JPS6127623A - Light source for photochemical reactive induction - Google Patents

Light source for photochemical reactive induction

Info

Publication number
JPS6127623A
JPS6127623A JP14814684A JP14814684A JPS6127623A JP S6127623 A JPS6127623 A JP S6127623A JP 14814684 A JP14814684 A JP 14814684A JP 14814684 A JP14814684 A JP 14814684A JP S6127623 A JPS6127623 A JP S6127623A
Authority
JP
Japan
Prior art keywords
light
wavelength
laser
harmonic
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14814684A
Other languages
Japanese (ja)
Inventor
Shunji Kishida
岸田 俊二
Hiroyuki Yokoyama
弘之 横山
Yukio Morishige
幸雄 森重
Kunihiko Washio
鷲尾 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14814684A priority Critical patent/JPS6127623A/en
Priority to EP85108906A priority patent/EP0169485B1/en
Priority to DE8585108906T priority patent/DE3584798D1/en
Publication of JPS6127623A publication Critical patent/JPS6127623A/en
Priority to US07/393,070 priority patent/US4976930A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece

Abstract

PURPOSE:To enable to form an excellent optical CVD (chemical vapor deposition) film on a microscopic region by a method wherein the titled light source is composed of a continuous excitation Q switching Nd solid-state laser and an ultraviolet region higher harmonic generator. CONSTITUTION:The fundamental wave (wavelength of 1.06mum) light emitted from an Nd:YAG laser is converted into the second harmonic (SH, wavelength of 0.53mum) light by the SHG crystal 2 in position-aligned condition. The Nd:YAG laser 1 is continuously excited by a Kr arc lamp, and a Q-switch oscillation is repeated at a high repeating speed by the AOQ switch element located in a resonator. The output of the Nd:YAG laser 1 is constituted in such a manner that a high output oscillation can be performed for the purpose of facilitating the wavelength conversion to be performed in the latter stage. The obtained SH light is converted into the fourth higher harmonic (FH, wavelength of 266nm) light having the double frequency (half wavelength) by the FHG crystal 3 in a position- alighment state. An FH light only is picked out from said output by the wavelength selecting element such as prism and the like. The FH light obtained as above is condensed on the substrate 7 located in a laser CVD cell.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光励起の化学反応誘起用光源、とくに半導体
デバイス製造に有効なレーザビーム励起プロセス用の光
源にかかわる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a light source for inducing a chemical reaction by optical excitation, and particularly to a light source for a laser beam excitation process that is effective in manufacturing semiconductor devices.

(従来技術とその問題点) 近年、半導体デバイス製造プロセスにおいては、光CV
Dや光エッチングなどの光励起プロセスが、光CVDや
光エッチングのごとき光誘起の化学反応を生じさせるた
めの光源としては、多くは物質に電子励起を生、じさせ
うる高出力紫外光源が用いられてきた。具体的な光源と
してはエキシマレーザ(波長157nm、193nm、
248nm、308nmなど)や、Arレーザ(波長5
15nm)の第2高調波(波長257nm)などがよく
知られている。これらの光源をCr(CO)a蒸気から
のガラス上へのCr(DレーザCVDに適用し数10μ
mサイズの良好なCr膜を得た例が、昭和59年度春季
第31回応用物理学関係連合講演会の講演番号31pK
10の講演において、積山等により発表されている。し
かしながらこのような従来の光源には、以下のごとき問
題点があった。
(Prior art and its problems) In recent years, in the semiconductor device manufacturing process, optical CV
High-power ultraviolet light sources that can cause electronic excitation in materials are often used as light sources for photoexcitation processes such as D and photoetching to cause photoinduced chemical reactions such as photoCVD and photoetching. It's here. Specific light sources include excimer lasers (wavelengths of 157 nm, 193 nm,
248 nm, 308 nm, etc.), Ar laser (wavelength 5
15 nm) and the second harmonic (wavelength 257 nm) is well known. These light sources are applied to Cr(D laser CVD) on glass from Cr(CO)a vapor, and
An example of obtaining a good Cr film with a size of
It was presented by Tsukiyama et al. in 10 lectures. However, such conventional light sources have the following problems.

