JP4322507B2 - Magnetizer - Google Patents

Magnetizer Download PDF

Info

Publication number
JP4322507B2
JP4322507B2 JP2003007448A JP2003007448A JP4322507B2 JP 4322507 B2 JP4322507 B2 JP 4322507B2 JP 2003007448 A JP2003007448 A JP 2003007448A JP 2003007448 A JP2003007448 A JP 2003007448A JP 4322507 B2 JP4322507 B2 JP 4322507B2
Authority
JP
Japan
Prior art keywords
magnetic flux
magnetizing
control member
magnet material
flux control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003007448A
Other languages
Japanese (ja)
Other versions
JP2004221354A (en
Inventor
秀之 山根
芳美 榎
正人 榎園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Tooling Co Ltd
Original Assignee
Delta Tooling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Tooling Co Ltd filed Critical Delta Tooling Co Ltd
Priority to JP2003007448A priority Critical patent/JP4322507B2/en
Publication of JP2004221354A publication Critical patent/JP2004221354A/en
Application granted granted Critical
Publication of JP4322507B2 publication Critical patent/JP4322507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁石素材に高磁界を印可することにより着磁するようにした着磁装置に関する。
【0002】
【従来の技術】
図7は従来の着磁装置の基本回路を示しており、交流電源を制御するための充電制御回路2と、充電制御回路2からの出力電圧を昇圧するための昇圧回路(トランス)4と、昇圧回路4からの出力電圧を整流するための整流回路6と、電荷を蓄えるためのコンデンサ8とを備えている。コンデンサ8に蓄えられた電荷は、放電回路10をONすることにより瞬間的に着磁コイル12に通電され、着磁コイル12内に配置された磁石素材14に高磁界が印可されることで、磁石素材14は着磁される。
【0003】
図8は着磁コイル12とその内部に配置された着磁される磁石素材14を示しており、着磁コイル12はベークライト等の樹脂からなる円筒状のコイル支持体16に幾重にも巻き付けられている。
【0004】
図8(a)及び(b)に示されるように、磁石素材14は着磁コイル12の磁界中心に配置され、着磁コイル12に通電して磁石素材14に多量の磁束線Mを通すことにより着磁は行われる。
【0005】
なお、着磁コイル12への通電により着磁コイル12の温度は上昇するが、冷却水(図示せず)を通水することにより着磁コイル12の過度の温度上昇は防止される。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の着磁装置にあっては、単に磁石素材14に多量の磁束線Mを通すことにより着磁が行われており、磁束制御による効率的着磁は行われていなかった。
【0007】
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、着磁時に効率的に磁束を磁石素材に取り込むことにより磁場を飽和させ、従来以下の出力電圧で着磁を行うことができる省電力、高密度で安全性の高い着磁装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1に記載の発明は、磁石素材に高磁界を印可することにより着磁するようにした着磁装置において、磁石素材と略同一形状の開口部と半径方向に延在するスリットとを備えた磁束制御部材を着磁コイル内部に配置し、上記磁束制御部材の肉厚を上記磁石素材の肉厚より大きくしたことを特徴とする。
【0010】
さらに、請求項に記載の発明は、上記磁束制御部材の開口部周辺の肉厚を外周部の肉厚より薄くしたことを特徴とする。
【0011】
また、請求項に記載の発明は、上記スリットに電気絶縁材料を充填したことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
本発明にかかる着磁装置の基本回路は、図7に示される従来の着磁装置の基本回路と同じであり、交流電源を制御するための充電制御回路2と、充電制御回路2からの出力電圧を昇圧するための昇圧回路(トランス)4と、昇圧回路4からの出力電圧を整流するための整流回路6と、電荷を蓄えるためのコンデンサ8とを備えている。
【0013】
また、本発明にかかる着磁装置において、コンデンサ8に蓄えられた電荷は、放電回路10をONすることにより瞬間的に着磁コイル12に通電され、着磁コイル12内に配置された磁石素材14に高磁界が印可されることで、磁石素材14を着磁するようにしており、この点についても従来の着磁装置と同じである。
【0014】
図1は本発明にかかる着磁装置の着磁コイル12を示しており、円筒状のコイル支持体16に幾重(簡略化のため図1では一重)にも巻き付けられた着磁コイル12の内部に銅、アルミニウム等の非磁性材料からなる磁束制御部材18が配置されている。本発明にかかる着磁装置は、着磁コイル12の内部に磁束制御部材18を設けた点に特徴がある。
【0015】
図1に示されるように、磁束制御部材18は、上方から見てコイル支持体16の内面形状と略同じ外面形状を有し、その中心部には着磁される磁石素材14の形状(図1では矩形)と略同じ形状の開口部18aが形成されている。また、磁束制御部材18には、半径方向に延在する所定幅のスリット18bが形成されている。
【0016】
このスリット18bによる効果を図2を参照しながら、以下説明する。
図2(a)はスリットが形成されていない非磁性プレート20を示しているのに対し、図2(b)は本発明にかかる着磁装置に設けられる磁束制御部材18を示している。
【0017】
図2(a)に示される非磁性プレート20の場合、着磁コイル12に通電することにより磁界が発生し、この磁界の影響で非磁性プレート20の表面には、その内周側及び外周側に同一方向に流れる渦電流が発生する。一方、図2(b)に示される磁束制御部材18の場合、半径方向に延在するスリット18bにより表面を流れる渦電流の流れが制御され、磁束制御部材18表面の外周側を流れた渦電流はスリット18bに沿って内側に向かい、開口部18aを迂回してさらにスリット18bに沿って外側に流れる。
【0018】
ここで、非磁性プレート20及び磁束制御部材18の開口部20a.18a回りの渦電流(内周側を流れる電流)に着目すると、その方向が逆になっており、磁束制御部材18を設けた場合、開口部18aに沿って流れる渦電流により、着磁コイル12の通電により発生した磁界の反発磁界が発生し、着磁コイル12の通電により発生した磁束線Mの殆どが、図1(a)に示されるように、磁束制御部材18の開口部18aを通過するようになる。すなわち、着磁される磁石素材14が配置される開口部18a内に磁束が集中して磁束密度が増大することになるので、従来の着磁装置に比べより低い出力電圧で磁場を飽和させることが可能になる。
【0019】
表1は、従来の着磁装置及び本発明にかかる着磁装置を使用して、22mmL×20mmW×8mmTの磁石素材を着磁した着磁テストの結果の一部を示しており、図3のグラフは測定結果の平均値を示している。また、図3において、細線は従来の着磁装置を使用した場合を、実線は本発明にかかる着磁装置を使用した場合をそれぞれ示しており、本発明にかかる着磁装置においては、肉厚10mmのCuプレートを磁束制御部材18として使用している。なお、磁束密度は、1軸テスラメータを使用して磁石素材端面のN極中心部を測定した。また、磁束は、サーチコイル(10ターン)を用いたフラックスメータを使用して測定した。
【表1】

