JPS6127671A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6127671A
JPS6127671A JP10351985A JP10351985A JPS6127671A JP S6127671 A JPS6127671 A JP S6127671A JP 10351985 A JP10351985 A JP 10351985A JP 10351985 A JP10351985 A JP 10351985A JP S6127671 A JPS6127671 A JP S6127671A
Authority
JP
Japan
Prior art keywords
regions
type
field effect
region
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10351985A
Other languages
Japanese (ja)
Inventor
Michihiro Oota
太田 道宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10351985A priority Critical patent/JPS6127671A/en
Publication of JPS6127671A publication Critical patent/JPS6127671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind

Abstract

PURPOSE:To make the distance between source drain regions and channel stopper regions long enough as well as to make small the chip of a integrated circuit device, by a method wherein channel regions, source regions and drain regions are formed at low density regions which are provided at a semiconductor base plate. CONSTITUTION:Windows are opened by forming silicon oxide films 10 on the surface of an N type silicon base plate 1, and P type inpurities are injected. P type inpurities are diffused by high temperature heat treating, and inpurities regions 11 are deeply formed lower than the base plate 1. The surface of the regions 11 are covered with silicon oxide films 101, and windows are opened on films 101 and P type inpurities are diffused, and source regions 2 and drain regions 3 are formed, and windows are covered with silicon oxide films 10. Gate insulating films 4 are formed, and a MOS electrical field effect transistor is obtained providing gate electrodes 5, source electrodes 6 and drain electrodes 7. A channel stopper becomes a A part of the base plate 1, and sufficiently narrow width of it can be obtained, and the integrated density of the transistor can be made high.

Description

【発明の詳細な説明】 本発明はMO8電界効果トランジスタを備えた半導体装
@に関するもので特にチャンネルストッパーを有するM
O8電界効果トランジスタ及びそ従来、MO−泊電界効
果トランジスタは半導体基板表面近傍に形成されるソー
ス領域とドレイン領域と、このソース領域とドレイン領
域とにわたって半導体基板表面に形成されるゲート絶縁
膜とからなり、さらに金属電極がゲート絶縁膜上、ソー
ス領域及びドレイン領域にそれぞれ形成されている。さ
らに高電源で使用されるMO8電界効果トランジスタ及
びその集積回路装置tK於いては、その電源電圧で講動
作する事のない様にソースおよびドレインの周囲やMO
8電界効果トランジスタ間にチャンネルストッパーを設
けている。多くの場合このチャンネルストッパーは半導
体基板と同一導電型で基板より高い不純物濃度の領域で
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device equipped with an MO8 field effect transistor, and particularly relates to a semiconductor device equipped with an MO8 field effect transistor, and in particular, an M
O8 field effect transistors and conventional MO field effect transistors consist of a source region and a drain region formed near the surface of a semiconductor substrate, and a gate insulating film formed on the surface of the semiconductor substrate over the source region and drain region. Further, metal electrodes are formed on the gate insulating film and in the source region and drain region, respectively. Furthermore, in the MO8 field effect transistor and its integrated circuit device tK used at high power supply, the surroundings of the source and drain and the MO8 field effect transistor are
A channel stopper is provided between the eight field effect transistors. In many cases, this channel stopper is a region having the same conductivity type as the semiconductor substrate and having a higher impurity concentration than the substrate.

またエンハンスメント型とデプレション型のそれぞれの
MO8電界効果トランジスタを同一基板に形成する集積
回路装置はいくつかの方法で製造されている。たとえば
ゲート絶縁膜の種類やその厚さを変える構造で得る方法
。ドーグドオキサイド膜やイオン注入技術によりゲート
絶縁膜下の半導体基板の導電型と不純物濃度を変える方
法がある。
Also, integrated circuit devices in which enhancement type and depletion type MO8 field effect transistors are formed on the same substrate are manufactured by several methods. For example, a method can be obtained by changing the type and thickness of the gate insulating film. There is a method of changing the conductivity type and impurity concentration of the semiconductor substrate under the gate insulating film using a doped oxide film or ion implantation technology.

