JP4054649B2 - Method for producing ferrous sintered alloy exhibiting quenched structure - Google Patents

Method for producing ferrous sintered alloy exhibiting quenched structure Download PDF

Info

Publication number
JP4054649B2
JP4054649B2 JP2002288441A JP2002288441A JP4054649B2 JP 4054649 B2 JP4054649 B2 JP 4054649B2 JP 2002288441 A JP2002288441 A JP 2002288441A JP 2002288441 A JP2002288441 A JP 2002288441A JP 4054649 B2 JP4054649 B2 JP 4054649B2
Authority
JP
Japan
Prior art keywords
powder
alloy
sintering
mass
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002288441A
Other languages
Japanese (ja)
Other versions
JP2004124141A (en
Inventor
唯之 筒井
啓 石井
貴志 鈴木
五夫 佐藤
淳一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Hitachi Koki Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2002288441A priority Critical patent/JP4054649B2/en
Publication of JP2004124141A publication Critical patent/JP2004124141A/en
Application granted granted Critical
Publication of JP4054649B2 publication Critical patent/JP4054649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金法に係り、特に焼入れ工程を必要とせずに優れた強度を有する鉄系焼結合金を製造する方法に関するものである。
【0002】
【従来の技術】
粉末冶金法によって製造された鉄系焼結合金は、経済性に優れているという特徴から、例えば、自動車部品、工作機器、家電製品等に広く利用されている。しかるに、近年の各種製品における低価格化の趨勢に対応するため、焼結部品においても更に低廉化が要求されるようになりつつある。この要求を満たすために、低廉な鉄粉の開発等も行われているが、材料特性が低下するという問題がある。
また、製造工程の連続化や無人化によるコストの低減も行われているが、十分な効果は得られていない。そのような背景により本発明者らは特開平9−87794号公報において焼入れ工程を不要とした焼結合金の製造方法を発明した。しかしながら、最近の更なる高強度化の要求に対しては、この材料を用いても対応できなくなってきた。
【0003】
【発明が解決しようとする課題】
焼入れを行わずに高強度の部品を得る手法としては、焼入れ性の優れた合金粉末を用いて焼結時の冷却速度でマルテンサイト変態させた材料があるが、通常の焼結炉の冷却速度は5〜20℃/分であり、この冷却速度でマルテンサイト組織を得るためには、合金元素の添加量が多くなり圧縮性を著しく低下させ、強度は低くなる。
【0004】
一方、純鉄粉に焼入れ性を改善させるNi、Cu、Mo等の粉末を添加したもの、またはこれらを複合合金化したものは、圧縮性に優れているが、焼結体の合金成分が不均一となるため、金属組織の一部分をマルテンサイト組織にすることができる。しかし組織の85%以上をマルテンサイト組織にすることは通常の焼結条件においては困難である。
【0005】
本発明は、このような技術状態を考慮して、焼入れを行わずに従来の焼入れ処理材と同等の強度を有する鉄系焼結合金の新規な製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記のような目的を達成するために、焼入れ性を高め、圧縮性の低下を最小限に抑えるための研究を種々進めた結果、焼入れ性に優れる合金粉末と圧縮性に優れる合金粉末を混合し、さらに焼入れ性を改善させる元素を単味粉末の形態で添加することにより、圧縮性の低下による強度の低下を抑え、通常の焼結炉の5〜20℃/分の冷却速度で金属組織中の85%以上がマルテンサイト組織となる鉄系焼結合金が得られることを見出した。なお、通常、マルテンサイト組織は、マルテンサイト結晶間に未変態のオーステナイトが残留、分散した組織を呈するもので、本願はこのような変態も含むものである。
【0007】
すなわち、本発明の焼入れ組織を呈する鉄系焼結合金の製造方法は、粉末の組成が、質量比で、Ni:3〜5%、Mo:0.4〜0.7%、残部:Feおよび不可避不純物よりなるFe−Ni−Mo合金粉末と、粉末の組成が、質量比で、Mo:0.5〜2%、残部:Feおよび不可避不純物よりなるFe−Mo合金粉末との質量比が、5:95〜70:30になるように配合するとともに、全体組成におけるNi量が4〜6質量%、焼結後のC量が0.2〜0.7質量%となるようNi粉末と黒鉛粉末をさらに添加した混合粉末を、金型内で圧縮成形し、得られた圧粉体を非酸化性雰囲気中で1130〜1300℃の範囲で焼結した後、焼結炉中で5℃/分以上、20℃/分以下の速度で冷却して、焼結後の気孔部を除く金属組織を、面積比で、85%以上がマルテンサイト組織とすることを特徴とする。