Figure 0004322507
【0020】
表1及び図3から分かるように、従来装置に比べ本発明にかかる着磁装置は、より低い出力電圧で磁場が飽和している。
【0021】
なお、スリット18bの幅は、スパークが発生しない範囲でできるだけ狭い方がよく、例えば0.5〜1.0mmに設定することにより磁石素材14が配置される開口部18aに多くの磁束を集中させることが可能となる。また、スリット18b内にプラスチック等の電気絶縁材料を挿入あるいは充填することもできる。この場合、スリット18b内に挿入あるいは充填された電気絶縁材料により電気のスパークを防止することができる。
【0022】
また、磁束制御部材18の肉厚は着磁される磁石素材14の肉厚より厚いほうが好ましく、薄いと磁石素材14の側面を通過する磁束線が増大し、着磁性能が低下する。
【0023】
図4のグラフは、着磁出力電圧を1000Vに設定し、22mmL×20mmW×8mmTの磁石素材を磁束制御部材18の肉厚を変えて着磁した時の磁束と磁束密度を示している。このグラフから分かるように、磁束制御部材18の肉厚が厚いほど、磁束及び磁束密度が増大し着磁性能が向上する。
【0024】
さらに、磁束制御部材18は、開口部18a周辺の肉厚を外周部の肉厚より薄くすることで、開口部18a周辺の電流密度が高くなり、磁束の集中を図ることができる。
【0025】
図5は、従来の着磁装置及び本発明にかかる着磁装置を示しており、▲1▼は従来の着磁装置を、▲2▼は本発明にかかる着磁装置において肉厚が一様な磁束制御部材18を配置した場合を、▲3▼は本発明にかかる着磁装置において開口部18a周辺の肉厚を外周部の肉厚より薄く設定した磁束制御部材18を配置した場合をそれぞれ示している。
【0026】
図6は、図5に示される着磁装置において出力電圧を変えた場合の着磁コイル中心部(開口部18a)の磁束を示しており、従来装置より本発明にかかる装置の方が磁束が大きく、本発明にかかる装置においても、開口部18a周辺の肉厚を外周部の肉厚より薄く設定した磁束制御部材18を配置した場合の方が磁束が大きいことを示している。
【0027】
なお、上記実施の形態においては、着磁コイルとは別体の制御部材を採用したが、着磁コイルと制御部材が一体となった着磁装置も可能である。
【0028】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0029】
磁石素材と略同一形状の開口部と半径方向に延在するスリットとを備えた磁束制御部材を着磁コイル内部に配置したので、磁束制御部材により磁石素材が配置される開口部内に磁束が集中するので、従来以下の出力電圧で着磁を行うことができる省電力、高密度の着磁装置を提供することができる。
【0030】
また、磁束制御部材の肉厚を磁石素材の肉厚より大きくしたり、磁束制御部材の開口部周辺の肉厚を外周部の肉厚より薄くすることで着磁性能を向上させることができる。
【0031】
さらに、磁束制御部材に形成されたスリットに電気絶縁材料を充填することによりスパークを防止することができ、安全性の高い着磁装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明にかかる着磁装置に設けられた着磁コイル及びその内部に配置された磁束制御部材を示しており、(a)はその縦断面図であり、(b)はその平面図である。
【図2】 図1に示される磁束制御部材に形成されたスリットの効果を示すための説明図であり、(a)はスリットのない非磁性プレートの斜視図であり、(b)は図1に示される磁束制御部材の斜視図である。
【図3】 従来の着磁装置及び本発明にかかる着磁装置を使用して磁石素材を着磁した着磁テストの結果を示すグラフであり、(a)は出力電圧に対する磁束密度を、(b)は出力電圧に対する磁束をそれぞれ示している。
【図4】 本発明にかかる着磁装置を使用して磁石素材を着磁した着磁テストの結果を示すグラフであり、(a)は磁束制御部材の肉厚に対する磁束を、(b)は磁束制御部材の肉厚に対する磁束密度をそれぞれ示している。
【図5】 着磁テストに使用した従来の着磁装置及び本発明にかかる着磁装置の概略縦断面図である。
【図6】 図5に示される着磁装置において出力電圧を変えた場合の着磁コイル中心部の磁束を示すグラフである。
【図7】 従来の着磁装置及び本発明にかかる着磁装置の基本回路図である。
【図8】 従来の着磁装置に設けられた着磁コイル及びその内部に配置された磁束制御部材を示しており、(a)はその縦断面図であり、(b)はその平面図である。
【符号の説明】
2 充電制御回路、
4 昇圧回路、
6 整流回路、
8 コンデンサ、
10 放電回路、
12 着磁コイル、
14 磁石素材、
16 コイル支持体、
18 磁束制御部材、
18a 開口部、
18b スリット。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetizing apparatus that is magnetized by applying a high magnetic field to a magnet material.
[0002]
[Prior art]
FIG. 7 shows a basic circuit of a conventional magnetizing device, a charge control circuit 2 for controlling an AC power supply, a booster circuit (transformer) 4 for boosting an output voltage from the charge control circuit 2, A rectifier circuit 6 for rectifying the output voltage from the booster circuit 4 and a capacitor 8 for storing electric charge are provided. The electric charge stored in the capacitor 8 is instantaneously energized to the magnetizing coil 12 by turning on the discharge circuit 10, and a high magnetic field is applied to the magnet material 14 disposed in the magnetizing coil 12, The magnet material 14 is magnetized.
[0003]
FIG. 8 shows a magnetized coil 12 and a magnet material 14 to be magnetized disposed therein. The magnetized coil 12 is wound around a cylindrical coil support 16 made of resin such as bakelite. ing.
[0004]
As shown in FIGS. 8A and 8B, the magnet material 14 is arranged at the center of the magnetic field of the magnetizing coil 12, and a large amount of magnetic flux lines M are passed through the magnet material 14 by energizing the magnetizing coil 12. Due to this, magnetization is performed.
[0005]
In addition, although the temperature of the magnetizing coil 12 rises by energizing the magnetizing coil 12, an excessive temperature rise of the magnetizing coil 12 is prevented by passing cooling water (not shown).
[0006]
[Problems to be solved by the invention]
However, in the conventional magnetizing apparatus described above, magnetization is performed simply by passing a large amount of magnetic flux lines M through the magnet material 14, and efficient magnetization by magnetic flux control has not been performed.
[0007]