次にこれら蝦来のMO8電界効果トランジスタ及びその
集S[rjJ路装置について図面を用いて説明する。
Next, these conventional MO8 field effect transistors and their assembly S[rjJ path device will be explained with reference to the drawings.

先ず第1図(a)に示す様に半導体基板1の表面近傍に
ソース軸域2とドレイン領域3とを形成し。
First, as shown in FIG. 1(a), a source axis region 2 and a drain region 3 are formed near the surface of a semiconductor substrate 1.

次[141図(1))に示す様にソース領域2およびド
レイン領3とから所要の距離を離してチャンネルストッ
パー8を半導体基板1より高い不純物濃度で形成する。
Next, as shown in FIG. 141 (1), a channel stopper 8 is formed with a higher impurity concentration than the semiconductor substrate 1 at a required distance from the source region 2 and drain region 3.

その徒弟1図(C)に示す様にダート絶縁膜4.リース
電極5.ドレイン電@6.ゲート電極7を形成してMO
8電界効果トランジスタを得る。また第1図(b)の工
程の後に第2図(a)に示す様にゲート絶縁膜4をソー
ス領域2とドレイン領域3とにまたがる半導体基板1の
表面に形成する。
As shown in Figure 1 (C), the dirt insulating film 4. Lease electrode5. Drain electricity @6. After forming the gate electrode 7, the MO
8 field effect transistors are obtained. Further, after the step shown in FIG. 1(b), a gate insulating film 4 is formed on the surface of the semiconductor substrate 1 spanning the source region 2 and drain region 3, as shown in FIG. 2(a).

その徒弟2図(b)に示す様に所要のMO8電界効果ト
ランジスタのゲート絶縁膜4以外を感光性樹脂し20で
被い、半導体基板1の全面にイオン注入法で半導体基板
lとは反対導電型を与える不純物を注入し、ゲート絶縁
膜4の下の半導体基板表面近傍9の導を型を反転させる
。その後第2図(C)に示す様に電極を考琲すると同一
基板上にエンハンスメント型とテプレション型のそれぞ
れのMO8電界効果トランジスタを持つ集積回路装置が
得られる。この様な値米のM 08電界効果トランジス
タに於いてはソース領域2及びドレイン領域3のそれぞ
れとチャンネルストッパー8をそれぞれ拡散法によって
形成する場合に、予めソース領域2及びドレイン領域3
のそれぞれとチャンネルストッパーの間隔管広けておく
必’tがある。すなわち第3図(a)に示す轡にソース
領域2又はドレイン領域3とチャンネルストッパー8と
の間隔/Hこれを形成するそれぞれの窓間の距離りより
短かく。
As shown in Figure 2 (b), the required MO8 field effect transistor except the gate insulating film 4 is covered with a photosensitive resin 20, and the entire surface of the semiconductor substrate 1 is implanted with ion implantation to form a conductor opposite to that of the semiconductor substrate 1. Impurities that provide a type are implanted to invert the type of conductivity in the vicinity of the surface of the semiconductor substrate 9 under the gate insulating film 4. After that, as shown in FIG. 2(C), by considering the electrodes, an integrated circuit device having an enhancement type MO8 field effect transistor and a depression type MO8 field effect transistor on the same substrate is obtained. In the M08 field effect transistor having such a value, when forming the source region 2 and drain region 3 and the channel stopper 8 by the diffusion method, the source region 2 and the drain region 3 are formed in advance.
It is necessary to widen the distance between each of the channels and the channel stopper. That is, in the case shown in FIG. 3(a), the distance between the source region 2 or drain region 3 and the channel stopper 8 is shorter than the distance between the respective windows forming this distance.