【0008】
なお、Ni粉末および/またはCu粉末を、前記Fe−Ni−Mo合金粉末および/または前記Fe−Mo合金粉末に複合合金化(部分的に拡散して固着)した粉末を用いると好適である。
【0009】
また、上記焼結後に100℃以下まで冷却した後、さらに150℃以上、300℃以下の温度に加熱し保持すること、または焼結炉内で冷却中に150℃以上300℃以下の温度で保持するとさらに好適である。
【0010】
混合粉の主体として合金粉末を使用し、焼入れ性を改善するために必要な元素を単味粉末の状態で添加すると、完全合金粉末を用いた場合に比べて粉末圧縮性が高く、高密度の焼結合金を得ることが容易になる。ただし、合金鉄粉の合金元素の含有量が所定量より少ない場合、あるいは純鉄粉に焼結合金の所定組成になるようにNi粉、Mo粉およびCu粉を添加した混合粉の場合には、基地全体にそれらの元素を拡散させて目的の焼入れ組織を有する焼結合金を得ることが困難になる。
【0011】
合金鉄粉中に添加する合金元素の種類としては、焼入れ性の改善に効果があり、しかも圧縮性の低下が少ないNiおよびMoが有効である。また、その含有量は材料の焼入れ性と圧縮性により決定されるものであり、質量比で、Ni:3〜5%、Mo:0.4〜0.7%、残部Feからなる組成のFe−Ni−Mo合金粉末と、Mo:0.5〜2%、残部FeからなるFe−Mo合金粉末とを5:95〜70:30の比率で混合して用いると所望の焼入れ組織を有する焼結合金が得られる。
【0012】
Fe−Ni−Mo合金粉末は、NiおよびMoの含有量がそれぞれ3質量%、0.4質量%未満では焼入れ性改善の効果が乏しく、それぞれ5質量%、0.7質量%を越えると粉末が硬くなり圧縮性が低下する。また前記Fe−Mo合金粉末は、Moの含有量が0.5質量%未満では焼入れ性改善の効果が乏しく、2質量%を越えると粉末が硬くなり圧縮性が低下する。
【0013】
これらのFe−Ni−Mo合金粉末とFe−Mo合金粉未を用い、Fe−Ni−Mo合金粉末とFe−Mo合金粉未の質量比が5:95〜70:30となるよう添加混合することにより、例えば成形圧力6t/cmで、成形密度が6.9g/cm以上となり、従来の完全合金粉末以上の圧縮性が得られる。上記のFe−Ni−Mo合金粉末の添加量が上限値を越える場合は圧縮性が低下し材料強度は低下する。また、Fe−Mo合金粉末の添加量が上限値を越える場合は、焼入れ性を改善する合金元素の単味粉末を添加しても、金属組織中の85%以上をマルテンサイト組織にすることはできず、材料強度は低下する。
【0014】
この合金粉末に黒鉛粉末を添加するのみでは、ベイナイト組織しか得られないため、85%以上をマルテンサイト組織とするためには、焼入れ性を更に改善する必要があり、焼入れ性を改善するための元素を単味粉末として添加することが必要となる。元素としては、Cu、Ni、Mn、Cr等が考えられるが、焼結性を考慮した場合、焼入れ性の改善にはNiが最も効果的で、次いでCuが効果的である。Cu粉末の添加量は、1%未満ではその効果が認められず、3%を越えると衝撃値が低下するため1〜3質量%とする。また、Niは焼入れ性を改普する効果の他に、Cuによる脆化を抑制する効果がある。Ni粉末の添加量は全体で4%未満ではその効果が認められず、6%を越えるとNiの未拡散相であるオーステナイト組織により、かえってマルテンサイト組織が減少し強度が低下する傾向があるのでその範囲を4〜6質量%とすることが好ましい。
【0015】
上記のNi粉末とCu粉末は、上記のFe−Ni−Mo合金粉末および/またはFe−Mo合金粉末に部分的に拡散して固着させた部分拡散合金粉末として用いると、圧縮性を損なうことなく、合金元素を基地に拡散させやすいので好適である。
【0016】
焼結時の冷却速度は、材料のCCT線図により決定され、マルテンサイトが組織の面積比で85%以上となるように、5℃/分以上とする。また、冷却速度が20℃/分を越えると設備上新たな冷却装置が必要となり、焼結費を上昇させることになるので5℃/分以上、20℃/分以下とする。
【0017】
Cは、黒鉛粉末の形態で添加する方法や焼結雰囲気の浸炭性ガスにより添加する方法があるが、内部まで均一にマルテンサイト組織にするためには、黒鉛として添加する必要がある。その添加量は、焼結後のC含有量が0.2〜0.7質量%となるように定めればよい。焼結後のC含有量が0.2%未満の場合には、マルテンサイト組織の面積比が85%のものを得ることは不可能であり、一方、0.7%を越えると残留オーステナイト相が多くなり、更には結晶粒界に沿ってセメンタイトが析出するため強度が低下する。このため焼結後のC含有量の範囲を0.2〜0.7質量%とする。黒鉛粉末を添加した後には焼結を行なうので、焼結後のC含有量は焼結前よりも幾分減少する。黒鉛粉末の実際の添加量は、発明者らが用いた分解アンモニアガスによる還元性雰囲気の場合、0.4〜0.8質量%が必要であった。なお、減少量は用いる粉末、焼結雰囲気などにより左右されるので、実験によりその量を確認した後、目標のC含有量に換算し添加することが必要である。
【0018】
焼結後の組織は気孔を除く素地全体を100%として、85%以上をマルテンサイト組織とすることにより、従来材の熱処理を行ったものと同等の強度のものが得られる。
【0019】
