JPS61272985A - Slab type solid-state laser oscillator - Google Patents

Slab type solid-state laser oscillator

Info

Publication number
JPS61272985A
JPS61272985A JP11424885A JP11424885A JPS61272985A JP S61272985 A JPS61272985 A JP S61272985A JP 11424885 A JP11424885 A JP 11424885A JP 11424885 A JP11424885 A JP 11424885A JP S61272985 A JPS61272985 A JP S61272985A
Authority
JP
Japan
Prior art keywords
state laser
solid
laser medium
vessel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11424885A
Other languages
Japanese (ja)
Other versions
JPH0722210B2 (en
Inventor
Hiroto Kuroda
寛人 黒田
Sadaichi Suzuki
貞一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP60114248A priority Critical patent/JPH0722210B2/en
Publication of JPS61272985A publication Critical patent/JPS61272985A/en
Publication of JPH0722210B2 publication Critical patent/JPH0722210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent the thermal breakdown of a solid-state laser medium by forming both end surfaces into a Brewster angle, housing the solid-state laser media divided into the plural into a transparent vessel and filling the vessel with matching oil having the same refractive index as the solid-state laser media. CONSTITUTION:A vessel 1 is constituted by a case in which both end surfaces 2, 2' formed at a Brewster angle and oppositely faced upper and lower both surfaces 3, 3' mutually running parallel are made transparent. Antireflection multilayer films are attached at both ends 2, 2'. A laser medium 4 is supported into the vessel 1 by the lower surface 3' of the vessel, and divided into the plural in parallel regarding the direction of course of beams. The laser medium 4 and the space of the vessel 1 are filled with matching oil 6 having the same refractive index as the laser medium 4, and the matching oil passes through a large number of inflow ports 7 and outflow ports 8 shaped on both sides of the vessel 1 to cool the laser medium. Lamp houses 9, 9' are fitted, and flash lamps 10, 10' are installed into the lamp houses. The lamps 10, 10' are cooled by a coolant passing through inflow ports 11, 11' and outflow ports 12, 12'.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明はスラブ形固体レーザ発振装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a slab-type solid-state laser oscillation device.

[従来技術] 一般に、固体レーザはフラッシュランプ等により光をボ
ンピングしてレーザ光を発振させるが、ボンピングに際
してレーザ媒質のレーザ活性イオンによる光吸収が起こ
るため、レーザ媒質の表面から温度が上昇して温度勾配
を生じ、そのためレーザ媒質中に著しい熱歪が生じる。
[Prior Art] In general, a solid-state laser oscillates laser light by pumping light with a flash lamp or the like, but during bombing, light absorption by laser active ions in the laser medium occurs, so the temperature rises from the surface of the laser medium. This creates a temperature gradient that causes significant thermal strain in the laser medium.

この熱歪はレーザ光の発振パターンやモードを乱し、著
しい場合はレーザ発揚が不可能となる。この同題点を解
決するため、スラブ形固体レーザ発振装置が提案されて
いる(レーザーハンドブック、レーザー学会編、昭和5
7年12月15日発行、231頁)。
This thermal strain disturbs the oscillation pattern and mode of the laser beam, and in severe cases, it becomes impossible to emit the laser beam. In order to solve this problem, a slab-type solid-state laser oscillator has been proposed (Laser Handbook, edited by the Laser Society of Japan, 1932).
(Published December 15, 2007, 231 pages).

これは固体レーザ媒質をスラブ状に形成し、全反射を利
用して光をジグザグ状に通すことにより前述の熱歪によ
る弊害を防止したものである。光は媒質の対向する平面
間をジグザグ状に通るため、すべての光が高温の表面部
と低温の中心部とを同じ光路長だけ通ることとなって光
路差が発生せず、レーザ光のモードやパターンの乱れを
防止することができ、媒質中に温度分布が生じても、熱
歪により媒質が破壊されるまでモードや発振パターンを
乱すことなくレーザ光を発振さ會ることができる。
This is a method in which the solid-state laser medium is formed into a slab shape and light is passed in a zigzag pattern using total internal reflection, thereby preventing the above-mentioned adverse effects caused by thermal distortion. Since light passes in a zigzag pattern between opposing planes of the medium, all the light passes through the high-temperature surface and the low-temperature center for the same optical path length, so no optical path difference occurs, and the mode of laser light Even if temperature distribution occurs in the medium, laser light can be oscillated without disturbing the mode or oscillation pattern until the medium is destroyed by thermal strain.