一般VC/ HLのおおよそ50〜90%である。従っ
て15r輩のlの距離を得るためにe−tLfl/の1
0〜100X長くしなければなら愈い。一方チヤンネル
ストッパー8のfImsを予め狭くすることは感光性樹
脂膜を用いる技術でFi限度があり、あまり狭くは出来
ない。従りてソース領域2およびドレイン領域3のそれ
ぞれとチャンネルストッパー8との間の距離を長、−<
、7る拳けM08%界効−トランジスタやその集、−路
装置のチップを大きくする欠点がある。集積回路装置で
はMO8O8電界効果トランタフ2間線は半導体基板上
め絶縁膜上に形成するが、配線下のチャンネルストッパ
ーを設けると同量にチャンネルストッパー上の絶縁膜も
厚くする必要がある。たとえにシリコン基板を用いた集
積回路装置の場合Kl:t、ソース領域、ド領域ノドレ
イン領域ンネルストッパーを拡散法で形成している例が
多く、チャンネルストッパーを拡散した彼に熱酸化法で
シリコン酸化膜をチャンネルストッパー上に形成すると
高温で長時間の熱酸化が必要である。しかしこの場合に
はチャンネルストッパーけさらに拡散されて幅が広くな
る。
It is approximately 50-90% of general VC/HL. Therefore, to obtain the distance l of 15r, 1 of e-tLfl/
I have to make it 0-100X longer. On the other hand, it is not possible to narrow fIms of the channel stopper 8 in advance because there is a Fi limit in the technology using a photosensitive resin film. Therefore, the distance between each of the source region 2 and drain region 3 and the channel stopper 8 is set to be long, −<
, 7 RU KEK M08% Field Effect - Transistors and their collections have the disadvantage of increasing the size of the chip of the circuit device. In an integrated circuit device, a line between two MO8O8 field effect transistors is formed on an insulating film on a semiconductor substrate, but if a channel stopper is provided under the wiring, the insulating film on the channel stopper must be made thicker by the same amount. For example, in the case of an integrated circuit device using a silicon substrate, there are many cases in which the channel stopper is formed by the diffusion method. Forming a film on the channel stopper requires thermal oxidation at high temperatures and for a long time. However, in this case, the channel stopper is further diffused and becomes wider.

その結果、集積回路装置のチップをさらに大きくする欠
点かある。
As a result, there is the disadvantage that the chip of the integrated circuit device becomes larger.

本発明社上記の欠点管除くためになされたものであり、
そのI#徴とするところFiMO8電界効果トランジス
タのソース領域又はドレイン領域とチャンネルストッパ
ーとの距*’を十分長くする事が出来、しかも所振幅だ
けのチャンネルストッパーを形成する事阻米’、)MO
B電界効果トランジスタやその集積回路装置のチップ管
小さく出来、かつト 同一基板上に容易に工ンハンスメ〉豫とデルジョン型の
それぞれのMO8電界効果トランジスタを持つ集積回路
装gl會得られる点にある。
This invention was made in order to eliminate the above-mentioned defects,
The I# feature is that it is possible to make the distance *' between the source region or drain region of the FiMO8 field effect transistor and the channel stopper sufficiently long, and it is also impossible to form a channel stopper with the required amplitude.
B field effect transistors and integrated circuit devices thereof can be made small in size, and an integrated circuit device having MO8 field effect transistors of the type MO8 and del John type can be easily manufactured on the same substrate.

以下本発94を図面を用いて詳細に説明する。The present invention 94 will be explained in detail below using the drawings.

第4図(a)に示す様KN型半導体基板たとえばシリコ
ン基板lの表面にシリコン酸化膜10e所費の厚さだけ
形成し、シリコン酸化jllOの一部に窓tあけ半導体
基板lの表面の一部を篇出させる。
As shown in FIG. 4(a), a silicon oxide film 10e is formed on the surface of a KN-type semiconductor substrate, for example, a silicon substrate l, and a window t is formed in a part of the silicon oxide layer on one part of the surface of the semiconductor substrate l. Have the section published.

