JPS61276310A - Magnetizing method for permanent magnet - Google Patents

Magnetizing method for permanent magnet

Info

Publication number
JPS61276310A
JPS61276310A JP11851685A JP11851685A JPS61276310A JP S61276310 A JPS61276310 A JP S61276310A JP 11851685 A JP11851685 A JP 11851685A JP 11851685 A JP11851685 A JP 11851685A JP S61276310 A JPS61276310 A JP S61276310A
Authority
JP
Japan
Prior art keywords
magnetizing
magnetic field
coil
magnetomotive
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11851685A
Other languages
Japanese (ja)
Inventor
Seiji Miyazawa
宮沢 清治
Itaru Okonogi
格 小此木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11851685A priority Critical patent/JPS61276310A/en
Publication of JPS61276310A publication Critical patent/JPS61276310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable continuous use of a magnetomotive coil by restraining the generation of heat of this coil, by shortening the generation interval of the magnetic field to specified interval to act on a magnet body as a magnetomotive magnetic field. CONSTITUTION:The electric charge which is charged on a power source device is discharged to a magnetomotive coil connected to the high-tension line by a thyristor switch, and the magnetic field for magnetizing is generated. When the magnetizing power gets to the peak the thyristor switch is switched therefor the current can be passed to the discharge circuit in the power source device from the magnetomotive coil, and the magnetomotive magnetic field is focused abruptly at the point of rising-up and falling-down of the current. Consequently, the generating interval is to be shortened in this case to 60musec-5msec, by changing the constants of the power circuit for magnetizing, thereby, the sharp waveform for the rising of the magnetizing power is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、樹脂結合型希土類永久磁石の着磁方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of magnetizing a resin bonded rare earth permanent magnet.

〔発明の概要〕[Summary of the invention]