The present invention has been made in view of the above-described problems of the prior art. The magnetic field is saturated by efficiently incorporating the magnetic flux into the magnet material at the time of magnetization. An object of the present invention is to provide a magnetizing device that can perform power saving, high density, and high safety.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention is a magnetizing device that is magnetized by applying a high magnetic field to a magnet material, and has substantially the same shape as the magnet material. A magnetic flux control member having an opening and a slit extending in the radial direction is disposed inside the magnetizing coil, and the thickness of the magnetic flux control member is made larger than the thickness of the magnet material .
[0010]
Furthermore, the invention described in claim 2 is characterized in that the thickness around the opening of the magnetic flux control member is made thinner than the thickness of the outer peripheral portion.
[0011]
According to a third aspect of the present invention, the slit is filled with an electrically insulating material.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The basic circuit of the magnetizing apparatus according to the present invention is the same as the basic circuit of the conventional magnetizing apparatus shown in FIG. 7, and the charging control circuit 2 for controlling the AC power supply and the output from the charging control circuit 2 A booster circuit (transformer) 4 for boosting the voltage, a rectifier circuit 6 for rectifying the output voltage from the booster circuit 4, and a capacitor 8 for storing electric charge are provided.
[0013]
In the magnetizing apparatus according to the present invention, the electric charge stored in the capacitor 8 is instantaneously energized to the magnetizing coil 12 by turning on the discharge circuit 10, and the magnet material disposed in the magnetizing coil 12 is used. Since a high magnetic field is applied to the magnet 14, the magnet material 14 is magnetized. This is the same as the conventional magnetizing apparatus.
[0014]
FIG. 1 shows a magnetizing coil 12 of a magnetizing apparatus according to the present invention. The inside of a magnetizing coil 12 wound several times (single in FIG. 1 for simplicity) around a cylindrical coil support 16. Further, a magnetic flux control member 18 made of a nonmagnetic material such as copper or aluminum is disposed. The magnetizing apparatus according to the present invention is characterized in that a magnetic flux control member 18 is provided inside the magnetizing coil 12.
[0015]
As shown in FIG. 1, the magnetic flux control member 18 has an outer surface shape substantially the same as the inner surface shape of the coil support 16 when viewed from above, and the shape of the magnet material 14 to be magnetized (see FIG. 1). In FIG. 1, an opening 18 a having substantially the same shape as a rectangle) is formed. The magnetic flux control member 18 is formed with a slit 18b having a predetermined width extending in the radial direction.
[0016]
The effect of the slit 18b will be described below with reference to FIG.
2A shows the nonmagnetic plate 20 in which no slit is formed, whereas FIG. 2B shows the magnetic flux control member 18 provided in the magnetizing apparatus according to the present invention.
[0017]
In the case of the nonmagnetic plate 20 shown in FIG. 2 (a), a magnetic field is generated by energizing the magnetizing coil 12, and the surface of the nonmagnetic plate 20 has its inner and outer peripheral sides affected by the magnetic field. Eddy currents flowing in the same direction are generated. On the other hand, in the case of the magnetic flux control member 18 shown in FIG. 2B, the flow of eddy current flowing on the surface is controlled by the slit 18b extending in the radial direction, and the eddy current flowing on the outer peripheral side of the surface of the magnetic flux control member 18 is controlled. Flows inward along the slit 18b, bypasses the opening 18a, and further flows outward along the slit 18b.
