JPS61274321A - Method for diffusing impurity into compound semiconductor - Google Patents
Method for diffusing impurity into compound semiconductorInfo
- Publication number
- JPS61274321A JPS61274321A JP11598985A JP11598985A JPS61274321A JP S61274321 A JPS61274321 A JP S61274321A JP 11598985 A JP11598985 A JP 11598985A JP 11598985 A JP11598985 A JP 11598985A JP S61274321 A JPS61274321 A JP S61274321A
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- crystal
- thin film
- gaasp
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は1発光ダイオードの素材として使用されるGa
AsP等の化合物半導体にZn等f)活性不純物を拡散
させる方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to Ga
The present invention relates to a method of diffusing f) active impurities such as Zn into a compound semiconductor such as AsP.
Gj As P発光ダイオードを得るために、n形Ga
AsP結晶にZnを気相拡散させて浅いp影領域を形成
することは良く知らtている。この拡散は。To obtain a Gj As P light-emitting diode, n-type Ga
It is well known that a shallow p shadow region is formed by vapor phase diffusion of Zn into an AsP crystal. This diffusion.
封管中において、Zn、As、Pの蒸気圧を制御してG
aAsP結晶の分解を抑制しつつ行われる。In a sealed tube, the vapor pressures of Zn, As, and P are controlled to
This is done while suppressing the decomposition of the aAsP crystal.
ところで1発光ダイオードの高輝度化の要求は強く、ハ
ラケージ面での改良と合わせて、チップ自体の発光効率
を更に向上させる必要に迫られている。このため、封管
法によるZn拡散におけるソース(Zn、As、Pの蒸
気圧を発生させる源となる材料)の封入量やソースの種
類を種々選択することにより、Zn、As、Pの蒸気圧
の最適条件を追い求める努力がなされている。しかし、
従来の方法における最適条件でZiを拡散させても1発
光効率を大幅に向上させることは困難であった。今。By the way, there is a strong demand for higher brightness in light-emitting diodes, and there is a need to further improve the light emitting efficiency of the chip itself, in addition to improvements in the Hara cage. For this reason, the vapor pressure of Zn, As, and P can be adjusted by selecting various amounts and types of sources (materials that generate vapor pressures of Zn, As, and P) for Zn diffusion using the sealed tube method. Efforts are being made to pursue the optimal conditions. but,
Even if Zi is diffused under optimal conditions in the conventional method, it has been difficult to significantly improve the luminous efficiency. now.
GaAsP K ライて述べたが、 GaAs、GaP
等の化合物半導体においても同様なrJIMがある。GaAsP K As mentioned above, GaAs, GaP
There are similar rJIMs in compound semiconductors such as .
そこで1本発明の目的は、上述の如き問題を解決するこ
とが出来る良好な不純物拡散層を得る万@を提供するこ
とにある。Therefore, an object of the present invention is to provide a method for obtaining a good impurity diffusion layer that can solve the above-mentioned problems.
上記目的を達成するための本発明は、化合物半導体結晶
の表面に、この化合物半導体結晶の構成元素の内で加熱
によつ℃解離しやすい元素を少なくとも1種類含有する
薄膜を形成する工程と、少なくとも活性不純物及び前記
薄膜中に含有させた元素の蒸気の存在下におい工、前記
薄gを形成した前記化合物半導体結晶を加熱し、#記活
性不純物を前記薄INを介して1Ilr紀化合物半導体
結晶中に拡散させる工程とを有する化合物半導体への不
純物拡散法に係わるものである。To achieve the above object, the present invention comprises the steps of: forming a thin film on the surface of a compound semiconductor crystal containing at least one element that is easily dissociated by °C among the constituent elements of the compound semiconductor crystal; In the presence of at least an active impurity and a vapor of an element contained in the thin film, the compound semiconductor crystal forming the thin film is heated, and the active impurity # is introduced into the 1Ilr compound semiconductor crystal through the thin IN. This relates to a method of diffusing impurities into a compound semiconductor, which includes a step of diffusing impurities into a compound semiconductor.
上記方法における薄膜は、化合物半導体結晶の構成元素
の内で解離しゃすい元素を含んでいるので、この元素の
解離を抑制するように作用する。Since the thin film in the above method contains an element that easily dissociates among the constituent elements of the compound semiconductor crystal, it acts to suppress the dissociation of this element.