本発明は樹脂結合型希土類永久磁石の着磁方法において
、前記磁石体に着磁磁場として作用する磁場の発生時間
を着磁電流供給装置(以下着磁電源装置と記す)の一部
回路変更、諸定数の変更により60μsec〜5お就と
して、前記着磁電源装置に接続された着磁コイルに発生
させ、この着磁コイルに接触、セットされた樹脂結合型
希土類永久磁石に着磁を行うことにより着磁コイルの発
熱を押え連続しての着磁ができるようにしたものである
〔従来技術〕 従来の樹脂結合型希土類永久磁石の着磁は特開昭、59
−103552に述べられているようなコンデンサ一式
着磁装置を用い、時間とともに除々に着磁電流が立上り
、ピークに達し、更に立上りからピークに達するまでの
時間の数倍〜数10倍の時間をかけ裾を引くように終末
する着磁電流を用いていたため、着磁電源装置に接続さ
れた着磁コイルに発生する着磁磁場も前記着磁電流波形
に準じたものであった。
The present invention provides a method for magnetizing a resin-bonded rare earth permanent magnet, including changing a part of the circuit of a magnetizing current supply device (hereinafter referred to as magnetizing power supply device) to generate a magnetic field that acts as a magnetizing magnetic field on the magnet body; By changing various constants, a magnetizing coil connected to the magnetizing power supply device is generated for 60 μsec to 5 seconds, and the resin-bonded rare earth permanent magnet set in contact with the magnetizing coil is magnetized. [Prior art] Conventional magnetization of resin-bonded rare earth permanent magnets is described in Japanese Patent Application Laid-Open No. 1999-59111.
-103552, the magnetizing current gradually rises over time, reaches its peak, and takes several times to several tens of times the time from the rise to the peak. Since a magnetizing current that terminates in a sweeping manner was used, the magnetizing magnetic field generated in the magnetizing coil connected to the magnetizing power supply also conformed to the magnetizing current waveform.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では、着磁コイルに時間ととも
に除々に着磁磁場が立上り、また時間とともに除々に裾
を引きながら終末する約35〜40鴇臓と長い時間磁場
を発生させていた。このため着磁コイルに流す着磁電流
もそれだけ長い時間流さなければならず、特に着磁コイ
ルは、2〜208Q、の断面積を持つ細い電線で構成さ
れているにもかかわらず発生磁場の向上のためピーク電
流値で5000〜12,000ムという大電流を流して
いた。このため着磁コイルは着磁回数とともに発熱し温
度上昇が激しくコイルの破壊の恐れがあるため水冷、油
冷、空冷等の冷却をしているにもかかわらず連続使用が
できなかった。そのため冷却時間を長く取る。あるいは
、同一の着磁コイルを複数個造り温度上昇により切9替
えて使用するなどしていた。つまり作業能率も悪く着磁
コイルにかかるコストもおのづと高くなるなどの問題点
を有していた。
However, in the above-mentioned prior art, the magnetizing magnetic field gradually rises in the magnetizing coil over time, and the magnetic field is generated for a long time, about 35 to 40 degrees, gradually tapering off over time. For this reason, the magnetizing current that is passed through the magnetizing coil must be passed for a long time, and the generated magnetic field can be improved even though the magnetizing coil is made of thin wires with a cross-sectional area of 2 to 208Q. Therefore, a large current of 5,000 to 12,000 μm was flowing at the peak current value. For this reason, the magnetized coil generates heat with the number of times it is magnetized, and the temperature rises so much that there is a risk of destruction of the coil, so it has not been possible to use it continuously despite cooling by water cooling, oil cooling, air cooling, etc. Therefore, it takes a long time to cool down. Alternatively, a plurality of the same magnetizing coils were made and used by switching them depending on the rise in temperature. In other words, there were problems such as poor work efficiency and an increase in the cost of the magnetizing coil.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、着磁磁場の発生時間を短かくし
て着磁コイルの発熱を押え単一の着磁コイルを連続して
使用できるようにし、作業能率の向上と着磁コイルにか
かるコストをさげる技術を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to shorten the generation time of the magnetizing magnetic field, thereby suppressing the heat generation of the magnetizing coil and allowing continuous use of a single magnetizing coil. Our goal is to provide technology that improves work efficiency and reduces the cost of magnetizing coils.

〔問題を解決するための手段〕 本発明の永久磁石の着磁方法は、コンデンサ式着磁電源
装置のコンデンサに電荷を貯えこれを着磁コイルに放電
しその時流れる電流により着磁コイルに着磁磁場を発生
させ、着磁コイルに接触した樹脂結合型希土類永久磁石
を着磁するためのものであり、第1図に示すように従来
技術の着磁磁場の波形20〜40渦(8)に対し60μ
臓〜5渦式の短時間で収束する着磁磁場の波形としたこ
とを特徴とする。
[Means for Solving the Problem] The method of magnetizing a permanent magnet of the present invention stores electric charge in a capacitor of a capacitor-type magnetizing power supply device, discharges it to a magnetizing coil, and magnetizes the magnetizing coil with the current flowing at that time. This is to generate a magnetic field to magnetize a resin-bonded rare earth permanent magnet that is in contact with a magnetizing coil, and as shown in Figure 1, the waveform of the magnetizing magnetic field of the prior art is 20 to 40 vortices (8). 60μ
It is characterized by a waveform of the magnetizing magnetic field that converges in a short period of time in the form of a five-vortex type.