まずエキシマレーザの場合には、現状では、発振出力の
維持にF、や又はHCIのハロゲンガスの補給を必要と
するため、これらの有毒ガスを安全に取扱うためのボン
ベストッカー、使用済みの排ガス用処理装置および、外
気への排気装置、さらには、万一の事態のための遺漏検
知装置およびそれに連動した各種のインターロック機構
等を具備する必要を生ずる。このため、光源の大形化、
高コスト化、可搬性の喪失、安全管理負担の増大などが
生じ、現状では、エキシマレーザはとても実用的な光源
とは言いがたい。
First of all, in the case of excimer lasers, at present, it is necessary to replenish halogen gas such as F, or HCI to maintain the oscillation output. It becomes necessary to have a processing device, an exhaust device to the outside air, a leakage detection device in case of an emergency, and various interlock mechanisms linked thereto. For this reason, the size of the light source has increased,
At present, excimer lasers cannot be called a very practical light source because of the increased cost, loss of portability, and increased burden of safety management.

一方、Arレーザの第2高調波の場合には、出力がたか
だか数mWと低いため、この紫外光のみでは充分な膜質
の膜形成が行えないうえ、たとえ高出力化が図れても、
連続波として発振するために、光CVDの基板上での熱
拡散により堆積膜の形状が照射光ビームの断面形状よう
も大きくなり1μmオーダの微細な加工がほとんど困難
であった。このため、Arレーザの第2高調波は、前述
のエキシマレーザのごとき、有毒ガス利用による欠点は
ないものの、やはり光CVDには適嘔ない紫外光源であ
ると判断てれる。
On the other hand, in the case of the second harmonic of an Ar laser, the output is low, at most a few mW, so it is not possible to form a film of sufficient quality with this ultraviolet light alone, and even if high output is achieved,
Since it oscillates as a continuous wave, the shape of the deposited film becomes larger than the cross-sectional shape of the irradiated light beam due to thermal diffusion on the substrate of photo-CVD, making it almost difficult to perform microfabrication on the order of 1 μm. Therefore, although the second harmonic of the Ar laser does not have the disadvantage of using toxic gases like the excimer laser described above, it is still considered to be an ultraviolet light source that is not suitable for photoCVD.

これに対し、より実用的な紫外光源の一候補と「レーザ
薄膜形成装置」の実施例の説明のなかでCr(Go)a
を用いる場合について記述されている。
On the other hand, in the explanation of a more practical ultraviolet light source candidate and an example of a "laser thin film forming apparatus", Cr(Go)a
It describes the case where .

しかし、その場合、光臨に関してこれ以上の具体的な記
述はなく、もちろんレーザCVDの結果についても触れ
られていない。
However, in that case, there is no more specific description regarding the coming of light, and of course there is no mention of the results of laser CVD.

QスイッチNd:固体レーザの第4高偶波を実用的な元
CVD用光源に用いる場合には、まず第4高調波の高出
力化を図ることが重要である。その場合は、高調波への
変換効率を高めるために、ピークパワーの高いパルス励
起QスイッチNd:YAGレーザを用いることが一般的
に考えられる。この構成のもとでは、くり返し速度約5
0 I’lz +ピークパワー約100ffl 、パル
ス幅約Ionsの第4高調波を得るのが、はぼ一般的な
特性上の限界である。
Q switch Nd: When using the fourth harmonic wave of a solid-state laser as a practical CVD light source, it is important to first increase the output of the fourth harmonic wave. In that case, it is generally considered to use a pulse-pumped Q-switched Nd:YAG laser with high peak power in order to increase the conversion efficiency to harmonics. Under this configuration, the repetition rate is approximately 5
Obtaining the fourth harmonic of 0 I'lz + peak power of about 100 ffl and pulse width of about Ions is a fairly general characteristic limit.

これらの特性の特徴は、パルス幅やくり返し速度はエキ
シマレーザの特性とほぼ同じで、ピークパワーは3桁程
度エキシマレーザよりも低いことである。しかし、ピー
クパワーの差についても、ビーム断面積の差を考慮して
単位面積当りのパワー密度を比べれば1両光源は#1ぼ
同程度と言いうる。
These characteristics are characterized in that the pulse width and repetition rate are almost the same as those of an excimer laser, and the peak power is about three orders of magnitude lower than that of an excimer laser. However, regarding the difference in peak power, if the power density per unit area is compared taking into account the difference in beam cross-sectional area, both light sources can be said to be approximately the same as #1.