さらに、焼結および冷却後あるいは冷却の過程において、焼結材を150℃以上、300℃以下の温度に保持することにより、マルテンサイト組織は焼戻しマルテンサイトとなって強靭化し、強度がさらに改善される。また、組織としてはより安定化することにより、経時変化、特に寸法変動を抑制する効果を付与することもできる。150℃以上、300℃以下の温度に保持する方法としては、焼結後に室温まで冷却してから戻し炉で再加熱を行う方法があるが、室温まで冷却せずに100℃程度の温度から焼戻し炉へ移送し再加熱することにより、エネルギーの省力化を図ることもできる。さらに焼結ヒートパターンにより、焼結炉を100℃以下に冷却することなく、直接150℃以上、300℃以下の温度に保持することによって、恒温変態が促進され、残留オーステナイトはベイナイトに変態し、マルテンサイトは焼戻されて高い靭性が得られる。また、この手法によれば工程削減によるコストの低減を図ることもできる。なお、上記の温度範囲内に保持する時間(hr)は、製品の最大肉厚(mm)×0.05〜0.10程度が好適である。
【0020】
【発明の実施の形態】
特定組成範囲のNiおよびMoを含む鉄合金粉に、特定量のNi粉、黒鉛粉あるいはさらにCu粉を配合した粉末からなる混合粉末を圧縮成形し、圧粉体を1130〜1300℃の範囲で焼結した後、焼結炉中で所定の冷却速度で冷却することにより、特定の焼入れ組織を有する強度の優れた鉄系焼結合金が得られる。
【0021】
【実施例】
[実施例1]
質量比で4%Ni、0.5%Mo、残部Feからなる合金粉末Aと1.5%Mo、残部Feからなる合金粉末Bに全体組成で4Ni%、1.5Cu%になるようにNi単味粉、Cu単味粉を添加し、さらに焼結後のC含有量が0.5質量%になるように黒鉛粉をそれぞれ添加し、成形潤滑剤としてステアリン酸亜鉛粉を0.8質量%配合し、30分間混合した。混合粉を700MPaで成形したときの密度、および1200℃で60分間分解アンモニアガス中で焼結し、10℃/分の速度で冷却したときの金属組織中のマルテンサイト組織の面積比と曲げ強さを表1に示す。
【0022】
【表1】

Figure 0004054649
【0023】
以上の結果から明らかなように、本発明の焼結材である試料No.3、No.4、No.5の圧縮性は優れており、またマルテンサイト組織の面積比も高いため高強度が得られる。
【0024】
[実施例2]
質量比で4%Ni、0.5%Mo、残部Feからなる合金粉末A50%に質量比で1.5%Mo、残部Feからなる合金粉末Bを50%混合した粉末に全体組成が表2に記載した比率となるように、Ni単味粉、Cu単味粉、黒鉛粉を添加し、成形潤滑剤としてステアリン酸亜鉛粉を0.8質量%配合し、30分間混合した。混合粉を700MPaで成形したときの密度、および1200℃で60分間分解アンモニアガス中で焼結し、10℃/分の速度で冷却したときの金属組織中のマルテンサイト組織の面積比と曲げ強さを表2に示す。
【0025】
【表2】
Figure 0004054649
【0026】
以上の結果から明らかなように、本発明の焼結材である試料No.4、No.5のマルテンサイト組織の面積比は高く高強度が得られる。No.6は焼入れ性に優れマルテンサイト組織が全面に見られたが、Ni粉末の添加量が多く、Niリッチのオーステナイト相が発生し、マルテンサイト組織の量が低下して高い強度が得られていない。
【0027】
【発明の効果】
本発明の焼入れ組織を呈する鉄系焼結合金の製造方法によれば、焼結のみで組織の85%以上がマルテンサイト組織の焼結合金が得られ、焼入れ工程が不要となり、強度の優れた鉄系焼結合金を経済的に製造することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder metallurgy method, and more particularly to a method for producing an iron-based sintered alloy having excellent strength without requiring a quenching step.
[0002]
[Prior art]
Iron-based sintered alloys manufactured by powder metallurgy are widely used in, for example, automobile parts, machine tools, home appliances, and the like because of their excellent economic efficiency. However, in order to respond to the trend of lower prices in various products in recent years, there is a demand for further reduction in the cost of sintered parts. In order to satisfy this requirement, inexpensive iron powder has been developed, but there is a problem that the material characteristics are deteriorated.