〔作用〕[Effect]

本発明の上記方法によれば、コンデンサ式着磁電源装置
のコンデンサに高圧トランスを用いAC200Vを所定
の高電圧に昇圧し、整流器により整流された高圧の直流
電流が電荷として貯えられ、充電が完了する。つぎにこ
の電源装置に電流容量が充分ある断面積の大きい高圧電
線により接続された着磁フィルにサイリスタスイッチに
より先程充電したコンデンサより放電され着磁のための
磁場が発生する。この時前述したように電源装置の回路
を一部変更して、最初着磁電流がピークに達した時(つ
まり着磁磁場が最大になった時)にサイリスクスイッチ
を切替着磁コイルから電源装置内部の放電回路に電流が
流れるようにして、着磁磁場が立上り更に立下る時に急
激に収束するようにし、また着磁電源回路の諸定数の変
更により着磁電流の立上り、つまり着磁磁場の立上りを
急峻にして第1図に示す着磁磁場の波形とし、磁場の発
生時間を60μ式〜51%(8)と短時間にしている。
According to the above method of the present invention, a high voltage transformer is used in the capacitor of the capacitor-type magnetized power supply device to step up AC 200V to a predetermined high voltage, and the high voltage DC current rectified by the rectifier is stored as an electric charge, and charging is completed. do. Next, the previously charged capacitor is discharged by a thyristor switch to a magnetizing filter connected to this power supply device by a high-voltage wire having a large cross-sectional area and sufficient current capacity, and a magnetic field for magnetization is generated. At this time, as mentioned above, we changed part of the circuit of the power supply device, and when the magnetizing current first reached its peak (that is, when the magnetizing magnetic field reached its maximum), the Cyrisk switch was switched and the power was supplied from the magnetizing coil. A current flows through the discharge circuit inside the device so that the magnetizing magnetic field rapidly converges when it rises and then falls, and by changing various constants of the magnetizing power supply circuit, the rise of the magnetizing current, that is, the magnetizing magnetic field The waveform of the magnetizing magnetic field shown in FIG. 1 is made by making the rise steep, and the generation time of the magnetic field is shortened to 60 μm to 51% (8).

この時着磁コイル接触または着磁コイルの中にセットさ
れた樹脂結合型希土類永久磁石が着磁されるのである。
At this time, the resin-bonded rare earth permanent magnet that is in contact with the magnetizing coil or that is set inside the magnetizing coil is magnetized.

よって着磁フィルへの通電時間が55〜40m5ecか
ら60μ歳〜5m5ecと非常に短時間となり発熱が沙
なくなるのである。
Therefore, the time for energizing the magnetizing film is extremely short, from 55 to 40 m5 ec to 60 m to 5 m5 ec, and no heat is generated.

〔実施例〕〔Example〕

本発明による永久磁石の着磁方法について前述した方法
により実施したもので以下に詳しく述べる。ます着磁電
源装置は出力1500V(最大)コンデンサ容量600
μ?の回路を一部変更し、諸定数を変更して磁場の発生
時間を短くしたものを用い、着磁コイルはφ2.611
11の銅線を80タ一ン巻いた空芯タイプで自然空冷で
あり、着磁電源装置と5Bsc4.の高圧ケーブルにて
接続した。
The method of magnetizing a permanent magnet according to the present invention was carried out using the method described above, and will be described in detail below. The magnetized power supply device has an output of 1500V (maximum) and a capacitor capacity of 600
μ? A part of the circuit was changed and various constants were changed to shorten the magnetic field generation time, and the magnetizing coil was φ2.611.
It is an air core type with 11 copper wires wound in 80 turns and is naturally air-cooled.It is equipped with a magnetized power supply and a 5Bsc4. It was connected with a high voltage cable.

