JPH0214587A - Solid laser equipment - Google Patents
Solid laser equipmentInfo
- Publication number
- JPH0214587A JPH0214587A JP16564188A JP16564188A JPH0214587A JP H0214587 A JPH0214587 A JP H0214587A JP 16564188 A JP16564188 A JP 16564188A JP 16564188 A JP16564188 A JP 16564188A JP H0214587 A JPH0214587 A JP H0214587A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- slab
- solid
- laser medium
- nearly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007787 solid Substances 0.000 title 1
- 230000003287 optical effect Effects 0.000 claims abstract description 26
- 238000009826 distribution Methods 0.000 abstract description 16
- 238000001816 cooling Methods 0.000 abstract description 7
- 230000005284 excitation Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 6
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/042—Arrangements for thermal management for solid state lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/025—Constructional details of solid state lasers, e.g. housings or mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0606—Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0602—Crystal lasers or glass lasers
- H01S3/0615—Shape of end-face
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08059—Constructional details of the reflector, e.g. shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08072—Thermal lensing or thermally induced birefringence; Compensation thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08095—Zig-zag travelling beam through the active medium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising three or more reflectors
- H01S3/0813—Configuration of resonator
- H01S3/0816—Configuration of resonator having 4 reflectors, e.g. Z-shaped resonators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/0915—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
- H01S3/092—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
- H01S3/093—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はスラブ型固体レーザ装置のレーザビーム全搬及
び励起、冷却に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to laser beam transport, excitation, and cooling of a slab-type solid-state laser device.
第8図および第9図は各々特開昭61−40073号公
報に示嘔れ次従来の固体レーザ装置を示すもので、第8
図は要部の概略構成を示す側面構成図、第9図は第8図
のll−11線断面図である1つまた、第10図(a)
、 (b)は各々第8図のレーザ装dを動作させた場
合に生じる温度分布を、横断面と、縦断面について示し
たもので、レーザビームの光ioq。8 and 9 respectively show a conventional solid-state laser device as shown in Japanese Patent Application Laid-Open No. 61-40073, and FIG.
The figure is a side view schematically showing the configuration of the main parts, Figure 9 is a sectional view taken along line 11-11 in Figure 8, and Figure 10 (a).
, (b) shows the temperature distribution generated when the laser device d of FIG. 8 is operated, in a cross section and a longitudinal section, respectively.
(1)、(2υについて示しである。(1), (shown for 2υ).
第8図および第9図中で、(1)は光軸に直交する断面
での縦寸法a、横寸法b(b≧2aつ、艮で寸法tの矩
形板状に形成されに固体レーザ索子である。この固体レ
ーザ素子(1)の両側面には図示しない励起ランプから
放射された励起光が照射される励起面@、(6)が形成
きれている。これらの励起面(2)、@は内部で効率良
く全反射できるように光学研Iffされている。さらに
、この固体レーザ素子(1)の両端部には固体レーザ素
子(1)から出力されるレーザ光の進行方向に対し異な
る方向に傾斜する各一対の傾斜面(13& ) + (
13b ) 、(14a ) 、(14b )がそれぞ
れ光学研磨されて形成されておシ、これらの各−対の傾
斜面(lJa ) j(13b ) + (14a )
−(14b )によって略中央部位が外方向に突出す
る略山形(頂角σW)のレーザ光入出射端部αη、Q樽
がそれぞれ形成されている。また、固体レーザ素子(1
)の両端のレーザ光入出射端部07)、(7)にはレー
ザ光を全反射する高反射部(9)、他端側にはレーザ光
の一部を透過し残シを反射可能なレーザ光出射部QOが
それぞれ対向配H1’g f″している。この高反射部
(9)は直角プリズム反射器によって形成されている。In Figures 8 and 9, (1) is a solid-state laser cable formed into a rectangular plate shape with a vertical dimension a and a horizontal dimension b (b≧2a) and a dimension t in a cross section perpendicular to the optical axis. On both sides of this solid-state laser element (1), excitation surfaces @, (6) are irradiated with excitation light emitted from an excitation lamp (not shown).These excitation surfaces (2) , @ are optically polished to allow for efficient total reflection internally.Furthermore, both ends of this solid-state laser element (1) are provided with grooves that correspond to the traveling direction of the laser beam output from the solid-state laser element (1). Each pair of inclined surfaces (13 & ) + (
13b), (14a), and (14b) are formed by optical polishing, respectively, and each pair of inclined surfaces (lJa)j(13b) + (14a)
-(14b), laser beam input/output ends αη and Q barrels each having a substantially chevron shape (apex angle σW) with substantially central portions protruding outward are formed. In addition, a solid-state laser element (1
) at both ends of the laser beam input/output end 07), (7) has a high reflection part (9) that completely reflects the laser beam, and the other end can transmit a part of the laser beam and reflect the remainder. The laser light emitting parts QO are arranged opposite to each other H1'g f''. This high reflection part (9) is formed by a right angle prism reflector.