Moreover, although the cost is reduced by continuation of manufacturing processes and unmanned manufacturing, sufficient effects are not obtained. With such a background, the present inventors have invented a method for producing a sintered alloy that does not require a quenching step in Japanese Patent Application Laid-Open No. 9-87794. However, it has become impossible to meet the recent demand for higher strength even if this material is used.
[0003]
[Problems to be solved by the invention]
As a method of obtaining high-strength parts without quenching, there is a material that has been martensitic transformed at the cooling rate during sintering using alloy powder with excellent hardenability, but the cooling rate of a normal sintering furnace Is 5 to 20 ° C./min. In order to obtain a martensite structure at this cooling rate, the amount of alloy element added is increased, the compressibility is significantly reduced, and the strength is lowered.
[0004]
On the other hand, a powder obtained by adding powders such as Ni, Cu, and Mo that improve hardenability to pure iron powder, or a composite alloy of these powders is excellent in compressibility, but the alloy component of the sintered body is poor. Since it becomes uniform, a part of metal structure can be made into a martensite structure. However, it is difficult to make a martensitic structure 85% or more of the structure under normal sintering conditions.
[0005]
The present invention is intended to provide a novel method for producing an iron-based sintered alloy having a strength equivalent to that of a conventional quenching material without quenching in consideration of such a technical state. is there.
[0006]
[Means for Solving the Problems]
In order to achieve the above objectives, various studies have been conducted to improve hardenability and minimize the decrease in compressibility. As a result, alloy powders with excellent hardenability and alloy powders with excellent compressibility are mixed. Further, by adding an element for improving hardenability in the form of a simple powder, a decrease in strength due to a decrease in compressibility is suppressed, and in a metal structure at a cooling rate of 5 to 20 ° C./min in a normal sintering furnace. It was found that an iron-based sintered alloy having a martensite structure of 85% or more can be obtained. In general, the martensite structure exhibits a structure in which untransformed austenite remains and is dispersed between martensite crystals, and the present application includes such a transformation.