しかしながら、従来のスラブ形固体レーザ発振装置は、
とくにガラスレーザ媒質を使用した装置は、形状を大き
くした場合、熱歪により媒質が破壊されると云う欠点が
あり、大出力の発振装置を得るのが困難であった。
However, conventional slab-type solid-state laser oscillation devices
In particular, devices using a glass laser medium have the disadvantage that when the size is increased, the medium is destroyed by thermal strain, making it difficult to obtain a high-output oscillation device.

[発明の目的] この発明は上記従来のもののもつ欠点を排除し、固体レ
ーザ媒質の熱歪による破壊を防止した長期間にわたって
使用することのできる人出カスラブ形固体レーザ発振装
置を提供することを目的とするものである。
[Object of the Invention] The present invention aims to eliminate the drawbacks of the above-mentioned conventional devices, and to provide an unattended slab-type solid-state laser oscillator that can be used for a long period of time and prevents destruction of the solid-state laser medium due to thermal strain. This is the purpose.

[発明の構成1 この発明は上記目的を達成するため、両端面をブリュー
スタ角に形成し、かつこの両端面および互いに平行に対
向した側面を透明にしてなる容器内に、複数個に分割さ
れた固体レーザ媒質を収容するとともに、前記固体レー
ザ媒質と同一の屈折率を有するマツチングオイルを満た
した構成を有している。
[Structure 1 of the Invention] In order to achieve the above-mentioned object, this invention has both end faces formed at Brewster's angle, and both end faces and side faces facing parallel to each other are transparent. It has a structure in which it houses a solid-state laser medium and is filled with matching oil having the same refractive index as the solid-state laser medium.

[発明の実施例] 以下、図面に示すこの発明°の実施例について説明する
[Embodiments of the Invention] Hereinafter, embodiments of the present invention shown in the drawings will be described.

第1.2図はこの発明の一実施例を示し、1はブリュー
スタ角に形成された両端面2.2″および互いに平行に
対向した上下両面3.3′を透明にしてなる容器であっ
て、両端面2.2′および上下両面3 、’ 3 ’は
適宜の透明部材の表面に光学的鏡面研磨を施したもので
ある。また、両端面2.2゛には反射防止用の多111
g1を付してレーザ光の反射による損失を防止するよう
にしである。4は容器下面3′によって容器1内に支持
されたレーザ媒質であって、このものは光の進路方向に
関して平行に複数個に分割されている。レーザ媒質4と
容器の両端面2.2′および上下両面3.3′との間に
形成される空間には、レーザ媒質4と同一の屈折率を有
するマツチングオイル6が満たされ、マツチングオイル
6は容器1の両側に設けた好ましくは多数の流入ロアお
よび流出口8を通って容!11内を流通することにより
レーザ媒’314の冷却媒体として作用するようになっ
ている。
Figure 1.2 shows an embodiment of the present invention, in which 1 is a container in which both end surfaces 2.2'' formed at Brewster's angle and upper and lower surfaces 3.3' facing each other in parallel are transparent. Both end surfaces 2.2' and upper and lower surfaces 3 and '3' are formed by optically mirror-polishing the surfaces of appropriate transparent members.Furthermore, both end surfaces 2.2' are coated with anti-reflection coatings. 111
g1 is added to prevent loss due to reflection of laser light. Reference numeral 4 denotes a laser medium supported within the container 1 by the lower surface 3' of the container, which is divided into a plurality of pieces parallel to the direction in which the light travels. A space formed between the laser medium 4 and both end surfaces 2.2' and upper and lower surfaces 3.3' of the container is filled with matching oil 6 having the same refractive index as the laser medium 4, and the matching oil 6 is filled with a matching oil 6 having the same refractive index as the laser medium 4. The oil 6 is admitted through preferably multiple inlet lowers and outlet ports 8 on both sides of the container 1! By flowing through the inside of the laser medium '314, it acts as a cooling medium for the laser medium '314.