次に第4図(b) Ic示す様にたとえばイオン注入法
で半導体基板1と蝶逆の導電型すなわちP型を与える不
純物會注入する。注入された不純物濃度はN型半導体基
板lの不純物濃度より高くする。次に11!I;、 4
 V(cHc示tllKソovk&i&)熱処理をして
P型金与える不純物証拡散させ、N型半導体基板1より
低い不純物製置の領域11を深く形成する。
Next, as shown in FIG. 4(b) Ic, an impurity is implanted using, for example, an ion implantation method to give a conductivity type opposite to that of the semiconductor substrate 1, that is, P type. The implanted impurity concentration is made higher than the impurity concentration of the N-type semiconductor substrate l. Next is 11! I;, 4
A heat treatment is performed to diffuse the impurity into the P-type semiconductor substrate 1, thereby forming a region 11 with impurity concentration lower than that of the N-type semiconductor substrate 1.

7ih温熱処理時にその雰囲気をたとえば酸素や水蒸気
の雰囲気で行危うと低不純物濃度領域110表面はシリ
コン酸化@101で被われる。次に第4図(d) K示
す様に低不物濃度領域11の表面上のシリコン酸化膜に
窓ひあけて半導体基も、1どは逆導電型を与えるすなわ
ちP型を与える不純物を拡散し、ソース領域2とドレイ
ン領域3とを形成し。
If the atmosphere is, for example, oxygen or water vapor during the 7ih thermal treatment, the surface of the low impurity concentration region 110 will be covered with silicon oxide@101. Next, as shown in FIG. 4(d) K, a window is opened in the silicon oxide film on the surface of the low impurity concentration region 11, and an impurity which gives the semiconductor base the opposite conductivity type, that is, the P type, is diffused. Then, a source region 2 and a drain region 3 are formed.

シリコン酸化膜10で鰺を被う。次に第4図(e)に示
す様にソース領域2とドレイン@城3との開にわたって
半導体基板1上のシリコン酸化膜10を除きゲート絶縁
膜4を形成する。その仮第4図(f)に示ず様にゲート
絶l&膜4上とソース領域2およびドレイン領域3上の
それぞれの−14”=にゲート電接5.ノース電極6お
よびト“レイン電極7を設けてMO8電昇効来トランジ
スタが得バれる。
Cover the mackerel with a silicon oxide film 10. Next, as shown in FIG. 4(e), a gate insulating film 4 is formed by removing the silicon oxide film 10 on the semiconductor substrate 1 over the opening between the source region 2 and the drain layer 3. Then, as shown in FIG. As shown in FIG. 4(f), the gate electrode 5, the north electrode 6 and the drain electrode 7 are connected to -14''= on the gate electrode 1&layer 4 and on the source region 2 and drain region 3, respectively. A MO8 voltage boosting effect transistor can be obtained by providing .

以上の本発明によって得られるMO8電界効果トランジ
スタではチャンネルストッパーの幅が不必要に広がらず
に断髪の狭いgK抑える事が出来。
In the MO8 field effect transistor obtained by the present invention as described above, the width of the channel stopper does not increase unnecessarily, and gK can be suppressed with a narrow hair cut.

MO8電界効釆トランジスタやその集積回路装置のチッ
グサイズ管小はく出来、かつチャンネルストツバ−上の
シリコン版化膜の厚さliノース領域。
The thickness of the silicon plated film on the chip size tube and channel stopper of MO8 field effect transistors and their integrated circuit devices.

ドレイン領域等の他の部分より容易に厚く出来る。It can be easily made thicker than other parts such as the drain region.