さらに、レーザ光出射部(10には固体レーザ素子(1
)のレーザ光入出射端部(ト)の一方の傾斜面(14a
)と対向する上半部に一部透過性を有する出力鏡(l
oa)、他方の#XX圃面’14b)と対向する下半部
に全反射鏡(1ob)がそれぞれ配設されている。Furthermore, the laser beam emitting section (10 includes a solid-state laser element (10)
) at one inclined surface (14a) of the laser beam input/output end (G).
) and an output mirror (l) whose upper half is partially transparent.
oa) and the other #XX field '14b), a total reflection mirror (1ob) is disposed in the lower half thereof, respectively.
次に動作について説明する。励起ランプから放射された
励起光は第8図中に矢印αQで示すように固体レーザ素
子(1)の励起面(6)、四に照射される。Next, the operation will be explained. The excitation light emitted from the excitation lamp is irradiated onto the excitation surface (6) of the solid-state laser element (1), as indicated by the arrow αQ in FIG.
そして、固体レーザ素子(1)の内部で励起されるレー
ザ光は固体レーザ素子(1)のレーザ光入出射端部α7
)、asの各一対の傾斜面(13a)、(13b)、(
14a)、(14b)を兆る際に屈折されて固体レーザ
索子(1)の各励起面@、(6)上で全反射を繰返しな
がら進み発振する。The laser beam excited inside the solid-state laser element (1) is transmitted to the laser beam input/output end α7 of the solid-state laser element (1).
), each pair of inclined surfaces (13a), (13b), (
14a), (14b), it is refracted and proceeds while repeating total reflection on each excitation surface @, (6) of the solid-state laser probe (1), and oscillates.
この場合、高反射部(9)は直角プリズム反射器によっ
て形成されているので、レーザ光入出射端部αηの一方
の傾斜面(ISa)(或いは(13b) )側から出射
されたレーザ光成分は直角プリズム反射器の両度射面(
9a)、(9b) (或いは(9b)、(9h) )に
よってそれぞれ反射されてンーザ光入畠射端部劫の他方
の傾斜面(13b) (或いは(1:5a))側に入射
きれるようになっている。さらに、レーザ光出射部(ト
)は一部透過性を有する上半部側の出力鏡(loa)と
固体レーザ素子(1)のレーザ光入出射端部(ト)の一
方の傾斜面(14a )と下半部側の全反射[(10b
)とによって形成されているので、レーザ光入出射端部
(至)の一方の傾斜面(14b)側から出射されたレー
ザ光成分はレーザ光出射部01の全反射a (10b)
によって全反射式れて再び同一の傾斜面(14b)側か
ら入射されるとともに、レーザ光入出射端部(へ)の他
方の傾斜面(14a )側から出射されたレーザ光成分
は一部が出力鏡(10a )によって全反射されて再び
同一の傾斜面(14a)itIIIから入射され、残り
はこの出力鏡(loa)を介して外部に取出されるよう
になっている。In this case, since the high reflection part (9) is formed by a right-angle prism reflector, the laser beam component emitted from one inclined surface (ISa) (or (13b)) side of the laser beam input/output end αη is the bifocal plane of the right-angle prism reflector (
9a), (9b) (or (9b), (9h)), respectively, and enter the other inclined surface (13b) (or (1:5a)) side of the laser beam input end. It has become. Furthermore, the laser beam emitting part (G) includes an output mirror (LOA) on the upper half side that is partially transparent, and one inclined surface (14a) of the laser beam input/output end (G) of the solid-state laser element (1). ) and total reflection on the lower half side [(10b
), the laser beam component emitted from one inclined surface (14b) side of the laser beam input/output end (to) is totally reflected a (10b) at the laser beam output section 01.
The laser beam component is totally reflected and enters again from the same inclined surface (14b) side, and a part of the laser beam component is emitted from the other inclined surface (14a) side of the laser beam input/output end (toward). It is totally reflected by the output mirror (10a) and enters the same inclined surface (14a) itIII again, and the rest is taken out to the outside via this output mirror (LOA).