容器1は、たとえば次のようにして組立てることができ
る。厚さ2履のステンレス板を容器の両側面に使用し、
厚さ2顯の透明なサファイヤ板の表面を光学的鏡面に研
磨してさらに波長1.05μmの光に対する反射防止膜
を蒸着したものを両端面2.2′の構成部材とするとと
もに、厚さ2層の透明なサファイヤ板の表面を光学的鏡
面に研磨したものを上下両面3.3′の構成部材として
、これらをそれぞれ前記のステンレス板に液漏れ防止用
バッキング材を介してねじ止めすることによって作るこ
とができる。レーザ媒質4としては、たとえば、Nd 
(ネオジム)を含有したリン酸塩レーザガラスLHG8
 (株式会社保谷硝子製)を、ダイヤモンド砥石320
番で研磨して厚さQms幅40m+、長さ150jII
+で両端面が30度に傾斜した角柱体とし、これを複数
本レーザ光の進路方向と平行に並べて使用することがで
き、また角柱体に代えて円柱体を使用することもできる
。さらに、またレーザ媒質を球状体とし、これを複数個
使用しても差支えない。上記ガラスレーザ媒ll14の
屈折率ユO −クロロナフタレンを四塩化炭素に溶解してn。
The container 1 can be assembled, for example, as follows. Two thick stainless steel plates are used on both sides of the container.
The surface of a transparent sapphire plate with a thickness of 2 mm is polished to an optical mirror surface, and an anti-reflection film against light with a wavelength of 1.05 μm is deposited on it as a constituent member of both end surfaces 2.2'. A two-layer transparent sapphire plate whose surface has been polished to an optical mirror surface is used as the upper and lower surfaces 3.3' constituent members, and these are each screwed to the aforementioned stainless steel plate via a backing material to prevent liquid leakage. It can be made by As the laser medium 4, for example, Nd
Phosphate laser glass LHG8 containing (neodymium)
(manufactured by Hoya Glass Co., Ltd.), diamond whetstone 320
Polished to a thickness of Qms, width of 40m+, length of 150jII
A prismatic body with both end faces inclined at 30 degrees can be used in parallel with the traveling direction of the laser beam, and a cylindrical body can also be used in place of the prismatic body. Furthermore, the laser medium may be a spherical body, and a plurality of spherical bodies may be used. The refractive index of the glass laser medium 114 is dissolved by dissolving chloronaphthalene in carbon tetrachloride.

−1,52005の屈折率に調整して使用することがで
きる。
It can be used by adjusting the refractive index to -1,52005.

9.9′は容器1の上下両面3.3′を挟んで配置され
、かつ内面が反射面となったランプハウスであって、そ
の内部には励起用光源としてのフラッシュランプ10.
10′がそれぞれ設置される。
Reference numeral 9.9' denotes a lamp house which is placed between the upper and lower surfaces 3.3' of the container 1, and whose inner surface is a reflective surface, and inside the lamp house there is a flash lamp 10.9 as an excitation light source.
10' are installed respectively.

またランプハウス9.9′の左右両側には、好ましくは
多数の流入口11.11′および流出口12.12’が
設けられ、ここを通ってフラッシュランプ10.10′
の冷却媒体(一般には水)が流通するようになっている
。そしてランプハウス9.9゛から冷却媒体を抜取った
状態において、容器1はレーザ媒質4を収容したままラ
ンプハウス9.9′間の所定位置に着脱できるようにな
っている。13はレーザ光を100%反射する多層膜が
付された全反射ミラー、14はレーザ光を50s%程度
反射する多層膜が付された半反射ミラーである。
Preferably, a large number of inlets 11.11' and outlet ports 12.12' are provided on the left and right sides of the lamp house 9.9', through which the flash lamps 10.10'
A cooling medium (generally water) is allowed to flow through the cooling medium. In a state in which the cooling medium is removed from the lamp house 9.9', the container 1 can be attached to and removed from a predetermined position between the lamp houses 9.9' while containing the laser medium 4. 13 is a total reflection mirror with a multilayer film that reflects 100% of the laser beam, and 14 is a semireflection mirror with a multilayer film that reflects about 50 s% of the laser beam.

