JPS5850308B2 - High strength sintered steel and its manufacturing method - Google Patents

High strength sintered steel and its manufacturing method

Info

Publication number
JPS5850308B2
JPS5850308B2 JP13393176A JP13393176A JPS5850308B2 JP S5850308 B2 JPS5850308 B2 JP S5850308B2 JP 13393176 A JP13393176 A JP 13393176A JP 13393176 A JP13393176 A JP 13393176A JP S5850308 B2 JPS5850308 B2 JP S5850308B2
Authority
JP
Japan
Prior art keywords
powder
sintered steel
strength sintered
producing high
steel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13393176A
Other languages
Japanese (ja)
Other versions
JPS5358412A (en
Inventor
建也 本吉
農士 黒石
義信 武田
葵 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13393176A priority Critical patent/JPS5850308B2/en
Publication of JPS5358412A publication Critical patent/JPS5358412A/en
Publication of JPS5850308B2 publication Critical patent/JPS5850308B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、優れた衝撃強度の安定性と機械的性質により
特にギヤ、カム、スプロケット等用に適した高強度焼結
鋼およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-strength sintered steel that is particularly suitable for gears, cams, sprockets, etc. due to its excellent impact strength stability and mechanical properties, and a method for producing the same.

粉末冶金法によって製造された機械部品の静的強度は溶
製材に比べそれ程劣らないにも拘らず動的強度即ち衝撃
強度が溶製材のそれと比較すれば著しく劣っていること
が焼結部品の使用上の問題点とされてきた。
Although the static strength of machine parts manufactured by powder metallurgy is not significantly inferior to that of molten materials, the dynamic strength, that is, the impact strength, is significantly inferior to that of molten materials. This has been cited as an issue above.

特にギヤ、カム、スプロケット等複雑形状品に於いては
必然的に低密度部が歯元に生じ衝撃強度を一層低くして
いた。
Particularly in products with complex shapes such as gears, cams, and sprockets, low-density parts inevitably occur at the root of the teeth, further lowering the impact strength.

このような問題点から高強度を要求されている機械部品
には焼結部分の使用が困難であるとされているのが現状
である。
Due to these problems, it is currently difficult to use sintered parts in mechanical parts that require high strength.

勿論従来からもこのような焼結材の欠点を克服する為の
努力は各所において為されており、焼結晶の冷間あるい
は熱間での鍛造成いは溶浸法等がその代表的なものでは
あるが、何れも製造コストを非常に高いものとするばか
りでなく製品の形状的制約があり粉末冶金本来の特徴を
損う欠点があった。
Of course, efforts have been made in various places to overcome these drawbacks of sintered materials, and the representative example is the infiltration method for cold or hot forging of sintered crystals. However, all of these methods not only make the production cost extremely high, but also have the disadvantage of limiting the shape of the product, which impairs the original characteristics of powder metallurgy.

一方材料組成的にNiを多量添加することによって衝撃
強度を改善する試みも行われているが、衝撃強度は改善
されてもNiの多量添加の弊害として残留オーステナイ
トの増加や浸炭焼入れ特性の劣化、更には高価な元素を
使うことによる製造コストの圧迫等の大きな欠点を肩し
ている。
On the other hand, attempts have been made to improve the impact strength by adding a large amount of Ni to the material composition, but even if the impact strength is improved, the disadvantages of adding a large amount of Ni are an increase in retained austenite and deterioration of carburizing and quenching properties. Furthermore, it has major drawbacks such as pressure on manufacturing costs due to the use of expensive elements.

又これらの方法とは別に焼結温度を高くしたり焼結時間
を長くしたり、焼結炉内雰囲気を強還元性のH2ガスを
多量に含有する雰囲気にする方法等いわゆる焼結の進行
を少しでも良くして強度を改善する試みがあるが倒れも
高コスト、生産性の低下、寸法精度の低下、炭素量の制
御困難さ等の欠点を有している。
In addition to these methods, there are other methods to slow the progress of sintering, such as increasing the sintering temperature, lengthening the sintering time, or creating an atmosphere in the sintering furnace that contains a large amount of strongly reducing H2 gas. Attempts have been made to improve the strength even slightly, but these have disadvantages such as high cost, reduced productivity, reduced dimensional accuracy, and difficulty in controlling the amount of carbon.