本実施例に用いた被着磁物(以下着磁サンプルと記す)
は、φ10XA7簡の円柱状で1HO(保磁力)約1(
LOOOの軸方向に異方性を有する樹脂結合型希土類永
久磁石である。まず着磁サンプルであるが、磁石原料と
してs m (coo、sys 、 Ouo、018、
11’eO,!! 、 Zr0.022 ) lLlの
組成合金を1160℃、112時間で溶体化処理を行い
、さらに810℃6時間の時効処理を行い粉砕して粉末
とした粒度5〜60μ、平均粒度25μの2−17系希
土類金属間化合物と呼ばれているものを用いた。この磁
石粉末に2重量%のエポキシ樹脂を加え混練し磁石粉末
と樹脂との混合物とした。この混合物を15KOeの磁
場中プレスで軸方向に異方性を有するφ11 X79m
の成形体とし、150℃2時間で加熱固化後、残留磁気
を表面で30G以下とするため脱磁を行いさらに切削を
行いφIQXt711IIの着磁サンプルとした。この
サンプルを前記した空芯着磁コイルの中心に固定しガウ
スメーターで発生磁場を測定しながら着磁を行りた。こ
のガウスメーターは、Do〜16KHKまでの測定範囲
を持つアナログタイプのホールドビーク覆ガウスメータ
ーである。着磁コイルの温度測定はデジタル表示の温度
計を用いその検出部のプローブを着磁コイル表面に直接
接触させ測定した。まず、着磁コイルの発生磁場を20
1Cooとなるように着磁電源装置の出力電圧を調整し
、着磁のための放電時間間隔を40secとしてコイル
の温度測定を行った。それによるとコイルの表面温度は
10数回の着磁放電後から除々に上り、室温(約18℃
)と同じレベルから100回の着磁放電後には約40℃
とその差は22℃となりた。比較するために、従来技術
の着磁電源装置を使用し、同じ条件で測定するため着磁
コイル1.接続ケーブルとも同一の物を使用し、磁場測
定方法、温度測定方法、着磁方法とも同様に行った。着
磁電源装置は、コンデンサ容ii600μmとして発生
磁場の調整は出力電圧の可変によって行ったが、本発明
の電源装置と比べ同じ磁場を得るのにやや高い電圧とす
る必要がありた。着磁コイル表面の温度は40回の着磁
放電で約55℃となり発熱が激しく特にコイル内部は表
面温度よりかなり高く危険なため表面で75℃に上昇し
た時に中止した。
Magnetized object used in this example (hereinafter referred to as magnetized sample)
is a cylindrical shape of φ10 x A7 and has a coercive force of about 1 (
This is a resin-bonded rare earth permanent magnet that has anisotropy in the axial direction of LOOO. First, regarding the magnetized sample, s m (coo, sys, Ouo, 018,
11'eO,! ! , Zr0.022) lLl was solution-treated at 1160°C for 112 hours, further aged at 810°C for 6 hours, and ground into powder with a particle size of 5 to 60μ and an average particle size of 25μ. What is called a rare earth intermetallic compound was used. 2% by weight of epoxy resin was added to this magnet powder and kneaded to obtain a mixture of magnet powder and resin. This mixture was pressed in a magnetic field of 15 KOe to form a φ11 x 79 m tube with anisotropy in the axial direction.
After solidifying by heating at 150° C. for 2 hours, the molded body was demagnetized to reduce the residual magnetism to 30 G or less at the surface, and further cut to obtain a magnetized sample of φIQXt711II. This sample was fixed at the center of the air-core magnetizing coil described above, and magnetization was performed while measuring the generated magnetic field with a Gauss meter. This Gauss meter is an analog type hold beak covered Gauss meter that has a measurement range from Do to 16KHK. The temperature of the magnetizing coil was measured using a digital thermometer by directly contacting the probe of the detection section with the surface of the magnetizing coil. First, the magnetic field generated by the magnetizing coil is set to 20
The output voltage of the magnetizing power supply device was adjusted to be 1Coo, and the temperature of the coil was measured with the discharge time interval for magnetization set to 40 seconds. According to the results, the surface temperature of the coil gradually rises after more than 10 magnetizing discharges, and the surface temperature of the coil gradually rises to room temperature (approximately 18°C).
) After 100 magnetizing discharges from the same level as
The difference was 22°C. For comparison, a conventional magnetizing power supply device was used, and the magnetizing coil 1. was measured under the same conditions. The same connection cable was used, and the magnetic field measurement method, temperature measurement method, and magnetization method were also carried out in the same manner. The magnetizing power supply device had a capacitor capacity II of 600 μm, and the generated magnetic field was adjusted by varying the output voltage, but compared to the power supply device of the present invention, it was necessary to use a slightly higher voltage to obtain the same magnetic field. The temperature on the surface of the magnetizing coil reached approximately 55°C after 40 magnetizing discharges, and the temperature inside the coil was considerably higher than the surface temperature, which was dangerous, and the process was stopped when the temperature rose to 75°C.