[0007]
That is, in the method for producing an iron-based sintered alloy exhibiting a quenched structure according to the present invention, the composition of the powder is, by mass ratio, Ni: 3 to 5%, Mo: 0.4 to 0.7%, the balance: Fe and The mass ratio of the Fe—Ni—Mo alloy powder made of inevitable impurities and the composition of the powder is, by mass ratio, Mo: 0.5 to 2%, the balance: Fe—Mo alloy powder made of Fe and inevitable impurities, Ni powder and graphite so that the amount of Ni in the overall composition is 4-6% by mass and the amount of C after sintering is 0.2-0.7% by mass The mixed powder to which the powder is further added is compression-molded in a mold, and the obtained green compact is sintered in a non-oxidizing atmosphere in the range of 1130 to 1300 ° C., and then in a sintering furnace at 5 ° C. / Min. Or more, cooling at a rate of 20 ° C./min or less, the metal structure excluding the pores after sintering, by area ratio, 5% or more is characterized in that a martensitic structure.
[0008]
It is preferable to use a powder obtained by forming a Ni alloy and / or a Cu powder into a composite alloy (partially diffused and fixed) to the Fe—Ni—Mo alloy powder and / or the Fe—Mo alloy powder.
[0009]
In addition, after cooling to 100 ° C. or lower after the sintering, it is further heated and held at a temperature of 150 ° C. or higher and 300 ° C. or lower, or held at a temperature of 150 ° C. or higher and 300 ° C. or lower during cooling in a sintering furnace. This is more preferable.
[0010]
When alloy powder is used as the main component of the mixed powder and elements necessary for improving the hardenability are added in the form of a simple powder, the powder compressibility is higher and the density is higher than when using the complete alloy powder. It becomes easy to obtain a sintered alloy. However, when the content of alloying elements in the alloy iron powder is less than a predetermined amount, or in the case of a mixed powder in which Ni powder, Mo powder and Cu powder are added to pure iron powder so as to have a predetermined composition of the sintered alloy. Therefore, it becomes difficult to obtain a sintered alloy having a desired quenched structure by diffusing these elements throughout the base.
[0011]
As the types of alloy elements added to the alloy iron powder, Ni and Mo which are effective in improving hardenability and have little decrease in compressibility are effective. Further, the content is determined by the hardenability and compressibility of the material, and in terms of mass ratio, Ni: 3 to 5%, Mo: 0.4 to 0.7%, the balance of Fe Fe composition -Ni-Mo alloy powder and Fe-Mo alloy powder composed of Mo: 0.5-2% and the balance Fe are used in a ratio of 5: 95-70: 30. Bonds are obtained.
[0012]
Fe-Ni-Mo alloy powder has poor effect of improving hardenability when the content of Ni and Mo is less than 3% by mass and less than 0.4% by mass, respectively, and when the content exceeds 5% by mass and 0.7% by mass, respectively. Becomes hard and compressibility decreases. Further, the Fe—Mo alloy powder has a poor effect of improving the hardenability when the Mo content is less than 0.5% by mass, and if it exceeds 2% by mass, the powder becomes hard and the compressibility is lowered.
[0013]
Using these Fe—Ni—Mo alloy powder and Fe—Mo alloy powder not added, mixing is performed so that the mass ratio of Fe—Ni—Mo alloy powder and Fe—Mo alloy powder is 5:95 to 70:30. Thus, for example, at a molding pressure of 6 t / cm 2 , the molding density becomes 6.9 g / cm 3 or more, and compressibility higher than that of a conventional complete alloy powder can be obtained. When the added amount of the Fe—Ni—Mo alloy powder exceeds the upper limit, the compressibility is lowered and the material strength is lowered. In addition, when the addition amount of the Fe-Mo alloy powder exceeds the upper limit, even if a simple powder of an alloy element that improves hardenability is added, 85% or more of the metal structure can be martensitic. It cannot be done and the material strength decreases.
[0014]
Only by adding graphite powder to this alloy powder, only a bainite structure can be obtained. Therefore, in order to obtain a martensite structure of 85% or more, it is necessary to further improve the hardenability, and to improve the hardenability. It is necessary to add the element as a simple powder. As the element, Cu, Ni, Mn, Cr, and the like can be considered. When considering the sinterability, Ni is the most effective for improving the hardenability, and then Cu is the most effective. If the amount of Cu powder added is less than 1%, the effect is not recognized. If the amount exceeds 3%, the impact value decreases, so the amount is set to 1 to 3% by mass. In addition to improving the hardenability, Ni has an effect of suppressing embrittlement due to Cu. When the total amount of Ni powder is less than 4%, the effect is not recognized, and when it exceeds 6%, the martensite structure tends to decrease and the strength tends to decrease due to the austenite structure that is an undiffused phase of Ni. The range is preferably 4 to 6% by mass.
