0.2-0
.. 6% by weight, Mn: 0.3-1.5% by weight, Mo: 0.1-2.0% by weight, Cu: 0.2-2
.. 0% by weight, Ni: 0.2 to 3.0% by weight, and the balance is Fe in an atmosphere of an inert gas or reducing gas or in a vacuum. A method for producing a sintered part, which comprises sintering the product, cooling it so that the structure of the sintered product becomes bainite or martensite, and then subjecting it to ion nitriding treatment or salt bath soft nitriding treatment.
(2)、Cr:0.5〜6.0重量%、C:0.2〜0
.6重量%、V:0.2〜1.0重量%を含有すると共
に、Mn:0.3〜1.5重量%、Mo:0.1〜2.
0重量%、Cu:0.2〜2.0重量%、Ni:0.2
〜3.0重量%のうちの1種以上を含有し、かつ、残部
がFeから成る圧粉体を不活性ガスあるいは還元ガスの
雰囲気中あるいは真空中にて焼結し、該焼結品の組織が
ベイナイトあるいはマルテンサイトとなるように冷却し
た後、イオン窒化処理あるいは塩浴軟窒化処理を行なう
ことを特徴とする焼結部品の製造方法。
(2), Cr: 0.5-6.0% by weight, C: 0.2-0
.. 6% by weight, V: 0.2-1.0% by weight, Mn: 0.3-1.5% by weight, Mo: 0.1-2.
0% by weight, Cu: 0.2-2.0% by weight, Ni: 0.2
A green compact containing one or more of ~3.0% by weight and the balance consisting of Fe is sintered in an inert gas or reducing gas atmosphere or in vacuum, and the sintered product is A method for producing a sintered part, which comprises cooling the structure to become bainite or martensite, and then subjecting it to ion nitriding or salt bath soft nitriding.
(3)、Cr:0.5〜6.0重量%、C:0.2〜0
.6重量%を含有すると共に、Mn:0.3〜1.5重
量%、Mo:0.1〜2.0重量%、Cu:0.2〜2
.0重量%、Ni:0.2〜3.0重量%のうちの1種
以上、並びに、S:0.035〜0.500重量%、S
e:0.3重量%以下、Te:0.3重量%以下のうち
の1種以上を含有し、かつ、残部がFeから成る圧粉体
を不活性ガスあるいは還元ガスの雰囲気中あるいは真空
中にて焼結し、該焼結品の組織がベイナイトあるいはマ
ルテンサイトとなるように冷却した後、イオン窒化処理
あるいは塩浴軟窒化処理を行なうことを特徴とする焼結
部品の製造方法。
(3), Cr: 0.5-6.0% by weight, C: 0.2-0
.. 6% by weight, Mn: 0.3-1.5% by weight, Mo: 0.1-2.0% by weight, Cu: 0.2-2
.. 0% by weight, Ni: 0.2 to 3.0% by weight, and S: 0.035 to 0.500% by weight, S
A green compact containing one or more of e: 0.3% by weight or less, Te: 0.3% by weight or less, and the balance consisting of Fe, in an atmosphere of an inert gas or reducing gas, or in a vacuum. 1. A method for producing a sintered part, which comprises sintering the product, cooling it so that the structure of the sintered product becomes bainite or martensite, and then subjecting it to ion nitriding treatment or salt bath soft nitriding treatment.
(4)、Cr:0.5〜6.0重量%、C:0.2〜0
.6重量%、V:0.2〜1.0重量%を含有すると共
に、Mn:0.3〜1.5重量%、Mo:0.1〜2.
0重量%、Cu:0.2〜2.0重量%、Ni:0.2
〜3.0重量%のうちの1種以上、並びに、S:0.0
35〜0.500重量%、Se:0.3重量%以下、T
e:0.3重量%以下のうちの1種以上を含有し、かつ
、残部がFeから成る圧粉体を不活性ガスあるいは還元
ガスの雰囲気中あるいは真空中にて焼結し、該焼結品の
組織がベイナイトあるいはマルテンサイトとなるように
冷却した後、イオン窒化処理あるいは塩浴軟窒化処理を
行なうことを特徴とする焼結部品の製造方法。
(4), Cr: 0.5-6.0% by weight, C: 0.2-0
.. 6% by weight, V: 0.2-1.0% by weight, Mn: 0.3-1.5% by weight, Mo: 0.1-2.
0% by weight, Cu: 0.2-2.0% by weight, Ni: 0.2
-3.0% by weight, and S: 0.0
35 to 0.500% by weight, Se: 0.3% by weight or less, T
e: A green compact containing one or more of 0.3% by weight or less and the balance consisting of Fe is sintered in an atmosphere of an inert gas or reducing gas or in a vacuum, and the sintering A method for manufacturing a sintered part, which comprises cooling the part so that its structure becomes bainite or martensite, and then subjecting it to ion nitriding or salt bath soft nitriding.
JP11751885A 1985-05-29 1985-05-29 Manufacture of sintered parts Pending JPS61276949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11751885A JPS61276949A (en) 1985-05-29 1985-05-29 Manufacture of sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11751885A JPS61276949A (en) 1985-05-29 1985-05-29 Manufacture of sintered parts