本発明の着磁方法と従来技術での方法との着磁コイル表
面温度上昇の比較を第2図に示す。
FIG. 2 shows a comparison of the temperature rise on the surface of the magnetized coil between the magnetization method of the present invention and the prior art method.

尚、着磁磁場の発生時間は本発明の方法で1.2賜戴、
従来技術では約1′9倍の255secとかなり長時間
となっている。また、着磁時間による着磁性の良否を見
るために、着磁コイル内に固定した着磁サンプルを初回
の1回の着磁のみで取り出し、前記したガウスメーター
を用いホールプローブにて端面に接触し測定したところ
、本発明の着磁方法でのサンプルは、約1760G、従
来技術での着磁方法によるサンプルは約1770Gとは
Gf同じ表面磁束密度を示し、着磁性にも問題のないこ
とが明確になった。
In addition, the generation time of the magnetizing magnetic field is 1.2 times in the method of the present invention,
In the conventional technology, the time is 255 seconds, which is about 1'9 times longer, which is quite long. In addition, in order to check the quality of magnetization depending on the magnetization time, the magnetized sample fixed in the magnetization coil was taken out after only one initial magnetization, and the end surface was touched with a Hall probe using the Gauss meter described above. When measured, the sample obtained by the magnetization method of the present invention showed a surface magnetic flux density of about 1760G, and the sample obtained by the conventional magnetization method showed a surface magnetic flux density of about 1770G, indicating that there was no problem in magnetization. It became clear.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の樹脂結合型希土類永久磁石の
着磁方法によれば、着磁磁場の発生時間を従来より短く
、60μsec〜5鴨式としたことにより、着磁コイル
に発生する着磁磁場を落すこともなく、着磁コイルの発
熱を押え連続しての着磁放電が可能になり、着磁コイル
の温度上昇による破壊の恐れもなく、複数の着磁コイル
を用意して温度上昇により切替え使用する必要もなくな
るなどの効果を有する。また着磁コイルの冷却方法にお
いても水冷、油冷等でも同様の効果を有し、特に温度上
昇が問題になる細い電線を磁性材料に1回〜数回巻きし
だ着磁治具にも温度上昇を押え、連続着磁放電が可能に
なる効果を有する。本発明では樹脂結合型希土類永久磁
石に対しての着磁方法について述べたが、一般に希土類
と呼ばれる以外の樹脂結合を永久磁石にも同様の効果を
有するものである。
As described above, according to the method of magnetizing a resin-bonded rare earth permanent magnet of the present invention, the generation time of the magnetizing magnetic field is shorter than that of the conventional method, and is set to 60 μsec to 5 µs, so that the magnetization generated in the magnetizing coil is Without dropping the magnetic field, continuous magnetizing discharge is possible while suppressing the heat generation of the magnetizing coil, and there is no risk of damage due to temperature rise of the magnetizing coil, and multiple magnetizing coils can be prepared to adjust the temperature. This has the effect that there is no need to switch between uses due to the rise. In addition, water cooling, oil cooling, etc. have the same effect as cooling methods for magnetizing coils.In particular, when thin electric wires, where temperature rise is a problem, are wound once or several times around a magnetic material, the magnetizing jig is also heated. This has the effect of suppressing the rise and enabling continuous magnetization discharge. In the present invention, a magnetization method for a resin-bonded rare earth permanent magnet has been described, but the same effect can be obtained for permanent magnets bonded with resin other than what is generally called rare earth.