上記のレーザ発振装置は、フラッシュランプ10.10
′により光をボンピングするとレーザ媒質4中のレーザ
発揚イオンを励起させてレーザ光が発振するが、レーザ
媒質4を収容した容器1の内部空間にはレーザ媒質4と
同一の屈折率を有するマツチングオイル6が満たされて
いるため、レーザ光はレーザ媒質4の表面では反射せず
容器1の内面(上下両面)で反射する。また、光吸収に
よってレーザ媒質には熱歪が生ずるが、本発明のレーザ
媒質は複数個に分割されているため、分割されていない
同体積のレーザ媒質を用いた場合はど、熱歪が過大にな
ることがない。
The above laser oscillation device is a flash lamp 10.10
When the light is bombed with Since the oil 6 is filled, the laser beam is not reflected on the surface of the laser medium 4, but is reflected on the inner surface (both upper and lower surfaces) of the container 1. In addition, thermal strain occurs in the laser medium due to light absorption, but since the laser medium of the present invention is divided into multiple pieces, if the same volume of laser medium is used, the thermal strain may become excessive. It never becomes.

なお、上記実施例では容器1の両端面2.2′および上
下両面3.3′の構成部材としてサファイヤ板を例示し
たが、透明でかつ化学的にも安定であり、しかもマツチ
ングオイルより屈折率が大きなものであれば、これらを
サファイヤ板の代りに使用することができ、たとえばL
 E 3G (株式会−社保谷硝子製無アルカリガラス
)などが使用可能である。また上記実施例ではマツチン
グオイル6を容器1゛内に流通させるようにしたが、適
宜の止栓によって容器1内に封入しでもよい。さらに上
記実施例ではレーザ媒質4としてLHG8を例示したが
、本発明はこれに限定されることはない。
In the above embodiment, sapphire plates were used as the constituent members of both end surfaces 2.2' and upper and lower surfaces 3.3' of the container 1, but they are transparent and chemically stable, and are more refractive than matching oil. These can be used instead of sapphire plates if the ratio is large, for example L
E 3G (alkali-free glass manufactured by Shahoya Glass Co., Ltd.) can be used. Further, in the above embodiment, the matching oil 6 is made to flow through the container 1, but it may be sealed in the container 1 with an appropriate stopper. Furthermore, although LHG8 was illustrated as the laser medium 4 in the above embodiment, the present invention is not limited thereto.

ちなみに、屈折率がLHG8とは異なるレーザ媒質の場
合でも、2−クロロナフタレンと四塩化炭素との混合比
によってそのレーザ媒質に適合した。
Incidentally, even in the case of a laser medium with a refractive index different from LHG8, the mixture ratio of 2-chloronaphthalene and carbon tetrachloride was compatible with that laser medium.

屈折率のマツチングオイルに調整することが・できる。It is possible to adjust the refractive index of the matching oil.

また2−クロロナフタレンに限らず、2−ブロムナフタ
レン、リン酸トリクレジル等、結晶の屈折率測定に使用
されるマツチングオイルで、かつ経時変化のないもので
あれば、いずれも本発明で使用することができる。四塩
化炭素は水等のOH基をもつものに比べて、リン酸塩ガ
ラスに対して反応性が著しく低く、長期間これと接触し
てもガラス表面を変質させない点ですぐれているが、四
塩化炭素以外では、ガラスとの反応がなく、かつ上記の
マツチングオイルを溶解できるものが使用でき、なかで
も沸点の高いも゛のの方が望ましい。
In addition, not only 2-chloronaphthalene, but also 2-bromonaphthalene, tricresyl phosphate, etc., which are mating oils used for measuring the refractive index of crystals and which do not change over time, can be used in the present invention. be able to. Carbon tetrachloride has significantly lower reactivity with phosphate glass than those with OH groups such as water, and is superior in that it does not alter the glass surface even if it comes into contact with it for a long period of time. Other than carbon chloride, those that do not react with glass and can dissolve the above-mentioned matching oil can be used, and among them, those with a high boiling point are preferred.

とくに光屈折率の低いレーザ媒質に対しては、たとえば
エチレングリコールと水またはアルコール系をマツチン
グオイルとして使用できる。そして、複数個に分割され
た固体レーザー媒質を円柱体とすることにより、マツチ
ングオイルによる冷却効果を一層向上させることもでき
る。
In particular, for a laser medium with a low optical refractive index, for example, ethylene glycol and water or alcohol can be used as a matching oil. Furthermore, by forming the solid laser medium divided into a plurality of pieces into a cylindrical body, the cooling effect of the matching oil can be further improved.