さらに同−基板上舌(ンハンスメント型とデプレション
型のそれぞeMMO8電界効果トランジヌタを持つ集積
回路装置が容易に得られる。
Furthermore, an integrated circuit device having enhancement type and depletion type eMMO8 field effect transistors on the same substrate can be easily obtained.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

第4図(a)に於いてN型で不純物濃度がlXl015
〜l Q 17−”の半導体基板たとえばシリコン基板
1の表面にシリコン酸化膜10を5000〜15000
Aの厚さだけ熱酸化や気相成長法等で形成し、所要の広
さの面積だけのシリコン酸化膜を取り除き窓をあける。
In Figure 4(a), it is N type and the impurity concentration is lXl015.
A silicon oxide film 10 with a thickness of 5,000 to 15,000
It is formed by thermal oxidation, vapor phase growth, etc. to a thickness of A, and a window is opened by removing the silicon oxide film of the required area.

次に第4図(b)に示される1100〜1200°0の
高温で酸素雰囲気で5〜20時間の熱処理を行なうと第
4図(C)に示される様な表面不純物濃度が5×10〜
5X1016tM−3で半導体基板表面からの深さが2
〜15μのN型かP型かの低不純物濃度領域11が得ら
れる。この場合イオン注入条件や熱処理条件等により低
不純物濃度領域11の不純物濃度や導電型は選択出来る
。この実施例ではN型で深さが4〜8μ低不純物濃度の
領域117\声ると酸素中の高温熱処理により、低不純
物Ii’1iPfi域1】の表面には3000〜100
OOAのシリコン酸化膜で被われる。次に第4図(d)
 K示される様にシリコン酸化Jlu101に窓をあけ
てボロン拡散を行ない、ソース領域2とドレイン領域3
を形成する。その後熱酸化静でシリコン酸化膜101で
ソース領域ドレイン領域形成のためにあけた窓を被い、
深さが1.5〜2.0μのソース領域2.ドレイン領域
3が得られる。
Next, when heat treatment is performed for 5 to 20 hours in an oxygen atmosphere at a high temperature of 1100 to 1200°0 as shown in Figure 4(b), the surface impurity concentration decreases to 5x10~ as shown in Figure 4(C).
5X1016tM-3, depth from the semiconductor substrate surface is 2
An N-type or P-type low impurity concentration region 11 of ~15 μm is obtained. In this case, the impurity concentration and conductivity type of the low impurity concentration region 11 can be selected depending on the ion implantation conditions, heat treatment conditions, etc. In this example, the N-type low impurity concentration region 117 with a depth of 4 to 8 μm is formed on the surface of the low impurity concentration Ii'1iPfi region 1 by high temperature heat treatment in oxygen.
Covered with OOA silicon oxide film. Next, Figure 4(d)
As shown in K, a window is opened in silicon oxide Jlu 101 and boron is diffused to form source region 2 and drain region 3.
form. After that, the windows opened for forming the source region and the drain region are covered with a silicon oxide film 101 by thermal oxidation.
Source region with a depth of 1.5-2.0μ2. A drain region 3 is obtained.

その後第4図(e)に示す様なゲート絶縁膜4たとえば
1000〜1sooXのシリコン酸化膜を形成する。次
に第4図(f)に示す様にゲート電極5.ソース電極6
.トレイン電極7をA/で形成してMO8電界効果トラ
ンジスタが得られる。この実施例に於いてはチャンネル
ストッパーがソース領域2とドレイン領域3のそれぞれ
と最小2μの間隔を保持する様に形成されている。この
構造のMO8電界効果トランジスタではその閾値電圧は
低不純物11m領域11によって所要の値が得られ。
Thereafter, a gate insulating film 4 as shown in FIG. 4(e), for example, a silicon oxide film having a thickness of 1000 to 1 sooX is formed. Next, as shown in FIG. 4(f), the gate electrode 5. Source electrode 6
.. A MO8 field effect transistor is obtained by forming the train electrode 7 with A/. In this embodiment, the channel stopper is formed to maintain a minimum distance of 2 μ from each of the source region 2 and drain region 3. In the MO8 field effect transistor having this structure, the required threshold voltage can be obtained by the low impurity 11m region 11.