以上の点に鑑み本発明は中高密度(6,5〜7.3g/
/cC)における衝撃強度の優れ、しかもギヤ、カム、
スプロケット等用として必要な焼入れ硬化性及び機械的
性質を有している高強度焼結鋼並びそれを比較的安価に
提供しようとするものである。
In view of the above points, the present invention provides medium-high density (6.5 to 7.3 g/
/cC) has excellent impact strength, and is suitable for gears, cams,
The object of the present invention is to provide high-strength sintered steel having the hardenability and mechanical properties necessary for use in sprockets, etc., and to provide the same at a relatively low cost.

即ち高強度焼結鋼用材質として公知のN1−M。That is, N1-M is known as a material for high-strength sintered steel.

系材に対して以下に述べる範囲内の微量の鋼を浴比する
ことによって熱処理後の衝撃強度を改善し安定した機械
的性質と優れた焼入れ性を得ることを特徴としている、
又以下に述べる方法により製造しようとするものである
It is characterized by improving the impact strength after heat treatment and obtaining stable mechanical properties and excellent hardenability by adding a small amount of steel within the range described below to the system material.
It is also intended to be manufactured by the method described below.

以下実施例により本発明を詳述する。The present invention will be explained in detail with reference to Examples below.

表1は、本発明及び従来材の原料組成及び強度特性を示
したものである。
Table 1 shows the raw material composition and strength characteristics of the present invention and conventional materials.

それぞれの試料は、表に記載された組成に混合調整後、
ンヤルピー試験片形状(ASTM E−92−72)に
加圧成形後、変成ガス雰囲気中で1130℃において焼
結し、各各表に記載された熱処理を施したものである。
After mixing and adjusting each sample to the composition listed in the table,
The specimens were press-formed into the shape of a polyurethane specimen (ASTM E-92-72), sintered at 1130° C. in a modified gas atmosphere, and subjected to the heat treatments listed in each table.

試料1,2,5.9及び12は、Ni−Mo鋼組成とし
て公知の従来材料である。
Samples 1, 2, 5.9 and 12 are conventional materials known as Ni-Mo steel compositions.

試料1〜4において、6.5〜6.7 jj /ccの
密度領域における強度特性が本発明によって著しく改善
されていることが認められる。
It is observed that in samples 1 to 4, the strength properties in the density region of 6.5 to 6.7 jj /cc are significantly improved by the present invention.

なお試料1〜4のものは、Mnを0.25%含有する鉄
粉とNi粉、Cu粉、Mo2C粉とを混合せしめたもの
を成形し、重量百分率でN i 2 %、 Mn0.2
4%、Mo0.5%、C0,5%、CuO又は0.5%
残部実質的にFeより成る組成の成形体を作威し、次い
でエンドガス雰囲気中で1130℃40分焼結した試料
を870°Cより油焼き入れし、180℃2時間で焼結
したものである。
Samples 1 to 4 were formed by mixing iron powder containing 0.25% Mn with Ni powder, Cu powder, and Mo2C powder, and the weight percentages were Ni2% and Mn0.2.
4%, Mo0.5%, C0.5%, CuO or 0.5%
A molded body with a composition in which the remainder was essentially Fe was produced, and then sintered at 1130°C for 40 minutes in an end gas atmosphere.The sample was oil quenched at 870°C and sintered at 180°C for 2 hours. .

更に試料5〜9においては7.0 fl /ccの密度
におけるCu添加量の効果を明らかにしたものであり、
本発明における有効なCuの組成範囲が0.2〜0.8
%にあることが認められる。
Furthermore, in samples 5 to 9, the effect of the amount of Cu added at a density of 7.0 fl / cc was clarified,
The effective Cu composition range in the present invention is 0.2 to 0.8
%.

なお試料5〜9のものは試料1〜4と同一の製造法であ
る。
Note that Samples 5 to 9 were produced using the same manufacturing method as Samples 1 to 4.

試料10及び11はMoの添加方法に係るものであり、
Mo2 C、M oの他最も安価なFe−M。
Samples 10 and 11 are related to the method of adding Mo,
Besides Mo2C and Mo, Fe-M is the cheapest.

粉を使用した場合に於いても本発明のCu添加の効果が
認められ、優れた性能を有していることが明らかである
Even when powder is used, the effect of adding Cu according to the present invention is observed, and it is clear that it has excellent performance.

なお試料10及び11のものは重量百分率でMnを0.
25%含有するFe粉とCu粉、Ni粉およびMn粉、
黒鉛粉(試料(10))又はFe−M。
In addition, samples 10 and 11 had Mn in weight percentage of 0.
Fe powder and Cu powder, Ni powder and Mn powder containing 25%,
Graphite powder (sample (10)) or Fe-M.