[0015]
When the Ni powder and Cu powder are used as a partial diffusion alloy powder partially diffused and fixed to the Fe-Ni-Mo alloy powder and / or Fe-Mo alloy powder, the compressibility is not impaired. It is preferable because the alloy element is easily diffused into the base.
[0016]
The cooling rate at the time of sintering is determined by the CCT diagram of the material, and is 5 ° C./min or more so that martensite is 85% or more in terms of the area ratio of the structure. Further, if the cooling rate exceeds 20 ° C./min, a new cooling device is required on the equipment and the sintering cost is increased. Therefore, the temperature is set to 5 ° C./min or more and 20 ° C./min or less.
[0017]
C may be added in the form of graphite powder or by a carburizing gas in a sintering atmosphere, but it must be added as graphite in order to obtain a uniform martensite structure. The addition amount may be determined so that the C content after sintering is 0.2 to 0.7% by mass. When the C content after sintering is less than 0.2%, it is impossible to obtain a martensite structure with an area ratio of 85%. On the other hand, when the C content exceeds 0.7%, the residual austenite phase is not obtained. In addition, since cementite precipitates along the grain boundaries, the strength decreases. For this reason, the range of C content after sintering shall be 0.2-0.7 mass%. Since the sintering is performed after the graphite powder is added, the C content after the sintering is somewhat less than before the sintering. In the case of the reducing atmosphere with the decomposed ammonia gas used by the inventors, the actual amount of graphite powder required was 0.4 to 0.8 mass%. The amount of reduction depends on the powder used, the sintering atmosphere, and the like. Therefore, after confirming the amount by experiment, it is necessary to convert to the target C content and add it.
[0018]
The structure after sintering is 100% of the whole substrate excluding pores and the martensite structure is 85% or more, so that a structure having the same strength as that obtained by heat treatment of the conventional material can be obtained.
[0019]
Furthermore, by maintaining the sintered material at a temperature of 150 ° C. or higher and 300 ° C. or lower after sintering and cooling or in the cooling process, the martensite structure becomes tempered martensite and is toughened, and the strength is further improved. The Further, by stabilizing the structure, it is possible to impart an effect of suppressing a change with time, particularly a dimensional variation. As a method for maintaining the temperature at 150 ° C. or more and 300 ° C. or less, there is a method of cooling to room temperature after sintering and then reheating in a return furnace, but tempering from a temperature of about 100 ° C. without cooling to room temperature. Energy saving can also be achieved by transferring to a furnace and reheating. Furthermore, by maintaining the sintering furnace directly at a temperature of 150 ° C. or more and 300 ° C. or less without cooling the sintering furnace to 100 ° C. or less by the sintering heat pattern, the isothermal transformation is promoted, and the residual austenite is transformed into bainite, Martensite is tempered to obtain high toughness. Moreover, according to this method, the cost can be reduced by reducing the number of processes. In addition, as for the time (hr) hold | maintained in said temperature range, the maximum thickness (mm) of product * 0.05-0.10 is suitable.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
A mixed powder composed of a powder obtained by blending a specific amount of Ni powder, Ni powder, graphite powder or further Cu powder into iron alloy powder containing Ni and Mo in a specific composition range is compression molded, and the green compact is in the range of 1130 to 1300 ° C. After sintering, by cooling at a predetermined cooling rate in a sintering furnace, an iron-based sintered alloy having a specific quenched structure and excellent strength can be obtained.
[0021]
【Example】
[Example 1]
The alloy powder A and the alloy powder B consisting of 4% Ni, 0.5% Mo and the remaining Fe in mass ratio and the alloy powder B consisting of the remaining Fe and Ni to have a total composition of 4Ni% and 1.5Cu%. A simple powder and a simple Cu powder are added, and graphite powder is added so that the C content after sintering is 0.5 mass%, and 0.8 mass of zinc stearate powder as a molding lubricant. % And mixed for 30 minutes. Density when mixed powder is molded at 700 MPa, and area ratio and bending strength of martensitic structure in metal structure when sintered in decomposed ammonia gas at 1200 ° C. for 60 minutes and cooled at a rate of 10 ° C./min Table 1 shows the length.