マタソース、ドレインのそれぞれとチャンネルストッパ
ーとの間の耐圧も10〜50Vの範囲で得られる。
The breakdown voltage between each of the master source and drain and the channel stopper can also be obtained in the range of 10 to 50V.

上記実施例に於いては低不純物#1度領域9をN型の導
電型としたのでエンハンスメントaのMO8電界効果ト
ランジスタが得られたが、他の実施例として低不純物濃
度領域11を形成する条件のイ92を持つデプレション
型のMO8電界効果トランジスタが得られる。
In the above embodiment, the low impurity #1 degree region 9 was made of N type conductivity type, so that an MO8 field effect transistor with enhancement a was obtained; however, in other embodiments, the conditions for forming the low impurity concentration region 11 are A depletion type MO8 field effect transistor having a 92 is obtained.

次に他の実施例として同−基板上忙複数個のMO8電界
効果トランジスタを形成する集積回路装置Vc於いて第
4図(a)〜(f)と同様の条件でMOi9電界効果ト
ランジスタを製作した場合のとなりあったMO8電界効
果トランジスタを第6図に示す。
Next, as another example, an MOi9 field effect transistor was manufactured under the same conditions as shown in FIGS. 4(a) to (f) using the same integrated circuit device Vc for forming a plurality of MO8 field effect transistors on the same substrate. An adjacent MO8 field effect transistor is shown in FIG.

この図でとなりあり九MO8電界効果トランジスタを遮
断するチャンネルストッパーは半導体基板lのAsとな
りこの@Fiたとえば1〜5μと十分に狭i幅の啄のが
得られ、MO8電界効果トランジスタの集積密*1−従
来の構造haも高くする事が出来る。
In this figure, the channel stopper that blocks the MO8 field effect transistor next to it is As of the semiconductor substrate l, and a sufficiently narrow i width of 1 to 5μ, for example, can be obtained, and the integration density of the MO8 field effect transistor * 1-The conventional structure ha can also be increased.

次に他の実施例と、し惰第7図(a)に示す様にN型で
不純物濃度が1 x 10”cm−”のシリコン基板l
の表面にシリコン酸化膜10、を30000〜1500
0 Xの厚さだけ熱酸化等形成する0次に第7図(1)
)に示す様にシリコン酸化j1%10に複数個の窓をあ
けて、ボロンをイオン注入法で1〜5×lO口 の量だ
け注入する。次に第7図(c)4C示す様に一6″Jの
窓を除いて感光性樹脂膜20で被い。
Next, as shown in FIG. 7(a), another example is shown in which a silicon substrate of N type with an impurity concentration of 1 x 10"cm-" is used.
Silicon oxide film 10 on the surface of 30000~1500
Figure 7 (1) 0th order formed by thermal oxidation etc. by a thickness of 0X
), a plurality of windows are opened in the silicon oxide layer, and boron is implanted in an amount of 1 to 5×10 by ion implantation. Next, as shown in FIG. 7(c) 4C, all but one 6"J window is covered with a photosensitive resin film 20.