(Moを60%含有する)粉、黒鉛粉(試料0υ)を混
合せしめたものを成形して重量百分率でNi2%、Mn
0.24%、M o 0.5%、CuO,8%、C0,
5%残部実質的にFeよりなる成形体を作成し、次いで
エンドガス雰囲気中で1130℃40分焼結後870℃
より油焼き入れし、180’C2時間で焼戻したもので
ある。
A mixture of powder (containing 60% Mo) and graphite powder (sample 0υ) was molded, and the weight percentage was 2% Ni, Mn.
0.24%, Mo 0.5%, CuO, 8%, C0,
A molded body consisting essentially of Fe with the remaining 5% is then sintered at 1130°C for 40 minutes in an end gas atmosphere and then sintered at 870°C.
It was quenched in oil and then tempered at 180'C for 2 hours.

試料12及び13は合金鋼粉を使用した場合における本
発明の効果を明らかにしたものである。
Samples 12 and 13 demonstrate the effects of the present invention when alloyed steel powder is used.

なお試料12及び13のものはN i 、Mo 、Mn
をそれぞれ重量百分率で1.85%、0.5%、0.3
%含有し、残部実質的でFeである合金鋼粉に0.5%
黒鉛粉(試料12)又は0.5%Cu粉、0.5%黒鉛
粉(試料13)を混合し、成形後エンドガス雰囲気中で
11308040分焼結後870℃より油焼き入れし、
180°C2時間で焼き戻したものである。
Note that samples 12 and 13 contain N i , Mo , Mn
The weight percentages are 1.85%, 0.5%, and 0.3, respectively.
%, and the balance is substantially Fe in alloy steel powder containing 0.5%
Graphite powder (sample 12) or 0.5% Cu powder and 0.5% graphite powder (sample 13) were mixed, molded, sintered in an end gas atmosphere for 11308040 minutes, and then oil quenched at 870°C.
It was tempered at 180°C for 2 hours.

更に試料14及び15は、肌焼鋼組成における浸炭、浸
炭窒化及び試料16は調質鋼組成における高周波熱処理
後の優れた特性を示したものである。
Furthermore, Samples 14 and 15 showed excellent properties after carburizing and carbonitriding in a case-hardened steel composition, and Sample 16 showed excellent properties after high-frequency heat treatment in a tempered steel composition.

なお試料14〜16のものは試料7と同一の製造法で焼
結したものについて、試料14は900℃ 1時間浸炭
、試料15は900’CI時間浸炭窒化、試料16は1
00KH2の高周波加熱後、それぞれ油焼き入れしたも
のを更に1800G2時間焼戻した試料である。
Samples 14 to 16 were sintered using the same manufacturing method as sample 7. Sample 14 was carburized at 900°C for 1 hour, sample 15 was carbonitrided at 900°C, and sample 16 was carbonitrided at 900°C for 1 hour.
These samples were oil-quenched after high-frequency heating at 00KH2 and then tempered for 1800G for 2 hours.

以上述べたように本発明による合金は中性もしくは浸炭
性焼結雰囲気中において焼結されても優れた靭性を有し
ており、粉末表面酸化物を還元するため焼結性の良い水
素あるいは分解アンモニアガス中で焼結した場合には更
に優れた強度特性を示すことは言うまでもない。
As mentioned above, the alloy according to the present invention has excellent toughness even when sintered in a neutral or carburizing sintering atmosphere, and in order to reduce powder surface oxides, hydrogen or decomposition Needless to say, even better strength properties are exhibited when sintered in ammonia gas.

以上の実施例からも明らかな如く、本発明はCuを微量
添加したFe Ni Mo−Mn C焼結鋼の中
密度域(6,5〜7、Oβ/ cc )における熱処理
後の強度特性を改善したものである。
As is clear from the above examples, the present invention improves the strength properties of Fe Ni Mo-Mn C sintered steel with a trace amount of Cu added after heat treatment in the medium density range (6.5 to 7, Oβ/cc). This is what I did.

Cuの効果が認められる添加量の下限は0.2%であり
、上限は0.8%である。
The lower limit of the amount of Cu added at which the effect is recognized is 0.2%, and the upper limit is 0.8%.

即ち外部より添加されたCuは焼結過程中に溶融して液
相を生じこの液相が粉末粒子間に拡って薄膜を形成し、
広い範囲にわたってCuが分散され実質的に極めて広い
拡散界面を形成し、急速にFe母相中に拡散する。
That is, Cu added from the outside melts during the sintering process to form a liquid phase, which spreads between powder particles to form a thin film.
Cu is dispersed over a wide range, substantially forming an extremely wide diffusion interface, and rapidly diffusing into the Fe matrix.