かくして、上SE Ffi!成のものにあって(は固体
レーザ素子(1)の内部全体に固体レーザ素子(1)を
十目袖的に満たすようにレーザ光路を形成することがで
きるので、固体レーザ素子(1)の内部全体をレーザ発
振に寄与させることができ、斜方体の固体レーザ素子、
即ち斜方体スラブに比べてレーザ角根効率の向上を図る
ことができる。ざらに、固体レーザ素子(1)の内部全
体をレーザ光路として使用することができるので、固体
レーザ素子(1)の内部に斜方体スラブに比べて約2倍
のレーザ光路を形成することができ、固体レーザ素子(
1)全体の長芒寸法を短縮することができる。Thus, upper SE Ffi! (1) can form a laser optical path so as to fill the entire interior of the solid-state laser device (1). A rhombic solid-state laser element whose entire interior can contribute to laser oscillation,
In other words, the laser square root efficiency can be improved compared to a rhombic slab. Roughly speaking, since the entire interior of the solid-state laser device (1) can be used as a laser optical path, it is possible to form approximately twice as many laser optical paths inside the solid-state laser device (1) as compared to a rhombic slab. A solid-state laser device (
1) The overall long awn size can be shortened.
尚、励起光Qlによって励起された固体レーザ素子(1
)のエネルギーのうち、その一部はレーザ出力として上
述のように外部に取出されるが、その他の大部分は熱エ
ネルギーとな9、冷媒(3)によって励起面即ちスラブ
表面四から除去される。Note that the solid-state laser element (1
), part of it is taken out to the outside as laser output as described above, but most of the rest is thermal energy and is removed from the excitation surface, that is, the slab surface, by the coolant (3). .
従来の固体レーザ装置は以上のように構成されておシ、
固体レーザ素子(1)は、第10図に示すように、固体
レーザ素子(1)のほぼ厚み方向に等帰わA(61)、
(6z)、(6’a)で示すようなiu度/!:J配が
生じるが、略山形端部αη、α樽では直接冷却されず、
スラブの長手方向にも温度勾配が生じ、2次元的な温度
勾配となる。従って、端部αη、Hの山形部分は直接励
起、冷却されず、かつ励起部からの励起光のもれが存在
するので、レーザ素子(1)の長手方向にも温度勾配が
定生し、これによる屈折率勾配と熱変形による光学歪に
よって、ビーム品質と出力安定性が低下するいわゆるエ
ンドφエフェクト(文献[工EEL” J、Quart
、 Electron−QE22J’ (1986)2
099に記載〕が存在する他、励起されないレーザ素子
の端部αの、0〜はレーザ媒質として有効利用されず、
又、略山形部における光学研磨面数増大によるコスト増
大等の問題があった。A conventional solid-state laser device is configured as described above.
As shown in FIG. 10, the solid-state laser device (1) has a uniform distribution A (61) approximately in the thickness direction of the solid-state laser device (1).
iu degree/! as shown in (6z), (6'a) : J distribution occurs, but the approximately chevron-shaped end αη, α barrel is not directly cooled,
A temperature gradient also occurs in the longitudinal direction of the slab, resulting in a two-dimensional temperature gradient. Therefore, the chevron-shaped portions of the ends αη, H are not directly excited and cooled, and there is leakage of excitation light from the excitation portion, so a temperature gradient also occurs in the longitudinal direction of the laser element (1). The resulting refractive index gradient and optical distortion caused by thermal deformation cause the so-called end φ effect (Reference [Engineering EEL" J, Quart
, Electron-QE22J' (1986) 2
099], the end portion α of the laser element that is not excited is not effectively used as a laser medium;
Further, there are problems such as increased costs due to an increase in the number of optically polished surfaces in the substantially angular portion.
本発明は上記のような問題点を解消するためになされた
もので、スラブ(即ちレーザ索子)端部の光学歪低減に
よってビーム品質と出力安定性に優れ、かつ、スラブ全
饋域をレーザ媒質として有効利用することで、効率の問
い固体レーザ装WLヲ得るとともに、湖面形状の単線化
によってコストの低減を計ることを目的とする。The present invention was made to solve the above-mentioned problems, and has excellent beam quality and output stability by reducing optical distortion at the end of the slab (i.e., laser cable), and also enables laser beams to cover the entire slab area. By effectively using it as a medium, the purpose is to obtain a solid-state laser device WL with high efficiency, and to reduce costs by making a single line with a lake surface shape.
本発明に係る固体レーザ素子においては、レーザ媒質は
その端部がレーザ媒質の光学的平滑面に対して垂直な直
方体であシ、かつ、上記レーザ媒質内をレーザビームが
異なる光路で伝搬して上記レーザ媒質金相補的に満たす
ように、上記レーザ媒質の端部に複数の全反射部及び部
分反射部t−配設°したものである。In the solid-state laser device according to the present invention, the laser medium is a rectangular parallelepiped whose ends are perpendicular to the optically smooth surface of the laser medium, and the laser beam propagates through different optical paths within the laser medium. A plurality of total reflection parts and partial reflection parts are disposed at the end of the laser medium so as to complementarily fill the laser medium.