[0018]
Here, the nonmagnetic plate 20 and the openings 20a. Focusing on the eddy current around 18a (current flowing on the inner circumference side), the direction is reversed. When the magnetic flux control member 18 is provided, the magnetizing coil 12 is caused by the eddy current flowing along the opening 18a. As shown in FIG. 1A, most of the magnetic flux lines M generated by energizing the magnetizing coil 12 pass through the opening 18a of the magnetic flux control member 18. To come. That is, since the magnetic flux is concentrated in the opening 18a where the magnet material 14 to be magnetized is disposed and the magnetic flux density is increased, the magnetic field is saturated at a lower output voltage than the conventional magnetizing device. Is possible.
[0019]
Table 1 shows a part of the result of a magnetization test in which a magnet material of 22 mmL × 20 mmW × 8 mmT is magnetized using the conventional magnetizing device and the magnetizing device according to the present invention. The graph shows the average value of the measurement results. In FIG. 3, the thin line shows the case where the conventional magnetizing apparatus is used, and the solid line shows the case where the magnetizing apparatus according to the present invention is used. In the magnetizing apparatus according to the present invention, A 10 mm Cu plate is used as the magnetic flux control member 18. In addition, the magnetic flux density measured the N pole center part of the magnet raw material end surface using the 1 axis | shaft teslameter. The magnetic flux was measured using a flux meter using a search coil (10 turns).
[Table 1]
Figure 0004322507
[0020]
As can be seen from Table 1 and FIG. 3, the magnetic field of the magnetizing device according to the present invention is saturated at a lower output voltage than the conventional device.
[0021]
The width of the slit 18b is preferably as narrow as possible within a range where no spark is generated. For example, by setting the width to 0.5 to 1.0 mm, a large amount of magnetic flux is concentrated on the opening 18a where the magnet material 14 is disposed. It becomes possible. In addition, an electric insulating material such as plastic can be inserted or filled in the slit 18b. In this case, the electric spark can be prevented by the electric insulating material inserted or filled in the slit 18b.
[0022]
Further, the thickness of the magnetic flux control member 18 is preferably thicker than the thickness of the magnet material 14 to be magnetized, and if it is thin, the magnetic flux lines passing through the side surfaces of the magnet material 14 increase and the magnetizing performance deteriorates.
[0023]
The graph of FIG. 4 shows the magnetic flux and magnetic flux density when the magnetized output voltage is set to 1000 V and a magnet material of 22 mmL × 20 mmW × 8 mmT is magnetized by changing the thickness of the magnetic flux control member 18. As can be seen from this graph, as the magnetic flux control member 18 is thicker, the magnetic flux and the magnetic flux density are increased and the magnetization performance is improved.
[0024]
Furthermore, the magnetic flux control member 18 can make the current density around the opening 18a higher and concentrate the magnetic flux by making the thickness around the opening 18a thinner than the thickness around the outer periphery.
[0025]
FIG. 5 shows a conventional magnetizing apparatus and a magnetizing apparatus according to the present invention. (1) is a conventional magnetizing apparatus, and (2) is a uniform thickness in the magnetizing apparatus according to the present invention. When the magnetic flux control member 18 is arranged, (3) shows the case where the magnetic flux control member 18 in which the thickness around the opening 18a is set thinner than the thickness of the outer peripheral portion in the magnetizing apparatus according to the present invention, respectively. Show.