拡散したFe母相中のCuは粉末粒子中で濃度勾配を有
しているが、内部においてもより拡散界面に近い部分即
ち粒子間の焼結によって生じたネック部や粒界において
やや高い濃度を有する。
Cu in the diffused Fe matrix has a concentration gradient in the powder particles, but it also has a slightly higher concentration inside the parts closer to the diffusion interface, that is, in the neck parts and grain boundaries caused by sintering between particles. have

従って実質的に最も破壊応力が集中するネック部におい
て合金化による強化が大きくなり、マクロ的に見た強度
特性が改善されるわけである。
Therefore, the strengthening due to alloying becomes large in the neck portion where the fracture stress is substantially concentrated the most, and the strength characteristics from a macroscopic perspective are improved.

このような効果はあまりに微量のCuの添加量によって
は十分拡散界面が形成され得ない為に効果が認められず
、又過剰に添加された場合には未拡散のCuが残留した
り、必要以上にFe中のCu濃度の高い部分が多くなる
為にかえって靭性が損われ、特に熱処理後においてCu
の析出硬化により硬度が部分的に高くなり過ぎ、本来の
効果が失われる。
Such an effect cannot be observed if the amount of Cu added is too small because a sufficient diffusion interface cannot be formed, and if too much Cu is added, undiffused Cu may remain or more than necessary Cu may be added. However, since the portion with high Cu concentration in Fe increases, the toughness is adversely affected, and especially after heat treatment, Cu
Due to precipitation hardening, the hardness becomes too high in some areas and the original effect is lost.

以上の理由からCuの添加量の範囲は0.2〜0、7
%であることが望しい。
For the above reasons, the range of the amount of Cu added is 0.2 to 0.7
% is desirable.

又中密度域特に6.5〜6.7g/CCの密度領域にお
いて本発明の効果が顕著である。
Further, the effect of the present invention is remarkable in the medium density region, particularly in the density region of 6.5 to 6.7 g/CC.

このように本発明におけるCu添加の効果は公知のFe
−Cu−C鋼やF e−N i −Cu−C鋼等におけ
る基地(マ) IJラックスの合金強化効果とは異なり
Fe Ni Mn Mo C系焼結鋼により微
量の銅の液相を拡散せしめることによって焼結鋼の強化
をはかることに特徴を有するものである。
In this way, the effect of adding Cu in the present invention can be seen from the effect of adding Cu in the present invention.
Unlike the alloy strengthening effect of base (ma) IJ lux in -Cu-C steel, Fe-Ni-Cu-C steel, etc., Fe-Ni-Mn-Mo-C-based sintered steel diffuses a small amount of copper liquid phase. This method is characterized by strengthening the sintered steel.

さて、次にNiの効果と童は公知のFe−N1−C材の
場合に準拠しており、4.0%を越えるNi量は靭性を
低下させる上原材料を高価なものとする為上限値は4.
0%とした。
Next, the effect of Ni is based on the case of the known Fe-N1-C material, and the upper limit is set as the amount of Ni exceeding 4.0% lowers the toughness and makes the raw material expensive. is 4.
It was set to 0%.

1%以下のNiの添加量では強度に対する効果が実質的
にない為、下限値は1%とした。
If the amount of Ni added is 1% or less, there is virtually no effect on the strength, so the lower limit was set at 1%.

Moについても同様で0,2%以下では強度、焼入れ性
や耐摩性に対する効果がなく4%以上では靭性をかえっ
て低下させ高価なものとなる。
The same goes for Mo, if it is less than 0.2%, it has no effect on strength, hardenability or wear resistance, and if it is more than 4%, the toughness is reduced and becomes expensive.

Mnについては溶製材においても知られている通り焼入
れ住改善に大きな効果をもつ元素であり、粉末冶金にお
いて特に純度の高い鉄粉が使用された場合に焼入れ性低
下の原因となる事がある為、熱処理鋼として最低必要な
Mn量は0.05%とした。
Mn is an element that has a great effect on improving hardenability, as is also known in ingot lumber, and it may cause a decrease in hardenability especially when high-purity iron powder is used in powder metallurgy. The minimum amount of Mn required for heat-treated steel was 0.05%.

一方Mn量が増加すると次第に粉末自体が硬化したり或
いは酸化しやすくなる為最大量は0.5%が限度である
On the other hand, as the amount of Mn increases, the powder itself gradually hardens or becomes more easily oxidized, so the maximum amount is limited to 0.5%.