[発明の効果] この発明は上記のように構成したので、レーザ媒質が複
数個に分割されているため、レーザ媒質を全体として大
型化しても熱歪により破壊されることがなく、大出力化
が可能となる。レーザ光はレーザ媒質の表面では反射せ
ず、容器の内面で反射するため、容器の反射面を鏡面状
にかつ平行に保持しておきさえすれば、レーザ媒質はそ
の表面に光学的研磨を施す必要がないうえ、形状にも制
約を受けず、ガラスのみならずたとえば結晶をレーザ媒
質に使用することもできる。しかも容器の上下両面を鏡
面状に保持しておくことは、レーザ媒質の表面を鏡面状
に保持しておくことに比べてずつと容易であり、したが
って本発明の装置は長期間にわたり安心して使用するこ
とができる等のづぐれた効果を有するものである。
[Effects of the Invention] Since the present invention is constructed as described above, the laser medium is divided into a plurality of parts, so even if the laser medium is increased in size as a whole, it will not be destroyed by thermal strain, and it can be used to increase output. becomes possible. The laser light is not reflected from the surface of the laser medium, but from the inner surface of the container, so as long as the reflective surface of the container is kept mirror-like and parallel, the laser medium can perform optical polishing on its surface. Not only is it not necessary, there are no restrictions on the shape, and not only glass but also crystal, for example, can be used as the laser medium. Moreover, it is much easier to keep both the top and bottom of the container mirror-like than to keep the surface of the laser medium mirror-like, so the device of the present invention can be used safely for a long period of time. It has extraordinary effects, such as being able to

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の−・実施例を示し、第1図は縦断正面
図、第2図は縦断側面図である。 1・・・容器、2.2′・・・容器端面、3・・・容器
上面、3′・・・容器上面、4・・・レーザ媒質、6・
・・ンツチングオイル、7.11.11′・・・流入口
、8.12.12′・・・流出口、9.9′・・・ラン
プハウス、10.10′・・・フラッシュランプ、13
・・・全反射ミラー、14・・・半反射ミラー。 出  願  人   黒  1月   寛  人間  
  ホーヤ 株式会社
The drawings show an embodiment of the present invention, with FIG. 1 being a longitudinal sectional front view and FIG. 2 being a longitudinal sectional side view. DESCRIPTION OF SYMBOLS 1... Container, 2. 2'... Container end surface, 3... Container top surface, 3'... Container top surface, 4... Laser medium, 6...
...Installing oil, 7.11.11'...Inlet, 8.12.12'...Outlet, 9.9'...Lamp house, 10.10'...Flash lamp, 13
...Total reflection mirror, 14... Half reflection mirror. Applicant Black January Hiroshi Human
Hoya Co., Ltd.

Claims (1)

【特許請求の範囲】 1 両端面をブリュースタ角に形成し、かつこの両端面
および互いに平行に対向した側面を透明にしてなる容器
内に複数個に分割され、または複数個の独立した固体レ
ーザ媒質を収容するとともに、前記固体レーザ媒質と同
一の屈折率を有するマッチングオイルを満たしたことを
特徴とするスラブ形固体レーザ発振装置。 2 前記マッチングオイルは前記固体レーザ媒質を冷却
する冷却媒体として用いられる特許請求の範囲第1項記
載のスラブ形固体レーザ発振装置。 3 前記透明側面を介して励起用光エネルギが前記容器
内に導入される特許請求の範囲第1項記載のスラブ形固
体レーザ発振装置。 4 前記固体レーザ媒質はガラスレーザ媒質からなる特
許請求の範囲第1項記載のスラブ形固体レーザ発振装置
。 5 前記マッチングオイルは2−クロロナフタレンと四
塩化炭素とからなる特許請求の範囲第1項記載のスラブ
形固体レーザ発振装置。 6 複数個に分割された固体レーザ媒質の分割面がレー
ザ光の進路方向に関して平行である特許請求の範囲第1
項記載のスラブ形固体レーザ発振装置。 7 複数個に分割された各固体レーザ媒質をレーザ光の
進路方向から見た断面が円形である特許請求の範囲第1
項記載のスラブ形固体レーザ発振装置。 8 複数個の独立した固体レーザ媒質が球状である特許
請求の範囲第1項記載のスラブ形固体レーザ発振装置。
[Claims] 1. A container having both end faces formed at Brewster's angle and having transparent both end faces and side faces facing parallel to each other. A slab-type solid-state laser oscillation device, characterized in that it houses a medium and is filled with matching oil having the same refractive index as the solid-state laser medium. 2. The slab-type solid-state laser oscillation device according to claim 1, wherein the matching oil is used as a cooling medium for cooling the solid-state laser medium. 3. The slab-type solid-state laser oscillation device according to claim 1, wherein excitation light energy is introduced into the container through the transparent side surface. 4. The slab-type solid-state laser oscillation device according to claim 1, wherein the solid-state laser medium is a glass laser medium. 5. The slab-type solid-state laser oscillation device according to claim 1, wherein the matching oil comprises 2-chloronaphthalene and carbon tetrachloride. 6. Claim 1, in which the dividing plane of the solid-state laser medium divided into a plurality of pieces is parallel to the traveling direction of the laser beam.
The slab-type solid-state laser oscillation device described in . 7. Claim 1, wherein each solid-state laser medium divided into a plurality of pieces has a circular cross-section when viewed from the direction in which the laser beam travels.
The slab-type solid-state laser oscillation device described in . 8. The slab-type solid-state laser oscillation device according to claim 1, wherein the plurality of independent solid-state laser media are spherical.
JP60114248A 1985-05-29 1985-05-29 Slab type solid-state laser oscillator Expired - Lifetime JPH0722210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60114248A JPH0722210B2 (en) 1985-05-29 1985-05-29 Slab type solid-state laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60114248A JPH0722210B2 (en) 1985-05-29 1985-05-29 Slab type solid-state laser oscillator