[0026]
FIG. 6 shows the magnetic flux at the center of the magnetizing coil (opening 18a) when the output voltage is changed in the magnetizing apparatus shown in FIG. Largely, also in the apparatus according to the present invention, the magnetic flux is larger when the magnetic flux control member 18 in which the thickness around the opening 18a is set thinner than the thickness of the outer peripheral portion is arranged.
[0027]
In the above embodiment, a control member separate from the magnetizing coil is employed, but a magnetizing device in which the magnetizing coil and the control member are integrated is also possible.
[0028]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0029]
Since the magnetic flux control member having an opening of substantially the same shape as the magnet material and a slit extending in the radial direction is arranged inside the magnetizing coil, the magnetic flux is concentrated in the opening where the magnet material is arranged by the magnetic flux control member. Therefore, it is possible to provide a power-saving and high-density magnetizing device that can perform magnetizing with an output voltage lower than that of the prior art.
[0030]
Further, the magnetizing performance can be improved by making the thickness of the magnetic flux control member larger than the thickness of the magnet material or making the thickness around the opening of the magnetic flux control member thinner than the thickness of the outer peripheral portion.
[0031]
Furthermore, by filling the slit formed in the magnetic flux control member with an electrically insulating material, sparks can be prevented, and a highly safe magnetizing device can be provided.
[Brief description of the drawings]
FIG. 1 shows a magnetizing coil provided in a magnetizing apparatus according to the present invention and a magnetic flux control member disposed therein, wherein (a) is a longitudinal sectional view thereof, and (b) is a plan view thereof. FIG.
2A and 2B are explanatory views for illustrating the effect of slits formed in the magnetic flux control member shown in FIG. 1, wherein FIG. 2A is a perspective view of a non-magnetic plate without slits, and FIG. It is a perspective view of the magnetic flux control member shown by FIG.
FIG. 3 is a graph showing a result of a magnetization test in which a magnet material is magnetized using a conventional magnetizing apparatus and a magnetizing apparatus according to the present invention, wherein (a) shows a magnetic flux density with respect to an output voltage; b) shows the magnetic flux with respect to the output voltage.
FIG. 4 is a graph showing a result of a magnetization test in which a magnet material is magnetized using the magnetizing apparatus according to the present invention, wherein (a) shows the magnetic flux with respect to the thickness of the magnetic flux control member, and (b) shows The magnetic flux density with respect to the thickness of the magnetic flux control member is shown.
FIG. 5 is a schematic longitudinal sectional view of a conventional magnetizing apparatus used in a magnetization test and a magnetizing apparatus according to the present invention.
6 is a graph showing the magnetic flux at the center of the magnetizing coil when the output voltage is changed in the magnetizing apparatus shown in FIG.
FIG. 7 is a basic circuit diagram of a conventional magnetizing apparatus and a magnetizing apparatus according to the present invention.
FIGS. 8A and 8B show a magnetizing coil provided in a conventional magnetizing apparatus and a magnetic flux control member disposed therein, wherein FIG. 8A is a longitudinal sectional view and FIG. 8B is a plan view thereof. is there.
[Explanation of symbols]
2 charge control circuit,
4 Booster circuit,
6 Rectifier circuit,
8 capacitors,
10 discharge circuit,
12 Magnetized coil,
14 Magnet material,
16 coil support,
18 magnetic flux control member,
18a opening,
18b slit.