Publications (1)

Publication Number Publication Date
JPS61276949A true JPS61276949A (en) 1986-12-06

Family

ID=14713750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11751885A Pending JPS61276949A (en) 1985-05-29 1985-05-29 Manufacture of sintered parts

Country Status (1)

Country Link
JP (1) JPS61276949A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195012A (en) * 1996-01-19 1997-07-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
US5703304A (en) * 1994-08-10 1997-12-30 Hoganas Ab Iron-based powder containing chromium, molybdenum and manganese
EP1742753B1 (en) * 1998-08-06 2008-07-30 Rutger Larsson Konsult AB Alloyed, non-oxidising metal powder
JP2013533379A (en) * 2010-06-04 2013-08-22 ホガナス アクチボラグ (パブル) Nitrided sintered steel
JP2017137565A (en) * 2015-11-09 2017-08-10 シーアールエス ホールディングス, インコーポレイテッドCrs Holdings, Incorporated Free-machining powder metallurgy steel product and method of making same
US20180154449A1 (en) * 2016-12-06 2018-06-07 Miba Sinter Austria Gmbh Method for producing a swashplate
CN108838395A (en) * 2013-03-25 2018-11-20 日立化成株式会社 Fe base sintered alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495845A (en) * 1972-05-10 1974-01-19
JPS554958A (en) * 1978-06-28 1980-01-14 Hitachi Ltd Field-effect type switching element
JPS6073082A (en) * 1983-09-29 1985-04-25 Toshiba Corp Rotary compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495845A (en) * 1972-05-10 1974-01-19
JPS554958A (en) * 1978-06-28 1980-01-14 Hitachi Ltd Field-effect type switching element
JPS6073082A (en) * 1983-09-29 1985-04-25 Toshiba Corp Rotary compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703304A (en) * 1994-08-10 1997-12-30 Hoganas Ab Iron-based powder containing chromium, molybdenum and manganese
JPH09195012A (en) * 1996-01-19 1997-07-29 Hitachi Powdered Metals Co Ltd Wear resistant sintered alloy and its production
EP1742753B1 (en) * 1998-08-06 2008-07-30 Rutger Larsson Konsult AB Alloyed, non-oxidising metal powder
EP2163331A1 (en) * 1998-08-06 2010-03-17 Rutger Larsson Konsult AB Alloyed, non-oxidising metal powder
JP2013533379A (en) * 2010-06-04 2013-08-22 ホガナス アクチボラグ (パブル) Nitrided sintered steel
CN108838395A (en) * 2013-03-25 2018-11-20 日立化成株式会社 Fe base sintered alloy and preparation method thereof
JP2017137565A (en) * 2015-11-09 2017-08-10 シーアールエス ホールディングス, インコーポレイテッドCrs Holdings, Incorporated Free-machining powder metallurgy steel product and method of making same
US20180154449A1 (en) * 2016-12-06 2018-06-07 Miba Sinter Austria Gmbh Method for producing a swashplate
US10792733B2 (en) * 2016-12-06 2020-10-06 Miba Sinter Austria Gmbh Method for producing a swashplate

Similar Documents

Publication Publication Date Title
KR101711496B1 (en) High strength low alloyed sintered steel
KR100601498B1 (en) A water-atomised, annealed iron-based powder and method of preparing a sintered product using the powder
US3901661A (en) Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
JPS5810962B2 (en) Alloy steel powder with excellent compressibility, formability and heat treatment properties
US5682588A (en) Method for producing ferrous sintered alloy having quenched structure
US4121930A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
US5605559A (en) Alloy steel powders, sintered bodies and method
JP3258765B2 (en) Manufacturing method of high-strength iron-based sintered body
JP3679508B2 (en) Sintered parts manufacturing method and apparatus
JPS61276949A (en) Manufacture of sintered parts
JP2002129295A (en) Sintered sprocket
JP3446322B2 (en) Alloy steel powder for powder metallurgy
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JPS6318001A (en) Alloy steel powder for powder metallurgy
Engstrom et al. Efficient Low-Alloy Steels for High-Performance Structural Applications
JPS59173201A (en) Preparation of highly compressible alloyed steel powder
JP4054649B2 (en) Method for producing ferrous sintered alloy exhibiting quenched structure
JPH0447023B2 (en)
JPS5850308B2 (en) High strength sintered steel and its manufacturing method
JPS61183444A (en) High strength sintered alloy and its manufacture
JPH03219040A (en) High strength sintered steel and its manufacture
JPH0512401B2 (en)
JPH0459362B2 (en)
JPS6320431A (en) Production of free cutting sintered material
JPS5931844A (en) Production of sintering material having high abrasion resistance and strength and toughness