[0022]
[Table 1]
Figure 0004054649
[0023]
As is clear from the above results, the compressibility of Samples No. 3, No. 4, and No. 5, which are the sintered materials of the present invention, is excellent, and since the area ratio of the martensite structure is high, high strength can get.
[0024]
[Example 2]
Table 2 shows the total composition of a powder obtained by mixing 50% of an alloy powder B consisting of 4% Ni, 0.5% Mo and the balance Fe, 50% by weight, and 1.5% Mo and the balance Fe consisting of the balance Fe. Ni simple powder, Cu simple powder, and graphite powder were added, and 0.8 mass% of zinc stearate powder was blended as a molding lubricant and mixed for 30 minutes. Density when mixed powder is molded at 700 MPa, and area ratio and bending strength of martensitic structure in metal structure when sintered in decomposed ammonia gas at 1200 ° C. for 60 minutes and cooled at a rate of 10 ° C./min Table 2 shows the length.
[0025]
[Table 2]
Figure 0004054649
[0026]
As is clear from the above results, the area ratio of the martensitic structures of samples No. 4 and No. 5 which are the sintered materials of the present invention is high, and high strength is obtained. No. 6 was excellent in hardenability and a martensite structure was observed on the entire surface, but the amount of Ni powder added was large, a Ni-rich austenite phase was generated, the amount of martensite structure was reduced, and high strength was obtained. Not.
[0027]
【The invention's effect】
According to the method for producing an iron-based sintered alloy exhibiting a quenched structure according to the present invention, a sintered alloy having a martensite structure of 85% or more of the structure can be obtained only by sintering, and a quenching step is not required and the strength is excellent. An iron-based sintered alloy can be produced economically.

Claims (4)

粉末の組成が、質量比で、Ni:3〜5%、Mo:0.4〜0.7%、残部:Feおよび不可避不純物よりなるFe−Ni−Mo合金粉末と、粉末の組成が、質量比で、Mo:0.5〜2%、残部:Feおよび不可避不純物よりなるFe−Mo合金粉末との質量比が、5:95〜70:30になるように配合するとともに、全体組成におけるNi量が4〜6質量%、焼結後のC量が0.2〜0.7質量%となるようNi粉末と黒鉛粉末をさらに添加した混合粉末を、金型内で圧縮成形し、得られた圧粉体を非酸化性雰囲気中で1130〜1300℃の範囲で焼結した後、焼結炉中で5℃/分以上、20℃/分以下の速度で冷却して、焼結後の気孔部を除く金属組織を、面積比で、85%以上がマルテンサイト組織とすることを特徴とする焼入れ組織を呈する鉄系焼結合金の製造方法。The composition of the powder is, by mass ratio, Ni: 3-5%, Mo: 0.4-0.7%, the balance: Fe-Ni-Mo alloy powder composed of Fe and inevitable impurities, and the composition of the powder is mass Ratio: Mo: 0.5 to 2%, balance: Fe and Fe—Mo alloy powder composed of inevitable impurities and a mass ratio of 5:95 to 70:30, and Ni in the overall composition It is obtained by compression-molding a mixed powder in which Ni powder and graphite powder are further added so that the amount is 4-6 mass% and the amount of C after sintering is 0.2-0.7 mass%. After sintering the green compact in the range of 1130 to 1300 ° C. in a non-oxidizing atmosphere, it is cooled at a rate of 5 ° C./min to 20 ° C./min in a sintering furnace. Hardened structure characterized in that the metal structure excluding the pores has a martensite structure with an area ratio of 85% or more. Method of manufacturing the iron-based sintered alloy exhibits. 前記混合粉末にCu粉末を配合するとともに、全体組成におけるCu量が1〜3質量%であることを特徴とする請求項1に記載の焼入れ組織を呈する鉄系焼結合金の製造方法。The method for producing an iron-based sintered alloy exhibiting a quenched structure according to claim 1, wherein Cu powder is blended with the mixed powder, and the amount of Cu in the overall composition is 1 to 3 mass%. 前記Ni粉末および/またはCu粉末が、前記Fe−Ni−Mo合金粉末および/または前記Fe−Mo合金粉末に複合合金化(部分的に拡散して固着)されていることを特徴とする請求項1または2に記載の焼入れ組織を呈する鉄系焼範合金の製造方法。The Ni powder and / or Cu powder is composite-alloyed (partially diffused and fixed) to the Fe-Ni-Mo alloy powder and / or the Fe-Mo alloy powder. A method for producing an iron-based normal alloy exhibiting the quenched structure according to 1 or 2. 