Claims (3)

磁石素材に高磁界を印可することにより着磁するようにした着磁装置において、
磁石素材と略同一形状の開口部と半径方向に延在するスリットとを備えた磁束制御部材を着磁コイル内部に配置し、上記磁束制御部材の肉厚を上記磁石素材の肉厚より大きくしたことを特徴とする着磁装置。
In a magnetizing device that is magnetized by applying a high magnetic field to a magnet material,
A magnetic flux control member having an opening of substantially the same shape as the magnet material and a slit extending in the radial direction is arranged inside the magnetizing coil, and the thickness of the magnetic flux control member is made larger than the thickness of the magnet material. A magnetizing apparatus characterized by that.
上記磁束制御部材の開口部周辺の肉厚を外周部の肉厚より薄くしたことを特徴とする請求項1に記載の着磁装置。  2. A magnetizing apparatus according to claim 1, wherein a thickness around the opening of the magnetic flux control member is made thinner than a thickness of the outer peripheral portion. 上記スリットに電気絶縁材料を充填したことを特徴とする請求項1あるいは2に記載の着磁装置。  3. A magnetizing apparatus according to claim 1, wherein the slit is filled with an electrically insulating material.
JP2003007448A 2003-01-15 2003-01-15 Magnetizer Expired - Fee Related JP4322507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007448A JP4322507B2 (en) 2003-01-15 2003-01-15 Magnetizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007448A JP4322507B2 (en) 2003-01-15 2003-01-15 Magnetizer