Publications (2)

Publication Number Publication Date
JPS61272985A true JPS61272985A (en) 1986-12-03
JPH0722210B2 JPH0722210B2 (en) 1995-03-08

Family

ID=14633004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60114248A Expired - Lifetime JPH0722210B2 (en) 1985-05-29 1985-05-29 Slab type solid-state laser oscillator

Country Status (1)

Country Link
JP (1) JPH0722210B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897206A1 (en) * 1997-01-30 1999-02-17 Fanuc Ltd. Laser oscillator
US7428257B2 (en) 2001-07-28 2008-09-23 Trumpf Laser Gmbh + Co. Kg Apparatus for optical pumping of a laser-active solid body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481794A (en) * 1977-11-14 1979-06-29 Gen Electric Plane ponping laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481794A (en) * 1977-11-14 1979-06-29 Gen Electric Plane ponping laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897206A1 (en) * 1997-01-30 1999-02-17 Fanuc Ltd. Laser oscillator
EP0897206A4 (en) * 1997-01-30 2000-10-04 Fanuc Ltd Laser oscillator
US7428257B2 (en) 2001-07-28 2008-09-23 Trumpf Laser Gmbh + Co. Kg Apparatus for optical pumping of a laser-active solid body

Also Published As

Publication number Publication date
JPH0722210B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US5394427A (en) Housing for a slab laser pumped by a close-coupled light source
US3633126A (en) Multiple internal reflection face-pumped laser
US3602836A (en) Laser structure with a segmented laser rod
US4740983A (en) Laser apparatus for minimizing wavefront distortion
US3487330A (en) High power dissipation laser structure
JPS6032998B2 (en) Multiple prism type beam expander
JPH03190293A (en) Slab type laser medium
US6304312B1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
GB2240402A (en) Gradient index liquid crystal devices method of fabrication thereof
JPS61272985A (en) Slab type solid-state laser oscillator
US3935444A (en) Polarized light beam source in a vehicle headlight
US3646474A (en) Symmetrically pumped slab laser
US3702976A (en) All glass peripherally multi-arcuate disc laser
US3983511A (en) Normal incidence face pumped disc laser
JPH06350171A (en) Solid-state laser device and integral sphere
JPH1187813A (en) Solid laser oscillator
EP0897206A1 (en) Laser oscillator
JPS61272986A (en) Slab type solid-state laser oscillator
RU2302064C2 (en) Solid-state laser for active medium pumping
Tikhonov et al. Planar dye lasers in isotropic and anisotropic oriented media
JPS60194589A (en) Slab type solid-state laser oscillation device
JPH0214587A (en) Solid laser equipment
US3675152A (en) Compensator for a radial refractive-index gradient in a disc laser
JP2760116B2 (en) Solid-state laser device
JPH098384A (en) Solid state laser and laser light transmission method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term