このため、同一の光学系で物質に照射した場合の照射強
度に関しては、はぼエキシマレーザ基みの特性がこの第
4高調波によって得られる。従って光CVDに用いた場
合の効果もほぼ同等と期待され、実際、前記のCr(C
o)sガスからのCrのCVDの場合について確認てれ
ている。このため、エキシマレーザの装置構成上の前述
の欠点がなく、光CVD%性はエキシマレーザと同等と
いう光源が。
Therefore, with regard to the irradiation intensity when a substance is irradiated with the same optical system, characteristics based on the excimer laser can be obtained by this fourth harmonic. Therefore, it is expected that the effect will be almost the same when used in photo-CVD, and in fact, the above-mentioned Cr(C
o) The case of CVD of Cr from s gas has been confirmed. For this reason, there is a light source that does not have the above-mentioned drawbacks of the excimer laser in its device configuration and has a photo-CVD percentage comparable to that of the excimer laser.

パルス励起QスイッチYAGレーザの第4高調波光によ
り、従来得られていた。
Conventionally, this was obtained using the fourth harmonic light of a pulse-excited Q-switched YAG laser.

しかし、この第4高調波光を用いた場合でも、数ミクロ
ンからザブミクロンに至る微小領域へのCVD特性はエ
キシマレーザを用いた場合と同様不充分であった。即ち
、このCr(CO)eからのCrの堆積の場合などでは
、光が光分解だけでなく、堆積膜の加熱作用を誘起しな
いと、金属光沢を有する良好な膜質を形成できないこと
が50Hzのエキシマレーザを用いた実験で判明してい
た(前述の59年春季応用物理学関係連合講演会、講演
番号31pK10)が、このパルス励起YAGレーザの
第4高調波を用いた場合でも、同様の結果が得られた。
However, even when this fourth harmonic light is used, the CVD characteristics for microscopic regions ranging from several microns to submicrons are insufficient, as in the case where an excimer laser is used. That is, in the case of Cr deposition from Cr(CO)e, it is difficult to form a good film quality with metallic luster unless the light induces not only photolysis but also heating of the deposited film. This was discovered in an experiment using an excimer laser (see the aforementioned 1959 Spring Conference on Applied Physics, Lecture No. 31pK10), but similar results were obtained when using the fourth harmonic of this pulse-excited YAG laser. was gotten.

特に10μm以下の微小領域への堆積では。Especially when depositing on a micro area of 10 μm or less.

加熱効果をあげるべく1パルス当りのエネルギーを増大
させると、堆積膜に照射光自身による損傷を生じてしま
い、良好な膜が得られなかった。
If the energy per pulse was increased to improve the heating effect, the deposited film would be damaged by the irradiation light itself, making it impossible to obtain a good film.

(発明の目的) 本発明の目的は、かくのごとき従来の光CVD光源の欠
点を除去し、′4I小領域への良好な光CVD膜の形成
を可能とする光CVD用の光源を提供することにある。
(Object of the Invention) The object of the present invention is to provide a light source for photo-CVD that eliminates the drawbacks of the conventional photo-CVD light source and enables formation of a good photo-CVD film on a '4I small area. There is a particular thing.

(発明の構成) 本発明の光源は、連続励起QスイッチNd固体レーザと
紫外域高調波の発生器とから構成されている。
(Structure of the Invention) The light source of the present invention is composed of a continuously pumped Q-switched Nd solid-state laser and a generator of ultraviolet harmonics.

(本発明の作用原理) 従来の、加熱作用を必要とする元CVDで微小領域に良
好な膜を形成する場合7重要なポイントのひとつは堆積
膜の冷却過程を検討することである。ガラス上へのCr
(Co)eからのCrの堆積の場合、照射レーザ光を吸
収するのは堆積したCr膜自身のみである。大面積に堆
積させる場合の堆積膜の冷却は膜の垂直方向への1次元
の熱伝導で考えれば良い。これに対し、微小領域への堆
積では。
(Principle of operation of the present invention) When forming a good film in a minute area using conventional CVD, which requires a heating action, one of the important points is to consider the cooling process of the deposited film. Cr on glass
In the case of Cr deposition from (Co)e, only the deposited Cr film itself absorbs the irradiated laser light. Cooling of a deposited film when deposited over a large area can be considered in terms of one-dimensional heat conduction in the vertical direction of the film. In contrast, when deposited on a microscopic area.

堆積膜面内方向への熱拡散も相対的に顕著に生ずる。即
ち、3次元の熱伝導が生じ、実効的に堆積膜の冷却効果
が高まる。この状況は、基板の熱拡散長よシも堆積膜の
サイズの方が小さい数μm領域への堆積の場合に、より
顕著になる。このような、従来技術に対する問題点の考
察に基づき、本発明においては従来のパルス励起Qスイ
ッチYAGレーザの第4高調波に代え、連続励起Qスイ
ッチNd:固体レーザと紫外域の高調波、なかでも連続
励起超音波(AO)QスイッチNd:YAGレーザの出
射光の第4高調波(波長266nm)を光源としている
。この差により、紫外光の特性としては、パルスエネル
ギーが約3桁小さく、パルス幅が1桁強拡がり、第4高
調波への変換効率も1桁以上小さくなるなどの、一般用
途には不利な特性となる。しかし、パルスのくり返し速
度は逆に1〜2桁も高くなるため、照射する1パルス肖
りのピーク、強度を堆積膜光損傷のしきい値以下に充分
押えて、なおかつ、1パルス当りの入力不足をくシ返し
速度の向上による充分な加熱積分効果で補うことができ
る。しかも、この加熱積分効果は、堆積膜に対してCV
D温度以下の定常的な昇温効果をもたらすごとくできる
ので、実際のCVDが生ずるのは1個々の入射パルスに
よる過渡的な温度上昇時のみに限定でき、その結果、得
られる堆積膜のパターンは、定常的加熱時に見られる拡
がシを伴うことなく、光照射部を忠実に反映した精細な
パターンが形成できる8 (実施例) 以下図面を用いて、本発明の実施例を詳細に説明する。
Heat diffusion in the in-plane direction of the deposited film also occurs relatively significantly. That is, three-dimensional heat conduction occurs, effectively increasing the cooling effect of the deposited film. This situation becomes more pronounced in the case of deposition in a region of several μm, where the size of the deposited film is smaller than the thermal diffusion length of the substrate. Based on the consideration of such problems with the prior art, in the present invention, instead of the fourth harmonic of the conventional pulse-pumped Q-switched YAG laser, a continuously pumped Q-switched Nd: solid-state laser and harmonics in the ultraviolet region, However, the light source is the fourth harmonic (wavelength 266 nm) of the emitted light of a continuously excited ultrasound (AO) Q-switched Nd:YAG laser. Due to this difference, the characteristics of ultraviolet light are that the pulse energy is about three orders of magnitude smaller, the pulse width is a little more than one order of magnitude wider, and the conversion efficiency to the fourth harmonic is more than one order of magnitude smaller, which is disadvantageous for general use. Becomes a characteristic. However, since the repetition rate of pulses increases by one to two orders of magnitude, it is necessary to sufficiently suppress the peak intensity of one pulse to below the threshold for optical damage to the deposited film, and to reduce the input power per pulse. The deficiency can be compensated for by a sufficient heating integral effect by increasing the recombination speed. Moreover, this heating integral effect causes CV
Since it is possible to produce a steady temperature increase effect below the D temperature, actual CVD can be limited to only the transient temperature increase caused by one individual incident pulse, and as a result, the pattern of the deposited film obtained is , a fine pattern that faithfully reflects the light irradiation area can be formed without the spreading that occurs during steady heating 8 (Example) Examples of the present invention will be described in detail below with reference to the drawings. .

第1図は、本発明の光源の構成図である。FIG. 1 is a block diagram of a light source of the present invention.

Nd:YAGレーザ1からの基本波(波長1.06μm
IrL)光は1位相整合状態のSHG結晶2により第2
高調波(SH,波長0.53μm)光に変換される。N
d:YAGレーザ1は、連続的にKrアークランプで励
起されており、共振器内のAOQスイッチ素子により。
Fundamental wave from Nd:YAG laser 1 (wavelength 1.06 μm
IrL) The light is transferred to the second phase by the SHG crystal 2 in one phase matching state.
It is converted into harmonic (SH, wavelength 0.53 μm) light. N
d: The YAG laser 1 is continuously excited by a Kr arc lamp and by an AOQ switch element in the resonator.

1ktlz前後の高速繰返し速度でQスイッチ発振を繰
返している。Qスイッチ発振を制御するQスイ、チトリ
ガー回路は、各種の自動制御信号によシ外部からの制御
が可能な外部トリガ一端子を有している。Nd:YAG
レーザ1の出力は、後段の波長変換を容易にすべくTE
MooモードでIOW程度の高出力発振が可能な構成を
有している。SHG結晶としては、高効率な波長変換が
可能なODAやKTPを用いるのが有効で、SH光への
変換効率としては10%以上が得られ、SH光の平均パ
ワーとして最大IW程度の特性が実現できる。得られた
SH先は、位相整合状態のFHG結晶3によりさらに2
倍の周波数(半分の波長)の第4高調波(FH、波長2
66nm)光に変換される。FHG結晶としては、KD
Pを用することが望ましい。その場合SH光からFH−
Xへの変換効率としては、FHG結晶への集光状態や、
結晶の均一性、さらには重水素置換率などによシ異なる
ものの、5〜10%程度が実現できるので、最大平均出
力50〜1oomWのパルス列のFH元が得られる。そ
の出力のうちからプリズムなどの波長選択素子4により
、PHff、のみをとり出す。
Q-switch oscillation is repeated at a high repetition rate of around 1 ktlz. The Q switch and trigger circuit that controls the Q switch oscillation has an external trigger terminal that can be externally controlled by various automatic control signals. Nd:YAG
The output of laser 1 is TE to facilitate wavelength conversion in the subsequent stage.
It has a configuration that allows high output oscillation on the order of IOW in Moo mode. As the SHG crystal, it is effective to use ODA and KTP, which are capable of highly efficient wavelength conversion.The conversion efficiency to SH light is 10% or more, and the average power of SH light has a maximum characteristic of about IW. realizable. The obtained SH tip is further divided into two parts by the phase-matched FHG crystal 3.
The fourth harmonic (FH, wavelength 2) of double the frequency (half the wavelength)
66 nm) is converted into light. As FHG crystal, KD
It is desirable to use P. In that case, from SH light to FH-
The conversion efficiency to X depends on the state of focusing on the FHG crystal,
Although it varies depending on the uniformity of the crystal, the deuterium substitution rate, etc., about 5 to 10% can be achieved, so an FH element of a pulse train with a maximum average output of 50 to 1 oomW can be obtained. From the output, only PHff is extracted by a wavelength selection element 4 such as a prism.

こうして得られたFH元は、レーザCVDセル内の基板
上に集光され、良好なCVD膜を形成するのに用いられ
た。第2図は、この光源を光CVDの用途に用いた場合
の装量構成の概念図である。
The FH source thus obtained was focused on a substrate in a laser CVD cell and used to form a good CVD film. FIG. 2 is a conceptual diagram of the loading structure when this light source is used for optical CVD.

FH元を集光レンズ5によりCVDセル6内の基板70
表面に照射する。セル内はArバッファガスで稀釈され
たCr(Co)e蒸気で満たされているため。
The FH source is transferred to the substrate 70 in the CVD cell 6 using the condensing lens 5.
Irradiate the surface. This is because the inside of the cell is filled with Cr(Co)e vapor diluted with Ar buffer gas.

FH元による前述の光分解効果と、加熱効果とによt)
Cr金属膜が堆積する。この構成により、従来のエキシ
マレーザ光やパルス励起QスイッチYAGレーザの第4
高調波光を用いた場合には得られなかった、数μm径の
微小領域の良好なCr膜の形成が石英の基板7の上で実
現し、最小径として1μmまで可能なことが確認されて
いる。得られたCr膜の基板への付着力は非常に高く、
膜質も充分緻密で遮光性や導電性を有することが確認さ
れた。
Due to the above-mentioned photolysis effect and heating effect due to FH element)
A Cr metal film is deposited. With this configuration, the fourth
It has been confirmed that the formation of a good Cr film in a micro area with a diameter of several μm, which could not be obtained when using harmonic light, was achieved on the quartz substrate 7, and that it is possible to achieve a minimum diameter of 1 μm. . The adhesion of the obtained Cr film to the substrate is very high.
It was confirmed that the film quality was sufficiently dense and had light-shielding properties and conductivity.