ボロンをイオン注入法で5〜l0XIO3の量だけ注入
する。その後感光性樹脂$20t−除去し、1200°
0の高温で酸素雰囲気中で10〜20時間の熱処理を行
なうと第7図(d)に示される様になる。この図で示さ
れる様にN型で表面不純物さ胆が1〜5xlOcrn 
の領域11と表面不#ll物濃ルが1〜5×lOc!n
 のP型領域91とN型領域92が形成される。その後
前述の第4図(d3〜(f)に示される工程と同様の条
件で製作すると第7図(e)に示す様なエンハンスメン
ト型とデプレション型のそれぞれのM Os、wit、
”r界効果トランジスタを持つ集積回路装置が得られる
。この場合にも従来の製造方法ではデプレション型MO
8電界効来トランジスタを形成するためにはたとえは、
ゲート絶縁膜形成後にイオン注入法でゲート絶#膜下の
半導体基板の不純物IIk度及び導’!L!1lff変
えて得る方法があるが、ゲート絶縁Mがいくつかの工程
1胤出されて進むために汚れが混入する恐れがある。−
力木発明ではゲート絶縁膜形成後、短い工程でゲート電
極を形成出来るのでゲート絶縁膜に対する汚れaa少限
で防止出来る。
Boron is implanted in an amount of 5 to 10×IO3 by ion implantation. After that, remove the photosensitive resin for $20t and heat it at 1200°.
When heat treatment is performed for 10 to 20 hours in an oxygen atmosphere at a high temperature of 0, the result is as shown in FIG. 7(d). As shown in this figure, it is N type and has surface impurities of 1 to 5xlOcrn.
The area 11 and the surface impurities are 1 to 5×lOc! n
A P type region 91 and an N type region 92 are formed. After that, when fabricated under the same conditions as the steps shown in FIG. 4 (d3 to (f)), the enhancement type and depletion type M Os, wit, as shown in FIG. 7(e), are produced.
``An integrated circuit device having an r field effect transistor can be obtained.In this case too, the conventional manufacturing method
8 To form a field effect transistor, the following analogy is taken:
After forming the gate insulating film, the impurities and conductivity of the semiconductor substrate under the gate insulating film are removed by ion implantation. L! There is a method to obtain it by changing 1lff, but since the gate insulator M is removed in several steps, there is a risk that dirt may be mixed in. −
In the Rikiki invention, since the gate electrode can be formed in a short process after the gate insulating film is formed, contamination of the gate insulating film can be prevented with minimal aa.

以上の様な本発明によるMO8電界効果トランジスタ及
びその集積回路装置では、チャンネルストッパーを任意
の位置に最少限の帆で容易に形成出来ると共にエンハン
スメント型とデプレション型という導電型のMO8電界
効果トランジスタを容易に単数であれ、複数個であれ、
高集積密度で形成する事が出来る特gILを持9ている
。本発明は前述した集権例の他にたとえばP型半導体基
板を用いたMO8t、t’F効来トランジ請夕、Pチャ
ンネル、Nチャンネル型の各M Oti−’、、”d界
トラトランジスタ及び相補ff1MO8電界効果トラン
ジスタ等に用いられ得る事は言うまでもない。
In the MO8 field effect transistor and its integrated circuit device according to the present invention as described above, a channel stopper can be easily formed at any position with a minimum number of steps, and MO8 field effect transistors of conductivity types of enhancement type and depletion type can be formed. Whether singular or plural,
It has a special gIL that can be formed with high integration density. In addition to the above-mentioned power concentration example, the present invention also applies to MO8t, t'F effect transistor circuits, P-channel, N-channel type MOti-', d-field transistors and complementary transistors using P-type semiconductor substrates. Needless to say, it can be used for ff1MO8 field effect transistors, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)及び(C)、第2図(a)、 
(b)及び(C)Fi従来のMO8電界効果トランジス
タの製造工程中の断面図、第3図#:を第2図(C)中
の一部の断面図、第4図(a)、 (b)、 (C)、
 (d)、 (e)及び<nは本発明のMO8電界効果
トランジスタの11造工程中の断面図、第5図、第6図
、fg7図(a)、 (b)、 (C)、 (d)及び
(e)Hそれぞれ実施例の断面図であり、lは半導体基
板。 2.2J)、2Bはソース領域、3.3D、311ドレ
イン領域、4.4D、4Ehゲート絶縁膜。 5.51)、5Eはゲート電極、6.fi’D、6EF
iンース電極、7,7D、7BFiドレイン電極、8は
チャンネルストッパー、9,91,92.ti、反転領
域、10,101Fiシリコン酸化換、11J−を低不
純物濃度領域、20は感光性樹脂膜、AFi半導体基板
中のチャンネルストッパーとして作用する領域である。
Figure 1 (a), (b) and (C), Figure 2 (a),
(b) and (C) A cross-sectional view of a conventional Fi MO8 field effect transistor during the manufacturing process. b), (C),
(d), (e) and <n are cross-sectional views during the 11th manufacturing process of the MO8 field effect transistor of the present invention. d) and (e)H are cross-sectional views of each example, and l is a semiconductor substrate. 2.2J), 2B is a source region, 3.3D, 311 drain region, 4.4D, 4Eh gate insulating film. 5.51), 5E is a gate electrode, 6. fi'D,6EF
i source electrode, 7, 7D, 7BFi drain electrode, 8 is a channel stopper, 9, 91, 92. ti is an inversion region, 10,101Fi silicon oxidation conversion, 11J- is a low impurity concentration region, and 20 is a photosensitive resin film, a region that acts as a channel stopper in the AFi semiconductor substrate.