Publications (2)

Publication Number Publication Date
JP2004221354A JP2004221354A (en) 2004-08-05
JP4322507B2 true JP4322507B2 (en) 2009-09-02

Family

ID=32897547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007448A Expired - Fee Related JP4322507B2 (en) 2003-01-15 2003-01-15 Magnetizer

Country Status (1)

Country Link
JP (1) JP4322507B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8151640B1 (en) 2008-02-05 2012-04-10 Hrl Laboratories, Llc MEMS on-chip inertial navigation system with error correction
US10266398B1 (en) 2007-07-25 2019-04-23 Hrl Laboratories, Llc ALD metal coatings for high Q MEMS structures
US11117800B2 (en) 2014-08-11 2021-09-14 Hrl Laboratories, Llc Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056756A1 (en) * 2006-11-10 2008-05-15 Uchiyama Manufacturing Corp. Diode magnetic encoder, and its manufacturing method
US8179219B2 (en) * 2008-04-04 2012-05-15 Correlated Magnetics Research, Llc Field emission system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266398B1 (en) 2007-07-25 2019-04-23 Hrl Laboratories, Llc ALD metal coatings for high Q MEMS structures
US8151640B1 (en) 2008-02-05 2012-04-10 Hrl Laboratories, Llc MEMS on-chip inertial navigation system with error correction
US8522612B1 (en) 2008-02-05 2013-09-03 Hrl Laboratories, Llc MEMS on-chip inertial navigation system with error correction
US11117800B2 (en) 2014-08-11 2021-09-14 Hrl Laboratories, Llc Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite

Also Published As

Publication number Publication date
JP2004221354A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US5852393A (en) Apparatus for polarizing rare-earth permanent magnets
US5041761A (en) Magnetic automotive lamp current sensor
US5986370A (en) Autonomous generation brake
US5075814A (en) External method and apparatus for magnetizing metal pieces in rotary electric apparatus to a permanent magnetization state
US20110291532A1 (en) Coreless electromechanical device
JP4322507B2 (en) Magnetizer
JP2005026385A (en) Method for magnetization and permanent magnet
US3760205A (en) Variable-reluctance electrical generator
US1950754A (en) Magneto
EP0026014A1 (en) Method of manufacturing a permanent magnet assembly which is to be arranged in an air gap of a transformer core
US2810846A (en) Self-starting single phase alternating current motors
JPS56158967A (en) Magnetism detector
JP2632128B2 (en) Method for detecting falling off of magnetic core attached to high frequency induction heating coil
RU2703992C1 (en) Electric machine (versions)
RU96102336A (en) ROTATING ELEMENT OF ELECTRIC ENERGY INDUCTION METER
JP2572299Y2 (en) Two-pole magnetized permanent magnet for flat coil vibration type voice coil motor
JPS5941592Y2 (en) induction heating cooker
SU136446A1 (en) Electric machine
SU1495033A1 (en) Electrochemical polishing apparatus
JPS61276310A (en) Magnetizing method for permanent magnet
WO2018198160A1 (en) Magnetic therapy apparatus
SU1130971A2 (en) D.c.electric machine
US3568040A (en) Magnetomotive electric current generator utilizing vibrating magnetizable metal strips
SU1098747A1 (en) Round electromagnetic plate
RU2070765C1 (en) Method and device for electrical potential generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

R150 Certificate of patent or registration of utility model

Ref document number: 4322507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees