JP2007121933A - Method of preparing polarization reversal structure - Google Patents

Method of preparing polarization reversal structure Download PDF

Info

Publication number
JP2007121933A
JP2007121933A JP2005317269A JP2005317269A JP2007121933A JP 2007121933 A JP2007121933 A JP 2007121933A JP 2005317269 A JP2005317269 A JP 2005317269A JP 2005317269 A JP2005317269 A JP 2005317269A JP 2007121933 A JP2007121933 A JP 2007121933A
Authority
JP
Japan
Prior art keywords
domain
femtosecond laser
inverted structure
base material
polarization inversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005317269A
Other languages
Japanese (ja)
Inventor
Takeshi Fukuda
武司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005317269A priority Critical patent/JP2007121933A/en
Publication of JP2007121933A publication Critical patent/JP2007121933A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing polarization reversal structure by which the polarization reversal structure is selectively formed in a part of a base. <P>SOLUTION: The method of preparing the polarization reversal structure is characterized by forming the polarization reversal structure in the base by irradiating the base comprised of a ferroelectric substance with a femtosecond laser while applying to the base voltage of a level not causing polarization reversal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高いエネルギー密度を有するパルスレーザ光を利用して強誘電体内部に分極反転構造を作製する方法に関する。   The present invention relates to a method for producing a domain-inverted structure inside a ferroelectric substance using a pulsed laser beam having a high energy density.

強誘電体の非線形光学効果を利用した波長変換素子は、基本波と波長変換波の間で位相整合をとる必要があり、一般的には強誘電体中に周期的に分極を反転させた構造を用いている。位相整合条件は分極反転周期をΛ、基本波長をλp、第二高調波の波長をλsh、基本波波長に対する実効屈折率をn(λp)、第二高調波波長に対する実行屈折率をn(λsh)、任意の整数をmとすると、下記の式1で求められる。   A wavelength conversion element that utilizes the nonlinear optical effect of a ferroelectric material requires phase matching between the fundamental wave and the wavelength conversion wave, and generally has a structure in which polarization is periodically inverted in a ferroelectric material. Is used. The phase matching condition is Λ for the polarization inversion period, λp for the fundamental wavelength, λsh for the second harmonic wavelength, n (λp) for the effective refractive index for the fundamental wavelength, and n (λsh) for the second harmonic wavelength. ), Where m is an arbitrary integer, the following equation 1 is obtained.

Figure 2007121933
Figure 2007121933

分極反転構造を形成する強誘電体材料としては、LiNbO、MgドープLiNbO、LiTaO、KTiOPO(KTP)、β-Ba(BBO)、LiBO5 (LBO)などがあり、この中でも最も利用されているLiNbOやLiTaOを用いた分極反転構造の作成方法に関して下記のような公知文献がある。
(1)LiNbOのz面にピロリン酸を用いて260℃でプロトン交換を行い、その後で500〜600℃で熱処理する方法(非特許文献1参照)。
(2)zカットLiNbOやLiTaO結晶の片面に周期電極、反対面に一様電極を設けてパルス電圧を印加する方法(非特許文献2参照)。
(3)フェムト秒レーザをLiNbO基材に集光照射する方法(特許文献1参照)。
Examples of the ferroelectric material forming the domain-inverted structure include LiNbO 3 , Mg-doped LiNbO 3 , LiTaO 3 , KTiOPO 4 (KTP), β-Ba 2 B 2 O 3 (BBO), and LiB 2 O5 (LBO). Among them, there are the following publicly known documents concerning a method of creating a domain-inverted structure using LiNbO 3 or LiTaO 3 which is most utilized among them.
(1) A method of performing proton exchange at 260 ° C. using pyrophosphoric acid on the z-plane of LiNbO 3 and then heat-treating at 500 to 600 ° C. (see Non-Patent Document 1).
(2) A method of applying a pulse voltage by providing a periodic electrode on one side of a z-cut LiNbO 3 or LiTaO 3 crystal and a uniform electrode on the opposite side (see Non-Patent Document 2).
(3) A method of focusing and irradiating a LiNbO 3 base material with a femtosecond laser (see Patent Document 1).

上記文献に記載されている方法を用いて分極反転構造を形成すると、基材の厚さ方向に一様な分極反転構造が形成される。また、条件によっては基材の表面から一定の深さまでだけに分極反転構造を形成することも可能であるが、基材表面から特定の深さの位置に特定の領域にだけ分極反転構造を形成することはできない。
基材表面付近もしくは基材の厚さ方向全体に亘って周期分極反転構造を形成する従来の方法では、三次元的に光導波路や波長変換素子が集積化された次世代へ高密度光デバイスを実現することが困難である。
特開2002−287191号公報 K.Mizuuchi et al., Applied Physics Letter60 (1992) 1283 M.Yamada et al., Applied Physics Letter62 (1993) 435
When a domain-inverted structure is formed using the method described in the above document, a domain-inverted structure that is uniform in the thickness direction of the substrate is formed. Depending on the conditions, it is possible to form a domain-inverted structure only from the surface of the substrate to a certain depth, but a domain-inverted structure is formed only in a specific region at a specific depth from the substrate surface. I can't do it.
In the conventional method of forming a periodically poled structure near the surface of the substrate or over the entire thickness direction of the substrate, a high-density optical device has been developed for the next generation in which optical waveguides and wavelength conversion elements are integrated three-dimensionally. It is difficult to realize.
JP 2002-287191 A K. Mizuuchi et al., Applied Physics Letter 60 (1992) 1283 M. Yamada et al., Applied Physics Letter62 (1993) 435

本発明は、このような従来の実情に鑑みて考案されたものであり、基材内の一部に選択的に分極反転構造を形成可能な分極反転構造の作製方法を提供することを目的とする。   The present invention has been devised in view of such conventional circumstances, and an object thereof is to provide a method for producing a domain-inverted structure capable of selectively forming a domain-inverted structure on a part of a substrate. To do.

本発明の請求項1に記載の分極反転構造の作製方法は、強誘電体からなる基材に分極反転が起きない程度の電圧を印加させつつ、該基材に対してフェムト秒レーザを照射することにより前記基材内に分極反転構造を形成することを特徴とする。
本発明の請求項2に記載の分極反転構造の作製方法は、請求項1において、上記フェムト秒レーザの出力密度が1GW/cm以上、500GW/cm以下であることを特徴とする。
本発明の請求項3に記載の分極反転構造の作製方法は、請求項1において、上記フェムト秒レーザのパルス幅が500fs以下であることを特徴とする。
本発明の請求項4に記載の分極反転構造の作製方法は、請求項1において、前記フェムト秒レーザとして、互いに干渉する2つ以上のレーザを用いることを特徴とする。
本発明の請求項5に記載の分極反転構造の作製方法は、請求項1において、前記基材は、LiNbO、MgドープLiNbO、LiTaO、KTiOPO、β-Ba、LiBから選択される1つ以上の強誘電体であることを特徴とする。
本発明の請求項6に記載の波長変換光素子は、請求項1乃至5のいずれか1項に記載の方法により作製された分極反転構造を備えたことを特徴とする。
According to a first aspect of the present invention, there is provided a method for producing a domain-inverted structure in which a femtosecond laser is applied to a substrate made of a ferroelectric material while applying a voltage that does not cause domain-inversion. Thus, a domain-inverted structure is formed in the base material.
The method for manufacturing a polarization inversion structure according to claim 2 of the present invention, in claim 1, the power density of the femtosecond laser 1 GW / cm 2 or more, and wherein the at 500GW / cm 2 or less.
The method for producing a domain-inverted structure according to claim 3 of the present invention is characterized in that in claim 1, the pulse width of the femtosecond laser is 500 fs or less.
The method for producing a domain-inverted structure according to claim 4 of the present invention is characterized in that, in claim 1, two or more lasers that interfere with each other are used as the femtosecond laser.
The method for producing a domain-inverted structure according to claim 5 of the present invention is the method according to claim 1, wherein the base material is LiNbO 3 , Mg-doped LiNbO 3 , LiTaO 3 , KTiOPO 4 , β-Ba 2 B 2 O 3 , It is characterized by being one or more ferroelectrics selected from LiB 2 O 5 .
According to a sixth aspect of the present invention, there is provided a wavelength conversion optical device including the domain-inverted structure manufactured by the method according to any one of the first to fifth aspects.

本発明では、強誘電体からなる基材に電圧を印加しつつフェムト秒レーザを照射することで、該基材内のレーザ照射部のみ選択的に周期分極反転構造を形成することができる。   In the present invention, by irradiating a femtosecond laser while applying a voltage to a base material made of a ferroelectric material, a periodic polarization inversion structure can be selectively formed only in the laser irradiation portion in the base material.

以下、本発明に係る分極反転構造の作製方法の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a method for producing a domain-inverted structure according to the present invention will be described with reference to the drawings.

本発明は、強誘電体からなる基材に分極反転が起きない程度の電圧を印加させつつ、該基材に対してフェムト秒レーザを照射することにより前記基材内に分極反転構造を形成することを特徴とする。
強誘電体基材に電圧を印加した状態でフェムト秒レーザを集光照射すると集光照射部のみ選択的に周期分極反転構造を形成できる。
The present invention forms a domain-inverted structure in the substrate by irradiating the substrate with a femtosecond laser while applying a voltage that does not cause polarization inversion to the substrate made of a ferroelectric material. It is characterized by that.
When a femtosecond laser is focused and irradiated with a voltage applied to the ferroelectric substrate, a periodic polarization inversion structure can be selectively formed only in the focused irradiation portion.

具体的には、図1(a)に示すように、基材1の表面と裏面の全面にそれぞれ電極2を蒸着もしくはスパッタなどで形成する。そして図1(b)に示すように、この電極2を形成した基材1に分極反転しない程度の電圧を印加する。その状態で、分極反転したい部分にだけフェムト秒レーザ3を集光照射することで、集光照射部近傍においてマイクロプラズマ4が発生し、このマイクロプラズマ4が発生した領域のみ選択的に分極反転構造5が形成される(図1(c)参照)。   Specifically, as shown in FIG. 1 (a), the electrodes 2 are formed on the entire surface of the base 1 and the entire back by vapor deposition or sputtering. And as shown in FIG.1 (b), the voltage of the grade which does not reverse polarization is applied to the base material 1 in which this electrode 2 was formed. In this state, the micro-plasma 4 is generated in the vicinity of the focused irradiation portion by focusing and irradiating the femtosecond laser 3 only on the portion where the polarization is to be reversed. 5 is formed (see FIG. 1C).

本発明では、フェムト秒レーザの集光照射時に発生する強電場と元来印加されていた電圧とが重なり合うことで、分極反転に必要電圧が局所的に印加されて、フェムト秒レーザの集光照射部でのみ選択的に分極反転構造が形成されたと考えられる。
また、本発明の方法によれば、基材の表面近傍のみでなく、フェムト秒レーザの焦点位置を制御することにより、基材の内部にも分極反転構造を形成することが可能である。
In the present invention, the strong electric field generated during the focused irradiation of the femtosecond laser overlaps the originally applied voltage, so that the voltage necessary for polarization inversion is locally applied, and the focused irradiation of the femtosecond laser is performed. It is considered that the domain-inverted structure was selectively formed only at the portion.
Further, according to the method of the present invention, it is possible to form a domain-inverted structure not only in the vicinity of the surface of the base material but also in the base material by controlling the focal position of the femtosecond laser.

前記基材は、LiNbO、MgドープLiNbO、LiTaO、KTiOPO、β-Ba、LiBから選択される1つ以上の強誘電体である。
なお、本発明において用いられる基材は、1種類の強誘電体から構成されていてもよいし、複数の強誘電体の積層体で構成されていても構わない。
The base material is one or more ferroelectrics selected from LiNbO 3 , Mg-doped LiNbO 3 , LiTaO 3 , KTiOPO 4 , β-Ba 2 B 2 O 3 , and LiB 2 O 5 .
In addition, the base material used in the present invention may be composed of one type of ferroelectric material, or may be composed of a laminate of a plurality of ferroelectric materials.

分極反転しない程度の電圧とは、基材の構成材料等にも依存し、特に限定されるものではないが、例えば、1〜20kV/mm程度とすることが好ましい。電圧を上記範囲とすることで、フェムト秒レーザを照射したときに、分極反転に必要な局所的な強電場を発生させることが可能となり、フェムト秒レーザの集光照射部でのみ選択的に分極反転構造を形成することが可能となる。   The voltage that does not cause polarization inversion depends on the constituent material of the base material and is not particularly limited, but is preferably about 1 to 20 kV / mm, for example. By setting the voltage within the above range, it becomes possible to generate a strong local electric field necessary for polarization reversal when irradiated with a femtosecond laser, and selectively polarized only at the focused irradiation part of the femtosecond laser. An inversion structure can be formed.

上記フェムト秒レーザの出力密度は、1GW/cm以上、500GW/cm以下であることが好ましい。フェムト秒レーザの出力密度を上記範囲とすることで、分極反転に必要な局所的な強電場を発生させることが可能となり、フェムト秒レーザの集光照射部でのみ選択的に分極反転構造を形成することが可能となる。これに対し、フェムト秒レーザの出力密度が1GW/cm未満であると、分極反転に必要な局所的な強電場が発生せず、分極反転構造を形成することが困難となる。一方、出力密度が500GW/cmを超えると、構造変化に伴う屈折率変化が起こってしまい、分極反転が起きない可能性がある。 The output density of the femtosecond laser, 1 GW / cm 2 or more, it is preferable that the 500GW / cm 2 or less. By setting the output density of the femtosecond laser within the above range, it becomes possible to generate a local strong electric field necessary for polarization inversion, and a polarization inversion structure is selectively formed only at the focused irradiation part of the femtosecond laser. It becomes possible to do. On the other hand, when the output density of the femtosecond laser is less than 1 GW / cm 2 , a local strong electric field necessary for polarization inversion does not occur, and it becomes difficult to form a polarization inversion structure. On the other hand, when the output density exceeds 500 GW / cm 2 , a refractive index change accompanying a structural change occurs, and there is a possibility that polarization inversion does not occur.

上記フェムト秒レーザのパルス幅は、500fs以下であることが好ましい。フェムト秒レーザのパルス幅を上記範囲とすることで、分極反転に必要な局所的な強電場を発生させることが可能となり、フェムト秒レーザの集光照射部でのみ選択的に分極反転構造を形成することが可能となる。これに対し、フェムト秒レーザのパルス幅が500fsを超えると、分極反転に必要な局所的な強電場が発生せす、分極反転構造を形成することが困難となる。   The pulse width of the femtosecond laser is preferably 500 fs or less. By setting the pulse width of the femtosecond laser within the above range, it becomes possible to generate a local strong electric field necessary for polarization inversion, and a polarization inversion structure is selectively formed only at the focused irradiation part of the femtosecond laser. It becomes possible to do. On the other hand, when the pulse width of the femtosecond laser exceeds 500 fs, it becomes difficult to form a domain-inverted structure in which a local strong electric field necessary for domain inversion is generated.

また、前記フェムト秒レーザとして、互いに干渉する2つ以上のレーザを用いることが好ましい。
フェムト秒レーザの照射部を走査して分極反転構造を形成しているのでは、広い面積に分極反転構造を形成するのに時間がかかる。そこで、2つのフェムト秒レーザを干渉させて1パルスで広い領域に照射することで、広い面積に一括で分極反転構造を形成することが可能になる。
Moreover, it is preferable to use two or more lasers that interfere with each other as the femtosecond laser.
If the domain-inverted structure is formed by scanning the irradiation part of the femtosecond laser, it takes time to form the domain-inverted structure over a wide area. Thus, by irradiating a wide region with one pulse by causing interference between two femtosecond lasers, it becomes possible to form a domain-inverted structure in a large area at once.

図2は、2ビームレーザ露光装置のシステム概念図である。このシステムにおいては、 フェムト秒レーザ光源、該レーザからのパルスビームを二つに分割するためのビームスプリッター、パルス光の集光合致位置を時間的に制御するための光学遅延回路および空間的に制御するための平面ミラーと凹面ミラーと該ミラーを微回転するための機構からなる光学系とする。ミラーの位置を、ミラー面に垂直方向、入射ビームに対して平行および垂直方向に微移動させることにより、光学路長を変化させ、光学遅延回路とすることができる。対向して該基材に入射する2つのビームの集光の合致位置および集光スポットのサイズを光学遅延回路およびミラーにより制御できる。   FIG. 2 is a system conceptual diagram of a two-beam laser exposure apparatus. In this system, a femtosecond laser light source, a beam splitter for splitting the pulse beam from the laser into two, an optical delay circuit for temporally controlling the convergence position of the pulsed light, and spatial control The optical system includes a plane mirror, a concave mirror, and a mechanism for finely rotating the mirror. By slightly moving the position of the mirror in the direction perpendicular to the mirror surface and parallel to and perpendicular to the incident beam, the optical path length can be changed to provide an optical delay circuit. The converging position of the condensing of the two beams incident on the base material and the size of the condensing spot can be controlled by an optical delay circuit and a mirror.

上記のような装置を用いて、例えば特開2002−287191号公報に記載されている方法と同様に、パルス幅が900〜10フェムト秒、ピーク出力が1GW以上で、フーリェ限界またはそれと近似できるフェムト秒レーザを光源とし、該レーザからのパルスをビームスプリッターにより二つに分割し、二つのビームを光学遅延回路を介して時間的に制御し、かつ微小回転する反射面が平面のミラーと凹面のミラーを用いて空間的に制御し、基材表面または基材内部に、偏光面を平行にして集光し、二つのビームの集光スポットを時間的および空間的に合致させることにより、エネルギー密度0.1TW/cm2 以上の高密度エネルギーを強誘電体に照射する。 Using the apparatus as described above, for example, similar to the method described in Japanese Patent Application Laid-Open No. 2002-287191, the pulse width is 900 to 10 femtoseconds, the peak output is 1 GW or more, the Fourier limit or a femto that can approximate it. A second laser is used as a light source, a pulse from the laser is divided into two by a beam splitter, the two beams are temporally controlled via an optical delay circuit, and a reflecting surface that rotates slightly is a flat mirror and a concave surface. Energy density by controlling spatially using a mirror, focusing on the substrate surface or inside the substrate with the polarization plane parallel, and matching the focused spots of the two beams in time and space The ferroelectric is irradiated with high density energy of 0.1 TW / cm 2 or more.

以上のようにして形成される分極反転構造は、弗硝酸混合液に浸したとき、−z面はエッチングされるが、+z面はエッチングされないことを利用して、確認することができる。z面以外にレーザ光を照射したときには、分極反転は観測されない。高密度エネルギーパルスの有する強電場により、逆方向の分極を持つ領域が誘起されたことを示している。   The domain-inverted structure formed as described above can be confirmed by utilizing that the −z plane is etched but the + z plane is not etched when immersed in a hydrofluoric acid mixed solution. When laser light is irradiated on a surface other than the z-plane, no polarization inversion is observed. This shows that a region having a polarization in the reverse direction is induced by the strong electric field of the high-density energy pulse.

また、分極反転構造の大きさは、レーザのエネルギー密度が大きいほど、大きくなる。また、レーザパルスを同じ場所に重ねて照射した場合、照射パルスの数が増加するほど、分極反転構造の大きさは大きくなる。   In addition, the size of the domain-inverted structure increases as the laser energy density increases. In addition, when laser pulses are irradiated at the same place, the size of the domain-inverted structure increases as the number of irradiation pulses increases.

以上、本発明の分極反転構造の作製方法について説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。   As described above, the method for producing the domain-inverted structure of the present invention has been described. However, the present invention is not limited to the above-described example, and can be appropriately changed as necessary.

(実施例1)
LiNbOから構成される厚さ0.5mmの基材の両面に、それぞれAl電極を蒸着で全面に形成した。電極を形成した基材に5kVの電圧を印加しつつ、出力密度50GW/cm、パルス幅500fs、波長800nmのフェムト秒レーザを1パルスだけ基材の−z面の方向から集光照射すると集光照射部において分極反転構造が形成された。
Example 1
Al electrodes were formed on both surfaces of a 0.5 mm thick substrate composed of LiNbO 3 by vapor deposition. When a 5 kV voltage is applied to the substrate on which the electrodes are formed, a femtosecond laser with an output density of 50 GW / cm 2 , a pulse width of 500 fs, and a wavelength of 800 nm is focused and irradiated from the direction of the −z plane of the substrate for one pulse. A polarization inversion structure was formed in the light irradiation part.

分極反転構造は、弗硝酸混合液に浸したときに−z面はエッチングされるが+z面はエッチングされないので、この現象を利用することで分極反転構造を確認できる。
作製したサンプルを弗硝酸(弗酸50%+硝酸50%)で60℃、1時間のエッチングを行った後に光学顕微鏡による観察を行った。フェムト秒レーザの集光照射部近傍においてエッチング痕が観察されており分極反転構造が形成されていることが確認された。
In the domain-inverted structure, the −z plane is etched but the + z plane is not etched when immersed in a hydrofluoric acid mixed solution. By utilizing this phenomenon, the domain-inverted structure can be confirmed.
The prepared sample was etched with hydrofluoric acid (hydrofluoric acid 50% + nitric acid 50%) at 60 ° C. for 1 hour, and then observed with an optical microscope. Etching marks were observed in the vicinity of the focused irradiation part of the femtosecond laser, and it was confirmed that a domain-inverted structure was formed.

このように、フェムト秒レーザの集光照射時に発生する強電場と元来印加されていた電圧とが重なり合うことで分極反転に必要電圧が局所的に印加され、これによりフェムト秒レーザの集光照射部でのみ選択的に分極反転構造が形成されたと考えられる。   In this way, the strong electric field generated during the focused irradiation of the femtosecond laser overlaps with the originally applied voltage, so that the voltage necessary for polarization inversion is applied locally, thereby the focused irradiation of the femtosecond laser. It is considered that the domain-inverted structure was selectively formed only at the portion.

(実施例2)
0.5mm厚のLiNbOから構成される基材の両面の全面に、それぞれAl電極を蒸着で形成した。電極を形成した基材を用いて、印加電圧を5kVに固定して、フェムト秒レーザの出力密度およびパルス幅をそれぞれ変化させて照射し、分極反転構造が形成されるかを評価した。
得られたサンプルについて、分極反転構造が形成された場合には○、分極反転構造が形成されなかった場合には×として評価した。その結果を表1に示す。
(Example 2)
Al electrodes were formed on the entire surfaces of both sides of the substrate made of 0.5 mm thick LiNbO 3 by vapor deposition. Using the substrate on which the electrodes were formed, the applied voltage was fixed at 5 kV, and irradiation was performed while changing the output density and pulse width of the femtosecond laser, and it was evaluated whether or not a domain-inverted structure was formed.
The obtained sample was evaluated as ◯ when the domain-inverted structure was formed, and as x when the domain-inverted structure was not formed. The results are shown in Table 1.

Figure 2007121933
Figure 2007121933

表1から明らかなように、出力密度が1000GW/cm以上の条件では、構造変化に伴う屈折率変化が起こってしまい分極反転が起きなかった。一方、パルス幅が800fs以上、または出力密度が0.1GW/cm以下の条件では、分極反転に必要な局所的な強電場が発生しなかったため、分極反転が起きなかった。 As is clear from Table 1, under the condition where the power density is 1000 GW / cm 2 or more, the refractive index change caused by the structural change occurred and no polarization reversal occurred. On the other hand, under the conditions where the pulse width was 800 fs or more or the output density was 0.1 GW / cm 2 or less, the local strong electric field necessary for polarization reversal did not occur, so polarization reversal did not occur.

(実施例3)
図2に示すようなレーザ照射装置を用いた。この装置では、フェムト秒レーザをハーフミラーで2つに分離した後、2つのビームを光路遅延回路により時間的に制御して、かつ微小回転する反射面が平面のミラーと凹面のミラーを用いて空間的に制御して基材内部に2つのビームを時間的、空間的に合致させることで、周期的にマイクロプラズマが発生する。
(Example 3)
A laser irradiation apparatus as shown in FIG. 2 was used. In this apparatus, after the femtosecond laser is separated into two by a half mirror, the two beams are temporally controlled by an optical path delay circuit, and a micro-rotating reflecting surface is a flat mirror and a concave mirror. A microplasma is periodically generated by spatially controlling the two beams in the substrate so that they are temporally and spatially matched.

LiNbOから構成される厚さ0.5mmの基材の両面に、それぞれAl電極を蒸着で全面に形成した。電極を形成した基材に5kVの電圧を印加しつつ、2つのビームを干渉させたフェムト秒レーザを集光照射した。この時の出力密度は30mW/cm、パルス幅250fs、波長800nmとした。 Al electrodes were formed on both surfaces of a 0.5 mm thick substrate composed of LiNbO 3 by vapor deposition. While applying a voltage of 5 kV to the substrate on which the electrodes were formed, a femtosecond laser in which two beams interfered with each other was condensed and irradiated. The power density at this time was 30 mW / cm 2 , the pulse width was 250 fs, and the wavelength was 800 nm.

得られたサンプルについて、1パルスで広い領域に一括で周期分極反転構造が形成されていることが確認された。   With respect to the obtained sample, it was confirmed that a periodic domain-inverted structure was formed collectively in a wide area with one pulse.

本発明は、分極反転構造を用いた高調波発生素子、和周波発生素子、または差周波発生素子等の波長変換光素子に適用可能である。   The present invention is applicable to wavelength conversion optical elements such as a harmonic generation element, a sum frequency generation element, or a difference frequency generation element using a polarization inversion structure.

本発明の分極反転構造の作製方法を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the preparation methods of the polarization inversion structure of this invention. 本発明で用いる2ビームレーザ照射装置のシステム概念図である。It is a system conceptual diagram of the 2 beam laser irradiation apparatus used by this invention.

符号の説明Explanation of symbols

1 基材、2 電極、3 フェムト秒レーザ、4 マイクロプラズマ、5 分極反転構造。
1 substrate, 2 electrodes, 3 femtosecond laser, 4 microplasma, 5 polarization inversion structure.

Claims (6)

強誘電体からなる基材に分極反転が起きない程度の電圧を印加させつつ、該基材に対してフェムト秒レーザを照射することにより前記基材内に分極反転構造を形成することを特徴とする分極反転構造の作製方法。   A polarization inversion structure is formed in the base material by irradiating the base material with a femtosecond laser while applying a voltage that does not cause polarization inversion to the base material made of a ferroelectric material. A method for manufacturing a domain-inverted structure. 上記フェムト秒レーザの出力密度が1GW/cm以上、500GW/cm以下であることを特徴とする請求項1記載の分極反転構造の作製方法。 The output density of the femtosecond laser 1 GW / cm 2 or more, a method for manufacturing a domain-inverted structure according to claim 1, characterized in that 500GW / cm 2 or less. 上記フェムト秒レーザのパルス幅が500fs以下であることを特徴とする請求項1記載の分極反転構造の作製方法。   2. The method for producing a domain-inverted structure according to claim 1, wherein the pulse width of the femtosecond laser is 500 fs or less. 前記フェムト秒レーザとして、互いに干渉する2つ以上のレーザを用いることを特徴とする請求項1記載の分極反転構造の作製方法。   2. The method of manufacturing a polarization inversion structure according to claim 1, wherein two or more lasers that interfere with each other are used as the femtosecond laser. 前記基材は、LiNbO、MgドープLiNbO、LiTaO、KTiOPO、β-Ba、LiBから選択される1つ以上の強誘電体であることを特徴とする請求項1記載の分極反転構造の作製方法。 The base material is one or more ferroelectrics selected from LiNbO 3 , Mg-doped LiNbO 3 , LiTaO 3 , KTiOPO 4 , β-Ba 2 B 2 O 3 , and LiB 2 O 5. A method for producing the domain-inverted structure according to claim 1. 請求項1乃至5のいずれか1項に記載の方法により作製された分極反転構造を備えたことを特徴とする波長変換光素子。

6. A wavelength conversion optical device comprising a domain-inverted structure manufactured by the method according to claim 1.

JP2005317269A 2005-10-31 2005-10-31 Method of preparing polarization reversal structure Withdrawn JP2007121933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317269A JP2007121933A (en) 2005-10-31 2005-10-31 Method of preparing polarization reversal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317269A JP2007121933A (en) 2005-10-31 2005-10-31 Method of preparing polarization reversal structure

Publications (1)

Publication Number Publication Date
JP2007121933A true JP2007121933A (en) 2007-05-17

Family

ID=38145813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317269A Withdrawn JP2007121933A (en) 2005-10-31 2005-10-31 Method of preparing polarization reversal structure

Country Status (1)

Country Link
JP (1) JP2007121933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014278A1 (en) * 2010-07-27 2012-02-02 株式会社ユーテック Poling treatment method, plasma poling device, piezoelectric substance, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014278A1 (en) * 2010-07-27 2012-02-02 株式会社ユーテック Poling treatment method, plasma poling device, piezoelectric substance, and manufacturing method therefor
JP5857344B2 (en) * 2010-07-27 2016-02-10 株式会社ユーテック Plasma poling apparatus and method for manufacturing piezoelectric body

Similar Documents

Publication Publication Date Title
Wang et al. Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion
JP6753417B2 (en) Optical device and optical device manufacturing method
JP3529144B2 (en) Method of forming domain inversion structure of ferroelectric
US7440161B2 (en) Optical element and method for forming domain inversion regions
JP7392792B2 (en) Wavelength conversion optical device
JP3199305B2 (en) Optical wavelength conversion element, method for producing the same, and optical wavelength conversion module
Rotermund et al. Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO/sub 4
JP2002372641A (en) Method for manufacturing optical waveguide, optical waveguide and wavelength conversion device
JPH06242479A (en) Optical wavelength conversion element and its formation
JP2007121933A (en) Method of preparing polarization reversal structure
Favre et al. High-power long-pulse second harmonic generation and optical damage with free-running Nd: YAG laser
JP4578710B2 (en) Method of creating domain-inverted structure by femtosecond laser irradiation
RU2371746C1 (en) Method of forming domain structure in single-crystal wafer of non-linear optical ferroelectric material
Seidel A new generation of high-power, waveform controlled, few-cycle light sources
Karlsson Fabrication of periodically poled crystals from the KTP family and their applications in nonlinear optics
Hirohashi et al. PP-LBGO device with 2nd-order QPM structure for 266nm generation
Nakamura et al. High output energy quasi-phase-matched optical parametric oscillator using diffusion-bonded periodically poled and single domain LiNbO3
JP3260457B2 (en) Method for forming domain inversion structure of ferroelectric
JP3318058B2 (en) Method for forming domain inversion structure of ferroelectric
JP3946092B2 (en) Method for forming periodically poled structure
Juodkazis et al. Three-dimensional holographic recording by femtosecond pulses
Alexandrovski et al. CW gray-track formation in KTP
Molchanov et al. Acousto-Optic Dispersive Devices for High-Power Pulsed Laser Optics
JP3683517B2 (en) Method for forming domain inversion structure of ferroelectric material
JPH05323407A (en) Formation of partial polarization inversion region and optical second higher harmonic generating element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106