炭素については既にその諸効果と添加量は一般化してお
り、本焼結鋼においても0.2%が強度的に必要な最低
量である。
The various effects and addition amount of carbon have already become commonplace, and 0.2% is the minimum amount necessary for strength in this sintered steel.

一方摺動材、耐摩材等に於いては多量の炭素を残留グラ
ファイトの形で必要とするが機械的強度の上から靭性を
損い好ましくない為2%以下とした。
On the other hand, sliding materials, wear-resistant materials, etc. require a large amount of carbon in the form of residual graphite, which is undesirable because it impairs mechanical strength and toughness, so it is limited to less than 2%.

以上の如く本発明は優れた機械的強度を6.5〜7.3
β/ cc中高密度において有している高強度焼結鋼及
びその製造法に関するものであり、特に熱処理(浸炭、
浸炭窒化、光輝焼入、高周波焼入れ等)して使用される
各種ギヤ、カム、スプロケット等衝撃及び耐摩性を必要
とする部品に適している。
As described above, the present invention has excellent mechanical strength of 6.5 to 7.3.
This article relates to high-strength sintered steel with medium-high density β/cc and its manufacturing method, especially heat treatment (carburizing, carburizing,
It is suitable for parts that require shock and wear resistance, such as various gears, cams, and sprockets that are used after carbonitriding, bright hardening, induction hardening, etc.).

Claims (1)

【特許請求の範囲】 1 重量百分率で、Ni1〜4%9Mn 0.05〜0
.5%1M00.2〜4%、Cu O,2〜0.8%、
CO12〜2.0%、残部実質的にFeよりなることを
特徴とする高強度焼結鋼。 2 中密度(6,5〜7.0 g/′CC)である 特
許請求の範囲第1項記載の高強度焼結鋼。 3 重量百分率でMn 0.05〜0.5%とFeとを
少くとも含有するもの0)粉と少くともCu粉、C粉と
を混合せしめたものを成形して重量百分率でN11〜4
%、 Mn 0.05〜0.5%2M00.2〜4%、
Cu 0.2〜0.8%、C0,2〜2.0%残部実
質的にFeより成る組成範囲の成形体を作成し、次いで
中性又は浸炭性雰囲気に於いて1100〜1200’C
で焼結することを特徴とする高強度焼結鋼の製造方法。 4 重量百分率でMn 0.05〜0.5%とFeとを
少くとも含有するちりの粉と少くともCu粉、C粉とを
混合せしめたものが、重量百分率でMn005〜0.5
%を含有するFeの粉とNi粉、M。 粉、Cu粉、C粉である特許請求の範囲第3項記載の高
強度焼結鋼の製造方法。 5 重量百分率でMn 0.05〜0.5%とFeとを
少くとも含有するものの粉が、重量百分率でNi1〜4
%、 Mn 0.05〜0.5%、 Mo0.2〜0.
4%残部実質的にFeよりなる合金鋼粉である特許請求
の範囲第3項記載の高強度焼結鋼の製造方法。 6 混合するMn粉がFe−Mn粉である特許請求の範
囲第4項記載の高強度焼結鋼の製造方法。 7 混合するMn粉がMo2Cである特許請求の範囲第
4項記載の高強度焼結鋼の製造方法。 8 混合するMn粉がMo自体の粉である特許請求の範
囲第4項記載の高強度焼結鋼の製造方法7.9 焼結後
熱処理を施す特許請求の範囲第3項、第4項、第5項、
第6項、第7項又は第8項記載の高強度焼結鋼の製造方
法。 10熱処理が浸炭である特許請求の範囲第9項記載の高
強度焼結鋼の製造方法。 11 熱処理が浸炭窒化である特許請求の範囲第9項記
載の高強度焼結鋼の製造方法。 12熱処理が光輝である特許請求の範囲第9項記載の高
強度焼結鋼の製造方法。 13熱処理が高周波である特許請求の範囲第9項記載の
高強度焼結鋼の製造方法。
[Claims] 1 By weight percentage, Ni1-4%9Mn 0.05-0
.. 5% 1M00.2-4%, CuO, 2-0.8%,
A high-strength sintered steel characterized by comprising 12 to 2.0% CO and the remainder substantially Fe. 2. The high-strength sintered steel according to claim 1, which has a medium density (6.5 to 7.0 g/'CC). 3 Containing at least 0.05 to 0.5% Mn and Fe in weight percentage 0) A mixture of powder and at least Cu powder and C powder is molded to form N11 to 4 in weight percentage.
%, Mn 0.05-0.5%2M00.2-4%,
A molded body having a composition of 0.2 to 0.8% Cu, 0.2 to 2.0% C, and the balance substantially Fe is prepared, and then heated at 1100 to 1200'C in a neutral or carburizing atmosphere.
A method for producing high-strength sintered steel, which is characterized by sintering the steel. 4 A mixture of dust powder containing at least 0.05 to 0.5% Mn and Fe in weight percentage and at least Cu powder and C powder is Mn005 to 0.5 in weight percentage.
Fe powder and Ni powder containing %M. The method for producing high-strength sintered steel according to claim 3, which uses powder, Cu powder, and C powder. 5 The powder containing at least 0.05 to 0.5% Mn and Fe in weight percentage is Ni1 to 4 in weight percentage.
%, Mn 0.05-0.5%, Mo0.2-0.
4. The method for producing high-strength sintered steel according to claim 3, wherein the alloy steel powder is made of iron with the balance being substantially 4%. 6. The method for producing high-strength sintered steel according to claim 4, wherein the Mn powder to be mixed is Fe-Mn powder. 7. The method for producing high-strength sintered steel according to claim 4, wherein the Mn powder to be mixed is Mo2C. 8. A method for producing high-strength sintered steel according to claim 4, in which the Mn powder to be mixed is powder of Mo itself. 7.9 Claims 3 and 4, in which heat treatment is performed after sintering. Section 5;
The method for producing high-strength sintered steel according to item 6, 7, or 8. 10. The method for producing high-strength sintered steel according to claim 9, wherein the heat treatment is carburizing. 11. The method for producing high-strength sintered steel according to claim 9, wherein the heat treatment is carbonitriding. 12. The method for producing high-strength sintered steel according to claim 9, wherein the heat treatment is bright. 13. The method for producing high-strength sintered steel according to claim 9, wherein the heat treatment is high frequency.
JP13393176A 1976-11-06 1976-11-06 High strength sintered steel and its manufacturing method Expired JPS5850308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13393176A JPS5850308B2 (en) 1976-11-06 1976-11-06 High strength sintered steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13393176A JPS5850308B2 (en) 1976-11-06 1976-11-06 High strength sintered steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5358412A JPS5358412A (en) 1978-05-26
JPS5850308B2 true JPS5850308B2 (en) 1983-11-09