これらの特性により、従来は充分実用的な方式がなく、
実現が侍たれていたフォトマスクのピンホール欠陥の修
正技術へ、大きな効果がこの構成により実現可能と考え
られる。
Due to these characteristics, there has been no sufficiently practical method in the past.
It is believed that this configuration can have a significant effect on the technology for correcting pinhole defects in photomasks, which has been pending.

以上の実施例においては、連続励起QスイッチNd固体
レーザとしては、A−OQスイッチのNd:YAGレー
ザを用いたが、レーザ材料としては連続発振可能な他の
材料、たとえばNd:YLFやNd:GGGなどの代替
材料が用いうろことは言うまでもない。また、紫外域高
調波の発生器としてはここでは第4高調波の場合を説明
したが、CVDガスの吸収波長との関連で、第3高調波
光(354nm)や第5高調波光(213nm)も用い
うろことも言うまでもない。前者の場合には、第2高調
波光(532nm)と基本波光(1,064μm)の和
周波発生、後者では、第4篩調波元と基本波光との和周
波発生9又は、第2高調波光と第3高調波光との和周波
発生をそれぞれ行うための位相整合された非線形光学結
晶を用いれば良い。
In the above embodiments, an A-OQ switched Nd:YAG laser was used as the continuously pumped Q-switched Nd solid-state laser, but other materials capable of continuous oscillation, such as Nd:YLF and Nd:YAG, were used as the laser material. It goes without saying that alternative materials such as GGG can be used for scales. In addition, as a generator of ultraviolet harmonics, the case of the fourth harmonic was explained here, but in relation to the absorption wavelength of CVD gas, the third harmonic light (354 nm) and the fifth harmonic light (213 nm) are also used. Needless to say, the scales are used. In the former case, sum frequency generation of the second harmonic light (532 nm) and fundamental wave light (1,064 μm), in the latter case, sum frequency generation of the fourth sieve harmonic source and fundamental wave light 9 or second harmonic light Phase-matched nonlinear optical crystals may be used to generate the sum frequency of the third harmonic light and the third harmonic light, respectively.

また、本発明の具体的な適用列の説明としては、光CV
DのうちのCrの堆積について述べたが、本発明による
光源が金属のみではなく、他の絶縁体や半導体のCVD
、さんには、これらの材料の光エッチングなどの光化学
反応誘起用紫外光源としても有効である。
Further, as a description of the specific application series of the present invention, optical CV
Although the deposition of Cr in D has been described, the light source according to the present invention can be used for CVD of not only metals but also other insulators and semiconductors.
, is also effective as an ultraviolet light source for inducing photochemical reactions such as photoetching of these materials.

(本発明の効果) 以上述べたごとく、本発明の連続励起QスイッチNd:
YAGレーザの高速繰返しの第4高調波光     ′
を用いると、従来の低速繰返しパルス光源や連続発振光
源では実現できない、微小領域への光化学効果及び光加
熱効果を、光損傷を避けながら高めることかできる。こ
のため、この光源を光CVDや光エッチングに適用する
と、従来になく微小な領域へ良好な加工を行うことがで
きる。
(Effects of the present invention) As described above, the continuous excitation Q switch Nd of the present invention:
4th harmonic light of YAG laser's high-speed repetition
By using this method, it is possible to enhance the photochemical effect and photoheating effect on microscopic areas while avoiding optical damage, which cannot be achieved with conventional low-speed repetitive pulse light sources or continuous wave light sources. For this reason, when this light source is applied to optical CVD or optical etching, it is possible to perform excellent processing on a minute area unlike before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示する構成図、第2図は本
発明の光源を九CVD装置に用いた例を示す図である。 図中1はQスイッチNd固体レーザ、2,3は高調波発
生器、4は波長選択素子を示す。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing an example in which the light source of the present invention is used in a CVD apparatus. In the figure, 1 is a Q-switched Nd solid-state laser, 2 and 3 are harmonic generators, and 4 is a wavelength selection element.