このため、結晶性の劣化が少ない不純物拡散層が得られ
る。Therefore, an impurity diffusion layer with less deterioration of crystallinity can be obtained.
jI1図〜JI6図に基づいて、GaAsP赤色発光ダ
イオードチッグt−裏作するためのZnの拡散法につい
て説明する。A Zn diffusion method for fabricating a GaAsP red light emitting diode will be described based on FIGS. JI1 to JI6.
第1図は、ウェハ状のGaAsP結晶(υを示す。この
GaAsP結晶(11は、n形GaP基板(2)の上に
気相工ヒタキシャル法により第1及び第2のn形GaA
sP層(31(41を形成したものである。第1のGa
AsP層(3)は、 AsとPの組成比をGaAs 1
− z Pzとしてx=1.0からx=0.65まで連
続的に変化させた領域である。第2のGaAsP層(4
)は、x=0.65一定の領域であり、不純物濃度は1
.5X10 cm である。FIG. 1 shows a wafer-shaped GaAsP crystal (υ). This GaAsP crystal (11 is a wafer-shaped GaAsP crystal (11) is a wafer-shaped GaAsP crystal (11) on which first and second n-type GaA
sP layer (31 (41) is formed.The first Ga
The AsP layer (3) has a composition ratio of As and P of GaAs 1
−z This is a region in which Pz is continuously changed from x=1.0 to x=0.65. Second GaAsP layer (4
) is a constant region of x=0.65, and the impurity concentration is 1
.. It is 5X10 cm.
次に第2図に示すように、 GaAsP結晶(1)のG
aAsP層(4)の表面にリン含有シリコン酸化膜即ち
リン化シリカフィルムから成るリン含有薄膜(5)を形
成するリン含有薄M(5)を形成するKは、まず、東京
応化工業(株]製のリン化シリカフィルム形成用溶液(
商品名P−8F溶液)をGaAsP結晶(1)上に滴下
し、 GaAsP結晶山をスピンナにより回転させて薄
く塗布する。なお、リン化シリカフィルム形成用溶液(
P−8F溶液)は、主として、半導体シリコンに不純物
としてP(リン)を拡散させる時に、シリコンの表面に
塗布して不純物ンースを形成するために使用されている
ものであり、約6容積%の割合でシリコン酸化物を生成
出来るようにけい素化合物(けい酸塩]を含入、且つ1
mg/cm” (溶液の容積に対する重量)の割合で
P(リン]成分を含むものである。次に、リン化シリカ
フィルム形成用溶液を塗布したGaAsP結晶(1)を
しばらく放置した後、90℃、30分の熱処理を施し、
塗布膜を乾燥させ、しかる後、250℃。Next, as shown in Figure 2, the G of GaAsP crystal (1)
K for forming a phosphorus-containing thin film (5) made of a phosphorus-containing silicon oxide film, that is, a phosphorus silica film on the surface of the aAsP layer (4) is first manufactured by Tokyo Ohka Kogyo Co., Ltd. Silica phosphide film forming solution manufactured by
P-8F solution (trade name) is dropped onto the GaAsP crystal (1), and the GaAsP crystal pile is rotated with a spinner to apply a thin layer. In addition, the solution for forming silica phosphide film (
P-8F solution) is mainly used to form an impurity base by applying it to the silicon surface when diffusing P (phosphorous) as an impurity into semiconductor silicon, and it contains about 6% by volume. Contains a silicon compound (silicate) to generate silicon oxide at a ratio of 1
mg/cm" (weight relative to the volume of the solution). Next, the GaAsP crystal (1) coated with the silica phosphide film forming solution was allowed to stand for a while, and then heated at 90°C. Heat treated for 30 minutes,
The coating film was dried, and then heated to 250°C.
1時間の熱処理を施丁。これにより、リン化シリカフィ
ルム形成用溶液の溶媒は飛散し、厚さ約1000〜15
00Aのリン化シリカフィルム(リン含有シリコン酸化
物膜〕から成る薄膜(5)が形成される。Heat treated for 1 hour. As a result, the solvent of the phosphoric silica film forming solution is scattered, and the thickness is approximately 1,000 to 15 mm.
A thin film (5) made of 00A phosphorous silica film (phosphorus-containing silicon oxide film) is formed.
次に第3囚に示すように、リン含有薄膜(5)を有する
GaAsP結晶(υを石英製ボード(6)に載置して石
英管(7)内に配置する。石英管(7)は1石英製のシ
ールキャップ(8)により真空封止(IXIOtorr
程度)されている。石英管(万円には、P(赤リン](
9)が0.3 mg/cm’ (石英管の単位容積に対
する重量) 、 ZnAs1α旬が0.35 mg/
cm” (石英管の単位容積に対する1ff)それぞ
れ封止されている。Next, as shown in the third frame, a GaAsP crystal (υ) having a phosphorus-containing thin film (5) is placed on a quartz board (6) and placed inside a quartz tube (7). 1 Vacuum sealing (IXIOtorr) with a quartz seal cap (8)
degree). Quartz tube (P (red phosphorus) for 10,000 yen) (
9) is 0.3 mg/cm' (weight per unit volume of quartz tube), and ZnAs1α is 0.35 mg/cm'.
cm” (1ff per unit volume of quartz tube) are each sealed.
第3図の状態において、720℃、8日間の熱処理を行
う。このとき1石英管(7)内には、Zn。In the state shown in FIG. 3, heat treatment is performed at 720° C. for 8 days. At this time, Zn is contained in the first quartz tube (7).
As、Pの蒸気圧が発生し、こjらの蒸気圧による刀0
圧下において、p形不純物であるZnがリン含有薄m(
5)を通過してn形GaAsP層(4)に拡散される。The vapor pressures of As and P are generated, and the sword 0 due to these vapor pressures is
Under pressure, Zn, which is a p-type impurity, forms a phosphorus-containing thin m(
5) and is diffused into the n-type GaAsP layer (4).
第4図は、拡散後のGaAsP結晶11)を示すもので
。FIG. 4 shows the GaAsP crystal 11) after diffusion.
aυがZn拡散によって形成さjたp形Ga As P
層である◎このp形GaAsP Nj Qυの深さは9
μmである。p-type GaAsP where aυ is formed by Zn diffusion
The depth of this p-type GaAsP Nj Qυ is 9
It is μm.
なお、薄膜(5)は、Zn、As、Pの蒸気中に接し且
つ720℃に加熱されるので、拡散を進行させるに従っ
てZn、Asも含有す、る様になる。従って。Note that since the thin film (5) comes into contact with the vapors of Zn, As, and P and is heated to 720° C., it also comes to contain Zn and As as the diffusion progresses. Therefore.
第4因の薄膜(5)は第2図の薄膜(5)と全く同一で
はない。The fourth factor's thin film (5) is not exactly the same as the thin film (5) in FIG.
第4図のウェハを使用して発光ダイオードを形成する時
には、薄膜(5)の除去、結晶表面領域の除去、電極形
成、多数のチップへの切m1等の工程を有して第5図に
示す発光ダイオードチップa2を完成させる。第5図に
おいて、 (131(141は電極である。When forming a light emitting diode using the wafer shown in Fig. 4, there are steps such as removing the thin film (5), removing the crystal surface area, forming electrodes, and cutting m1 into a large number of chips, as shown in Fig. 5. The light emitting diode chip a2 shown is completed. In FIG. 5, (131 (141 is an electrode).
この発光ダイオードチップ(12+は、ピーク波長63
0nmで赤色発光する。This light emitting diode chip (12+ has a peak wavelength of 63
Emit red light at 0 nm.
第6図は1発光ダイオードチップ(12+の発光効率を
他の例と比較して示すものである。曲線Aはこの実施例
のデータである。曲線Bは薄膜(5)をリンを含有しな
い単なるシリ化フィルムに置き換えたときのデータであ
る。曲線CはGaAsP層(4)の表面に薄膜(5)音
形成しない従来方法のときのデータである。これらのデ
ータが示すように、この実施例の発光ダイオードは大幅
な高輝度化が達成されている。例えば、順電流20mA
時の発光効率におい11曲線への実施例の発光ダイオー
ドは曲線Cの従来の場合に比べ℃約70%増となってい
る。Figure 6 shows the luminous efficiency of one light emitting diode chip (12+) in comparison with other examples.Curve A is the data of this example.Curve B shows the thin film (5) as a simple light-emitting diode chip (12+) that does not contain phosphorus. This is the data when the silicate film is replaced.Curve C is the data when the conventional method does not form a thin film (5) on the surface of the GaAsP layer (4).As these data show, this example Light-emitting diodes have achieved significantly higher brightness.For example, forward current of 20mA
The luminous efficiency of the light emitting diode according to the embodiment shown in curve 11 is approximately 70% higher than that of the conventional case shown in curve C.
第6図に示す如く1発光効率が大幅に向上する理由は、
必ずしも明らかでないが、現状では、実験事実として判
明している次の(イ)(ロ)(ハ)に基づいて推定する
ことが出来る。As shown in Figure 6, the reason for the significant improvement in luminous efficiency is as follows.
Although it is not necessarily clear, at present it can be estimated based on the following (a), (b), and (c), which are known as experimental facts.
印 拡散されたZnの不純物総量が従来に比較して減少
している。例えば1曲@B、Cの場合が平均濃度で8X
10cm であったものが1曲線への場合ではほぼ同
じ接合深さであるのK 2.5 X10cm と17
3程度に減少した。Mark: The total amount of diffused Zn impurities is reduced compared to the conventional method. For example, in the case of one song @B and C, the average density is 8X
10 cm, but in the case of one curve, the joining depth is almost the same as K 2.5 x 10 cm and 17
It decreased to about 3.
C−拡散速度の指標となるXj/、f”’、 (Xj
は接合深さ、tは拡散時間]の値が小さい。例えば、曲
線Cの場合が8μm/h’、曲IwBの場合が7.5μ
rr)/ h”であったものが1曲線への場合では6μ
m/h;と小さくなった。C-Xj/, f”', (Xj
is the junction depth and t is the diffusion time] is small. For example, curve C is 8 μm/h', and curve IwB is 7.5 μm/h'.
rr)/h” is 6μ in the case of one curve.
m/h;
←l GaAsP層の表面が二ローション(腐食した
ような状態]を起こすことが防止される。即ち。←l The surface of the GaAsP layer is prevented from developing a corrosion-like state, ie.
曲線Cの場合では二ローションが起きやすいが。In the case of curve C, two lotions are likely to occur.
曲線Aおよび曲線Bの場合では起こらなかった。This did not occur in the case of curves A and B.
上記(イ)の事実から、薄膜(5)中のリンがZnの拡
散量全抑制するように作用して低濃度拡散が実現し。From the above fact (a), phosphorus in the thin film (5) acts to completely suppress the amount of Zn diffused, achieving low concentration diffusion.
p形GaAsP層aυ及びその近傍の結晶性が従来より
も良好になっているものと考えられる。結晶性が良好で
あれば、少数キャリアの拡散長が長くなり。It is considered that the crystallinity of the p-type GaAsP layer aυ and its vicinity is better than before. If the crystallinity is good, the diffusion length of minority carriers becomes long.
少数キャリアが発光再結合を起こす割合が高まる。The rate at which minority carriers undergo radiative recombination increases.
また、p形GaAsP層αDの不純物濃度が低いので。In addition, the impurity concentration of the p-type GaAsP layer αD is low.
p形GaRsP Htαυでの光吸収が少なくなり、光
の取出し効率が向上していると考えられる。It is thought that the light absorption in the p-type GaRsP Htαυ is reduced and the light extraction efficiency is improved.
上記(四の事実から、薄膜(5)中のPがGaAsP層
(4)からのPの解離を効果的に抑制し、拡散速度が運
くなる反面J結晶性の劣化が最小限に抑えられて拡散が
進行しているものと考えられる。From the fact (4) above, P in the thin film (5) effectively suppresses the dissociation of P from the GaAsP layer (4), increasing the diffusion rate while minimizing the deterioration of J crystallinity. It is thought that the spread is progressing.
上記e1の事実から1表面のエロージョンの防止はシリ
カフィルムの存在による効果で、シリカフィルム中のP
のもたらす作用効果ではないと言える。From the fact of e1 above, prevention of surface erosion is due to the presence of silica film, and P in the silica film is effective.
It can be said that it is not an effect brought about by.
本発明は上述の実施例に限定されるものでなく。 The invention is not limited to the embodiments described above.
例えば次の変形が可能なものである。For example, the following transformations are possible.
(A) GaAs s −z Pxで表わされるGa
A s P層(4)の組成比t−x=0−85とし1
石英管(7)円に封入するP(9)の量t O−15m
g7 cm” K変更し、その他は同様な工程により、
ピーク波長590 nmのオレンジ色の発光ダイオード
チップを炸裂したところ、第6図と同様に1発光効率の
大幅向上が達成された。(A) Ga expressed as GaAs s -z Px
The composition ratio of the A s P layer (4) is t-x=0-85 and 1
Amount of P (9) sealed in quartz tube (7) circle t O-15m
g7 cm”K changed, otherwise the same process,
When an orange light emitting diode chip with a peak wavelength of 590 nm was exploded, a significant improvement in luminous efficiency was achieved as shown in FIG.
なお、上記Xの値を好プしくけ0.60〜0.85の範
囲で種々変えても、同様な効果が得られる。Note that the same effect can be obtained even if the value of X is varied within the range of 0.60 to 0.85.
(Bl 第2図の薄M(5)をPとAsとの両方を含
有するシリカフィルムとしてZnを拡散させたところ。(Bl Thin M(5) in Figure 2 is made into a silica film containing both P and As and Zn is diffused therein.
第6図の曲線Aと同等もしくはこれを若干上回わる発光
効率が得られた。また、第2図の薄i (51KAsの
、71ti含有させてZnを拡散させたところ、第6図
の曲線Aはどの著しい効果は堅められながったが1曲線
B、Cに比べると1発光効率の向上が認められた。上述
の如く、薄膜(5)にAsを含有させるよりもpt−含
有させる万が効果が著しいのは。A luminous efficiency equal to or slightly higher than that of curve A in FIG. 6 was obtained. In addition, when Zn was diffused by adding 71ti to thin i (51KAs) in Figure 2, curve A in Figure 6 showed that although no significant effect was strengthened, it was 1 compared to curves B and C. An improvement in luminous efficiency was observed.As mentioned above, the effect is more pronounced when the thin film (5) contains pt- than when it contains As.
GaAsP (7) AsがPよりも解離しやすいため
と考えらする。また、 Asに比べてPの組成比が大き
いことや、薄膜(5)を通過しようとするZnに対する
挙動がAsとPで勇なることも影響しているものと考え
られる。GaAsP (7) It is thought that this is because As dissociates more easily than P. It is also believed that the fact that the composition ratio of P is larger than that of As, and that the behavior of Zn that tries to pass through the thin film (5) is stronger due to As and P is also considered to be an influence.
IcI GaAsP以外の化合物半導体にも適用可能
である。例えば、 GaへS結晶にZnを拡散させるた
めIc Asを含有する薄Flitシリカフィルム)t
−設けてもよい。また、 GaP結晶にZn t−拡散
させるためKPを含有する薄M(シリカフィルム)t?
設はテモよい。It is also applicable to compound semiconductors other than IcI GaAsP. For example, a thin Flit silica film containing IcAs to diffuse Zn into S crystals into Ga).
- May be provided. In addition, a thin M (silica film) containing KP was used to diffuse Zn into the GaP crystal.
The setup is very good.
の1 第2図の薄膜+51の代りに、スパッタ法によp
形成したP含有5ins系ガラス膜のよ5な薄膜として
もよい。1 Instead of the thin film +51 in Figure 2, p
It may be a thin film such as the P-containing 5ins glass film formed.
[F]lZn、As、P蒸気の加圧下でZn拡散を進行
させるのが標準であるが、 Asの組成比が小さい場合
には、Pに比べてAsが加熱で解離し難いこともあって
、 ZnとPの蒸気圧のみとしてZn拡散を行ってもよ
い。[F]l It is standard to proceed with Zn diffusion under pressure of Zn, As, and P vapor, but when the composition ratio of As is small, As is difficult to dissociate by heating compared to P. , Zn diffusion may be performed using only the vapor pressures of Zn and P.
[F] 第2図の薄膜(5)全形成する時の温度を好ま
しくは200〜350℃の範囲で変更し%また第3図の
拡散工程での加熱温度會好ましくは700〜800℃の
範囲で変更してもよい。[F] The temperature when forming the thin film (5) in Figure 2 is preferably changed in the range of 200 to 350°C, and the heating temperature in the diffusion step in Figure 3 is preferably in the range of 700 to 800°C. You can change it with .
上述から明らかな如く1本発明によれば、結晶性全良好
に保つ不純物拡散が可能になる。従って。As is clear from the above, according to the present invention, it is possible to diffuse impurities while maintaining good crystallinity. Therefore.
本発明に従って不純物拡散された結晶で発光ダイオード
全製作すると、発光効率の高い発光ダイオードが得られ
る。When a light emitting diode is entirely manufactured using impurity-diffused crystals according to the present invention, a light emitting diode with high luminous efficiency can be obtained.
第1図〜第5図は本発明の実施例に係わる発光ダイオー
ドを工程順に示すものであり。
第1−はGaAsP結晶を示す断面図。
第2因はP含有薄膜を形成した結晶を示す断面図、
第3図は拡散装置′全示す断面図。
第4図は拡散後の結晶を示す断面図。
第5図は発光ダイオードを示す断面図である。
第6図は実施例及び比較例の発光ダイオードの発光効率
を示す特性図である。1 to 5 show a light emitting diode according to an embodiment of the present invention in order of process. 1- is a cross-sectional view showing a GaAsP crystal. The second factor is a cross-sectional view showing the crystal that formed the P-containing thin film. Figure 3 is a cross-sectional view showing the entire diffusion device. FIG. 4 is a cross-sectional view showing the crystal after diffusion. FIG. 5 is a sectional view showing a light emitting diode. FIG. 6 is a characteristic diagram showing the luminous efficiency of the light emitting diodes of Examples and Comparative Examples.
Claims (8)
晶の構成元素の内で加熱によつて解離しやすい元素を少
なくとも1種類含有する薄膜を形成する工程と、 少なくとも活性不純物及び前記薄膜中に含有させた元素
の蒸気の存在下において、前記薄膜を形成した前記化合
物半導体結晶を加熱し、前記活性不純物を前記薄膜を介
して前記化合物半導体結晶中に拡散させる工程と を有する化合物半導体への不純物拡散法。(1) Forming a thin film on the surface of a compound semiconductor crystal containing at least one element that is easily dissociated by heating among the constituent elements of the compound semiconductor crystal; and at least an active impurity contained in the thin film. impurity diffusion into a compound semiconductor, the step of heating the compound semiconductor crystal in which the thin film has been formed in the presence of a vapor of an element that has caused the active impurity to diffuse into the compound semiconductor crystal through the thin film. Law.
ン)であり、前記薄膜中に含有させる元素がP(リン)
である特許請求の範囲第1項記載の化合物半導体への不
純物拡散法。(2) The compound semiconductor is GaAsP (gallium arsenide phosphide), and the element contained in the thin film is P (phosphorus).
A method for diffusing impurities into a compound semiconductor according to claim 1.
とを含むリン化シリカフィルム形成用溶液を前記GaA
sP結晶表面に塗布し、熱処理することである特許請求
の範囲第2項記載の化合物半導体への不純物拡散法。(3) Forming the thin film involves applying a phosphoric silica film forming solution containing a silicon compound and phosphorus to the GaA
A method for diffusing impurities into a compound semiconductor according to claim 2, which comprises coating the surface of an sP crystal and subjecting it to a heat treatment.
350℃で加熱することであり、前記拡散工程での加熱
が700℃〜800℃で加熱することである特許請求の
範囲第3項記載の化合物半導体への不純物拡散法。(4) The heat treatment in the process of forming the thin film is 200°C ~
4. The method for diffusing impurities into a compound semiconductor according to claim 3, wherein the heating is performed at 350°C, and the heating in the diffusion step is performed at 700°C to 800°C.
範囲第2項又は第3項又は第4項記載の化合物半導体へ
の不純物拡散法。(5) The method for diffusing impurities into a compound semiconductor according to claim 2, 3, or 4, wherein the vapor is pressurized vapor in a sealed tube.
s(ヒ素)を含む蒸気である特許請求の範囲第2項又は
第3項又は第4項又は第5項記載の化合物半導体への不
純物拡散法。(6) The vapor contains the active impurities, P (phosphorus) and A
A method for diffusing impurities into a compound semiconductor according to claim 2 or 3 or 4 or 5, wherein the vapor contains s (arsenic).