Family

ID=15116411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13393176A Expired JPS5850308B2 (en) 1976-11-06 1976-11-06 High strength sintered steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5850308B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170474A (en) * 1978-10-23 1979-10-09 Pitney-Bowes Powder metal composition
JPH0686605B2 (en) * 1986-11-04 1994-11-02 トヨタ自動車株式会社 Highly compressible sintering powder and its manufacturing method
JPH02153046A (en) * 1988-12-06 1990-06-12 Kawasaki Steel Corp High strength sintered alloy steel

Also Published As

Publication number Publication date
JPS5358412A (en) 1978-05-26

Similar Documents

Publication Publication Date Title
JPH03120336A (en) Manufacture of synchronizer hub
US5682588A (en) Method for producing ferrous sintered alloy having quenched structure
US4121930A (en) Nitrogen containing high speed steel obtained by powder metallurgical process
US4123265A (en) Method of producing ferrous sintered alloy of improved wear resistance
US5605559A (en) Alloy steel powders, sintered bodies and method
JPS5850308B2 (en) High strength sintered steel and its manufacturing method
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JPS6075501A (en) Alloy steel powder for high strength sintered parts
JPS6318001A (en) Alloy steel powder for powder metallurgy
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
JPS6140001B2 (en)
JPS61276949A (en) Manufacture of sintered parts
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JPH01123001A (en) High strength ferrous powder having excellent machinability and its manufacture
JP4093070B2 (en) Alloy steel powder
JPS58107469A (en) Preparation of high strength sintered machine parts
JP4054649B2 (en) Method for producing ferrous sintered alloy exhibiting quenched structure
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
WO2018143088A1 (en) Mixed powder for powder metallurgy, sintered body, and method for producing sintered body
JPH02153046A (en) High strength sintered alloy steel
Ruas et al. The Development and Characteristics of Low Alloy Steel Powders For Sinter Hardening Applications
JPS6151003B2 (en)
Chagnon et al. Effect Of Tempering Temperature On Mechanical Properties And Microstructure Of Sinter Hardened Materials