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体基板と、該半導体基板に形成された
前記一導電型の低濃度領域と該低濃度領域の表面部分に
形成された他の導電型のチャンネル領域、ソース領域お
よびドレイン領域と、該ソース領域と該ドレイン領域と
の間の前記チャンネル領域の表面上に絶縁膜を介して存
在するゲート電極とを有するデプレション型MOS電界
効果トランジスタを備えた半導体装置。
a semiconductor substrate of one conductivity type, a low concentration region of the one conductivity type formed on the semiconductor substrate, and a channel region, a source region, and a drain region of another conductivity type formed on a surface portion of the low concentration region; A semiconductor device comprising a depletion type MOS field effect transistor having a gate electrode existing on the surface of the channel region between the source region and the drain region with an insulating film interposed therebetween.
JP10351985A 1985-05-15 1985-05-15 Semiconductor device Pending JPS6127671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10351985A JPS6127671A (en) 1985-05-15 1985-05-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10351985A JPS6127671A (en) 1985-05-15 1985-05-15 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13200075A Division JPS5255477A (en) 1975-10-31 1975-10-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6127671A true JPS6127671A (en) 1986-02-07

Family

ID=14356187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10351985A Pending JPS6127671A (en) 1985-05-15 1985-05-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6127671A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123287A (en) * 1973-03-28 1974-11-26
JPS49131084A (en) * 1973-03-30 1974-12-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123287A (en) * 1973-03-28 1974-11-26
JPS49131084A (en) * 1973-03-30 1974-12-16

Similar Documents

Publication Publication Date Title
KR940011480B1 (en) Semiconductor device
US7598128B2 (en) Thin silicon-on-insulator double-diffused metal oxide semiconductor transistor
US3933529A (en) Process for the production of a pair of complementary field effect transistors
JPH05315608A (en) Semiconductor device
JPS62274767A (en) Semiconductor device having high breakdown strength and manufacture thereof
US4853340A (en) Semiconductor device isolated by a pair of field oxide regions
EP0091256B1 (en) Cmos device
US3787251A (en) Mos semiconductor structure with increased field threshold and method for making the same
JPS6097661A (en) Semiconductor integrated circuit device
JPS6127671A (en) Semiconductor device
US3623217A (en) Method of manufacturing a field effect semiconductor device
JPS60236268A (en) High dielectric mos field effect transistor
JPH0350771A (en) Semiconductor device
JPH02138756A (en) Semiconductor device and manufacture thereof
JPH01264265A (en) Semiconductor device and its manufacture
JP2000340674A (en) Mos capacitor and manufacture of the same
RU2298856C2 (en) Method for manufacturing silicon-on-sapphire mis transistor
JPH0927556A (en) Semiconductor integrated circuit device and its manufacture
JPS5837946A (en) Mis type semiconductor integrated circuit device
KR910009743B1 (en) High speed and high voltage semiconductor device and its manufacturing method
JPH0221648A (en) Semiconductor device and manufacture thereof
JPS5864064A (en) Manufacture of semiconductor device
KR970010684B1 (en) Silicon on insulator element structure
JPH09246478A (en) Semiconductor integrated circuit device and manufacture thereof
JPS5931224B2 (en) semiconductor equipment