範囲第2項又は第3項又は第4項又は第5項又は第6項
記載の化合物半導体への不純物拡散法。(7) The method for diffusing impurities into a compound semiconductor according to claim 2 or 3 or 4 or 5 or 6, wherein the active impurity is Zn (zinc).
(リン)である特許請求の範囲第2項記載の化合物半導
体への不純物拡散法。(8) The elements contained in the thin film are As (arsenic) and P.
(phosphorus), a method for diffusing impurities into a compound semiconductor according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60115989A JP2572959B2 (en) | 1985-05-29 | 1985-05-29 | Impurity diffusion method to compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60115989A JP2572959B2 (en) | 1985-05-29 | 1985-05-29 | Impurity diffusion method to compound semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61274321A true JPS61274321A (en) | 1986-12-04 |
JP2572959B2 JP2572959B2 (en) | 1997-01-16 |
Family
ID=14676110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60115989A Expired - Lifetime JP2572959B2 (en) | 1985-05-29 | 1985-05-29 | Impurity diffusion method to compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2572959B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51140559A (en) * | 1975-05-30 | 1976-12-03 | Hitachi Ltd | Impurities diffusing to iii-v group compound semi-conductor base plate |
JPS5227354A (en) * | 1975-08-27 | 1977-03-01 | Hitachi Ltd | Impurity diffusion method for iii-v group compound semiconductor region |
JPS5730327A (en) * | 1980-07-29 | 1982-02-18 | Fujitsu Ltd | Manufacture of semiconductor device |
-
1985
- 1985-05-29 JP JP60115989A patent/JP2572959B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51140559A (en) * | 1975-05-30 | 1976-12-03 | Hitachi Ltd | Impurities diffusing to iii-v group compound semi-conductor base plate |
JPS5227354A (en) * | 1975-08-27 | 1977-03-01 | Hitachi Ltd | Impurity diffusion method for iii-v group compound semiconductor region |
JPS5730327A (en) * | 1980-07-29 | 1982-02-18 | Fujitsu Ltd | Manufacture of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2572959B2 (en) | 1997-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040126918A1 (en) | Semiconductor light emitting device and method for manufacturing same | |
US4080245A (en) | Process for manufacturing a gallium phosphide electroluminescent device | |
JPH10107316A (en) | Semiconductor light-emitting device of iii group nitride | |
JP3341492B2 (en) | Group III nitride semiconductor light emitting device | |
JP3734849B2 (en) | Manufacturing method of semiconductor laser device | |
CN1213197A (en) | Method of manufacturing optical semiconductor device | |
JPS61274321A (en) | Method for diffusing impurity into compound semiconductor | |
KR100289595B1 (en) | Group III-nitride semiconductor light emitting device | |
JP2000101133A (en) | Epitaxial wafer for light-emitting element and manufacture thereof | |
JP3016241B2 (en) | Group III nitride semiconductor light emitting device | |
JP2001102627A (en) | AlGaInP BASED LIGHT EMITTING DIODE AND FABRICATION THEREOF | |
JP3307094B2 (en) | Group III nitride semiconductor light emitting device | |
JPH07297447A (en) | Group iii nitride semiconductor light emitting element | |
JP3341484B2 (en) | Group III nitride semiconductor light emitting device | |
JPH02181980A (en) | Light-emitting diode | |
JPH02202085A (en) | Manufacture of semiconductor laser device | |
JPH10173219A (en) | Semiconductor light-emitting element | |
JPH1065211A (en) | Light-emitting diode | |
JP3494841B2 (en) | Group III nitride semiconductor light emitting device | |
JP2002289916A (en) | Group iii nitride semiconductor light-emitting element | |
JPS5821435B2 (en) | Monolithic light emitting diode and modulator structures | |
JPH04168773A (en) | Semiconductor light emitting element | |
JPS61224386A (en) | Semiconductor device | |
JPH01312872A (en) | Semiconductor light emitting element | |
JPH06252439A (en) | Surface light emitting diode and manufacture thereof |