Claims (1)

【特許請求の範囲】[Claims]  連続励起QスイッチNd固体レーザと紫外域高調波の
発生器とからなることを特徴とする光化学反応誘起用光
源。
A light source for inducing a photochemical reaction, comprising a continuously pumped Q-switched Nd solid-state laser and an ultraviolet harmonic generator.
JP14814684A 1984-07-17 1984-07-17 Light source for photochemical reactive induction Pending JPS6127623A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14814684A JPS6127623A (en) 1984-07-17 1984-07-17 Light source for photochemical reactive induction
EP85108906A EP0169485B1 (en) 1984-07-17 1985-07-16 Method and apparatus for inducing photochemical reaction
DE8585108906T DE3584798D1 (en) 1984-07-17 1985-07-16 INCENTIVE PROCESS AND DEVICE FOR PHOTOCHEMICAL REACTIONS.
US07/393,070 US4976930A (en) 1984-07-17 1989-08-03 Method and apparatus for inducing photochemical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14814684A JPS6127623A (en) 1984-07-17 1984-07-17 Light source for photochemical reactive induction

Publications (1)

Publication Number Publication Date
JPS6127623A true JPS6127623A (en) 1986-02-07

Family

ID=15446292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14814684A Pending JPS6127623A (en) 1984-07-17 1984-07-17 Light source for photochemical reactive induction

Country Status (1)

Country Link
JP (1) JPS6127623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205427A (en) * 2007-01-24 2008-09-04 Sumitomo Electric Ind Ltd Gas phase reaction growth apparatus and gas phase reaction growth method
US7905167B2 (en) 2005-01-20 2011-03-15 Hitachi Koki Co., Ltd. Miter saw
CN108213707A (en) * 2018-01-26 2018-06-29 吉林大学 Laser Welding penetration signal real-time monitoring device and method based on supersonic guide-wave

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767161A (en) * 1980-10-08 1982-04-23 Nec Corp Forming device for thin film by laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767161A (en) * 1980-10-08 1982-04-23 Nec Corp Forming device for thin film by laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7905167B2 (en) 2005-01-20 2011-03-15 Hitachi Koki Co., Ltd. Miter saw
US8161859B2 (en) 2005-01-20 2012-04-24 Hitachi Koki Co., Ltd. Miter saw
JP2008205427A (en) * 2007-01-24 2008-09-04 Sumitomo Electric Ind Ltd Gas phase reaction growth apparatus and gas phase reaction growth method
CN108213707A (en) * 2018-01-26 2018-06-29 吉林大学 Laser Welding penetration signal real-time monitoring device and method based on supersonic guide-wave
CN108213707B (en) * 2018-01-26 2019-07-30 吉林大学 Laser Welding penetration signal real-time monitoring device and method based on supersonic guide-wave

Similar Documents

Publication Publication Date Title
EP0169485B1 (en) Method and apparatus for inducing photochemical reaction
US7088749B2 (en) Green welding laser
JP2001269789A (en) Laser beam machining device
JPH09269430A (en) Production of optical waveguide device
Ozono et al. High-speed ablation etching of GaN semiconductor using femtosecond laser
JPH05104276A (en) Laser beam machine and machining method with laser beam
JP2001021931A (en) Laser device for processing using nonlinear crystal of type 1
JPS6127623A (en) Light source for photochemical reactive induction
JPH09122940A (en) Laser beam marking method
CN113258426B (en) 213nm laser
Pipinytė et al. Laser-induced-damage threshold of periodically poled lithium niobate for 1030 nm femtosecond laser pulses at 100 kHz and 75 MHz
JPS6128444A (en) Method and apparatus for inducing photochemical reaction
JPH10101379A (en) Method for marking glass
CN215989630U (en) Multi-pass multi-frequency multiplier
JP4597446B2 (en) Optical wavelength conversion method and optical wavelength conversion system
JP2001068764A (en) Laser machining device equipped with light shielding means
JP2003285187A (en) Optical transmission device and laser beam machining device
JPS61118137A (en) Formation of thin film
JPS642935B2 (en)
JPH0643514A (en) Wavelength converting laser device and wavelength converting laser processing device
JPH0857678A (en) Laser beam processing machine
JPS60138092A (en) Formation of pattern
JPH04276726A (en) Temperature stabilization type wavelength conversion element
JP2007121933A (en) Method of preparing polarization reversal structure
Preiswerk et al. Laser Repair Of Transparent Microfaults In IC Photomasks