【図面の簡単な説明】[Brief explanation of the drawing]

・ 第1図は着磁の発生磁場と時間との関係を示す着磁
波形図。A・・・本発明の着磁方法による曲線。 B・・・従来技術による着磁方法による曲線をそれぞれ
表す。 第2図は、着磁放電回数と着磁コイルの表面温度上昇と
の関係を示す温度上昇図。a・・・本発明の着磁方法、
b・・・従来技術による着磁方法。 以上
- Figure 1 is a magnetization waveform diagram showing the relationship between the magnetic field generated during magnetization and time. A...Curve according to the magnetization method of the present invention. B: Curves according to the conventional magnetization method are shown. FIG. 2 is a temperature rise diagram showing the relationship between the number of magnetizing discharges and the surface temperature rise of the magnetizing coil. a... magnetization method of the present invention,
b...Magnetization method using conventional technology. that's all

Claims (1)

【特許請求の範囲】[Claims]  希土類金属間化合物永久磁石粉末と樹脂結合材よりな
る永久磁石の着磁において、前記磁石体に着磁磁場とし
て作用する磁場の発生時間を60μsec〜5msec
の範囲にしたことを特徴とする永久磁石の着磁方法。
In magnetizing a permanent magnet made of rare earth intermetallic compound permanent magnet powder and a resin binder, the generation time of a magnetic field that acts as a magnetizing magnetic field on the magnet body is 60 μsec to 5 msec.
A method for magnetizing a permanent magnet, characterized in that the magnetization is within the range of .
JP11851685A 1985-05-31 1985-05-31 Magnetizing method for permanent magnet Pending JPS61276310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11851685A JPS61276310A (en) 1985-05-31 1985-05-31 Magnetizing method for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11851685A JPS61276310A (en) 1985-05-31 1985-05-31 Magnetizing method for permanent magnet

Publications (1)

Publication Number Publication Date
JPS61276310A true JPS61276310A (en) 1986-12-06

Family

ID=14738559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11851685A Pending JPS61276310A (en) 1985-05-31 1985-05-31 Magnetizing method for permanent magnet

Country Status (1)

Country Link
JP (1) JPS61276310A (en)

Similar Documents

Publication Publication Date Title
US5852393A (en) Apparatus for polarizing rare-earth permanent magnets
JPH0158747B2 (en)
GB1099051A (en) Method for placing one or more electrical coils in desired spacial relationship withrespect to a core
JPS61276310A (en) Magnetizing method for permanent magnet
JP2512611B2 (en) Permanent magnet single magnetizing device for magnetic pole of rotating machine
JP4322507B2 (en) Magnetizer
RU2616508C2 (en) Method of demagnetization vessel and device for its implementation
JP5264098B2 (en) Demagnetizing device and demagnetizing method
JP2015035558A (en) Demagnetization method and demagnetizer
McDonald Magnetizing and measuring B & H in high energy product rare earth permanent magnets
JPH0372606A (en) Magnetization of magnetic material
JPH037124B2 (en)
JPWO2015159882A1 (en) SmCo rare earth sintered magnet
JPS6039915A (en) Drive circuit for pulse current device
JP3281038B2 (en) Pulse excitation power supply for magnetic field press forming machine
JPS63213907A (en) Magnetization of permanent magnet
Sandberg Searl-Effect Generator: Design & Manufacturing Procedure
JP5127030B2 (en) Demagnetizing device and demagnetizing method
JPH0744004Y2 (en) Structure of magnetizing yoke
Chau et al. Investigation of core loss in PM micro-motor made using MIM technology
JPH04146607A (en) Multipolar magnetizing method
SU1410114A1 (en) Magnetizing apparatus
JP2572299Y2 (en) Two-pole magnetized permanent magnet for flat coil vibration type voice coil motor
SU1111232A1 (en) Shock-excited current pulser
JPH041486B2 (en)