焼結後に100℃以下まで冷却した後、さらに150℃以上、300℃以下の温度に加熱し保持すること、または焼結炉内で冷却中に150℃以上300℃以下の温度で保持することを特徴とする請求項1から3のいずれかに記載の焼入れ組織を呈する鉄系焼結合金の製造方法。After cooling to 100 ° C. or lower after sintering, further heating and holding at a temperature of 150 ° C. or higher and 300 ° C. or lower, or holding at a temperature of 150 ° C. or higher and 300 ° C. or lower during cooling in a sintering furnace. The manufacturing method of the iron-type sintered alloy which exhibits the hardened structure in any one of Claim 1 to 3 characterized by the above-mentioned.
JP2002288441A 2002-10-01 2002-10-01 Method for producing ferrous sintered alloy exhibiting quenched structure Expired - Lifetime JP4054649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288441A JP4054649B2 (en) 2002-10-01 2002-10-01 Method for producing ferrous sintered alloy exhibiting quenched structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288441A JP4054649B2 (en) 2002-10-01 2002-10-01 Method for producing ferrous sintered alloy exhibiting quenched structure

Publications (2)

Publication Number Publication Date
JP2004124141A JP2004124141A (en) 2004-04-22
JP4054649B2 true JP4054649B2 (en) 2008-02-27

Family

ID=32280933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288441A Expired - Lifetime JP4054649B2 (en) 2002-10-01 2002-10-01 Method for producing ferrous sintered alloy exhibiting quenched structure

Country Status (1)

Country Link
JP (1) JP4054649B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405845B1 (en) 2012-08-10 2014-06-11 기아자동차주식회사 Method for manufacturing of valve train parts using with metal powder injection molding
EP3950174A4 (en) * 2019-04-05 2022-06-08 JFE Steel Corporation Iron-based mixed powder for powder metallurgy, and iron-base sintered body

Also Published As

Publication number Publication date
JP2004124141A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3504786B2 (en) Method for producing iron-based sintered alloy exhibiting quenched structure
CN1662327B (en) Prealloyed iron-based powder, a method of producing sintered components and a component
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
US20050123432A1 (en) Method of producing powder metal parts
US5605559A (en) Alloy steel powders, sintered bodies and method
JP3258765B2 (en) Manufacturing method of high-strength iron-based sintered body
JP3698409B2 (en) Sintered sprocket
US20080025863A1 (en) High carbon surface densified sintered steel products and method of production therefor
JP4054649B2 (en) Method for producing ferrous sintered alloy exhibiting quenched structure
JP3272886B2 (en) Alloy steel powder for high strength sintered body and method for producing high strength sintered body
JP2000064001A (en) Powder mixture for high strength sintered parts
JPH0849047A (en) Alloy steel powder for powder metallurgy
JPS6318001A (en) Alloy steel powder for powder metallurgy
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JPH09157805A (en) High strength iron base sintered alloy
JP4093070B2 (en) Alloy steel powder
JP3303026B2 (en) High strength iron-based sintered alloy and method for producing the same
JPH06212368A (en) Low alloy sintered steel excellent in fatigue strength and its production
JPS58133301A (en) Preparation of sintered forged product
JPS5923840A (en) Production of high strength sintered material
JPH07103442B2 (en) Manufacturing method of high strength sintered alloy steel
JPS61183444A (en) High strength sintered alloy and its manufacture
JP2005146342A (en) Method of producing iron based sintered alloy
JPS5850308B2 (en) High strength sintered steel and its manufacturing method
JPS62167843A (en) Production of high-strength sintered alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4054649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term