嘔らに、レーザ媒質はその全@域が励起きれると共に、
上記レーザ媒質の側面及び端面は断熱され、光学的平滑
面は全面が冷却されるようにするとよい。In addition, the entire @ region of the laser medium is excited, and
It is preferable that the side and end surfaces of the laser medium be thermally insulated, and that the entire optically smooth surface be cooled.
また、レーザ媒質の一方の端面ば全反射膜がコーティン
グされ、上記レーザ媒質内のビームffMを上記全反射
膜により折返すようにしてもよい。Further, one end face of the laser medium may be coated with a total reflection film, and the beam ffM within the laser medium may be reflected by the total reflection film.
本発明による固体レーザ装置は、スラブ端部の長手方向
の温度勾配と、これによる屈折率勾配及び熱変形による
光学歪が低減され、がっスラズ全領域がレーザ媒質とし
て有効利用される他、スラブ端部の形状が単純になる。In the solid-state laser device according to the present invention, the temperature gradient in the longitudinal direction at the end of the slab, the resulting refractive index gradient, and the optical distortion caused by thermal deformation are reduced, and the entire area of the slab is effectively utilized as a laser medium. The shape of the end becomes simple.
また、レーザ媒質の側面及び端面の断熱にょυさらに光
学歪を低減できる。また、レーザ媒質の一方の端面に全
反射膜をコーティングすることでレーザ媒質を相捕的に
満たすビーム光路が容易に得られる。In addition, it is possible to further reduce optical distortion due to the heat insulation of the side and end faces of the laser medium. Further, by coating one end face of the laser medium with a total reflection film, a beam optical path that fills the laser medium in a complementary manner can be easily obtained.
以下、本発明を図について説明する。第1図は本発明の
一実施例による固体レーザ装置のビーム伝搬径路を示し
た側面構成図で、第2図(a) # (b)は各々本発
明の一実施例による固体レーザ装置の具体的な横断面構
成図及び縦断面構成図、第3図(a)。The invention will now be explained with reference to the figures. FIG. 1 is a side configuration diagram showing a beam propagation path of a solid-state laser device according to an embodiment of the present invention, and FIGS. FIG. 3(a) is a horizontal cross-sectional configuration diagram and a vertical cross-sectional configuration diagram.
(b)は各々本発明の一実施例に係るレーザ媒質内の温
度分布図である。第1図において、(1)はスラグ即ち
レーザ媒質で、その表面(2)はレーザビームを内部全
反射するべく光学的平滑となっておシ、(至)。(b) is a temperature distribution diagram within a laser medium according to an embodiment of the present invention. In FIG. 1, (1) is a slag, that is, a laser medium, and its surface (2) is optically smooth so that the laser beam is totally internally reflected.
Q4はこの表面に垂直な光学的平滑端面で、レーザビー
ムの人出射面であシ、スラブ(1)は直方体管なす。(
lla) 、 (llb)はスラブ内を互いに異なる光
路でジグザグ状に伝搬するレーザビームで、各々のビー
ム(1ユa)、(1ユb)はスラブの淳み方向の中心面
(1c)に対して対称であり、相捕的にスラブを満たす
。(9a)、(9b)は折返しミラーで、一方の党略の
ビーム(例えば01a) )を他方の光路のと−1゜(
1lb)へ変換する0 (loa)は部分反射鏡、(l
ob)は全反射鏡であシ、共振器を構成する。(lie
)はレーザビームの非走引部であるが、スラブ端面の
エツジ部分(13c;l、(14c)迄レーザビームを
満たすことでなくなシ、基本的には、スラブ全頭M、を
レーザビームで走引することが可能である。Q4 is an optically smooth end face perpendicular to this surface, which is the exit surface of the laser beam, and the slab (1) is a rectangular parallelepiped tube. (
lla) and (llb) are laser beams that propagate in a zigzag manner through different optical paths within the slab, and each beam (1ua) and (1ub) is directed to the central plane (1c) of the slab in the stacking direction. It is symmetrical with respect to, and fills the slab in a complementary manner. (9a) and (9b) are folding mirrors that direct one beam (for example, 01a)) to the optical path of the other by -1° (
0 (loa) is a partially reflecting mirror, (l
ob) is a total reflection mirror and constitutes a resonator. (lie
) is the non-travel part of the laser beam, but it is not necessary to fill the laser beam up to the edge parts (13c, l, (14c) of the slab end face. Basically, the entire head M of the slab is covered with the laser beam. It is possible to run with
また、第2図において、(2)は励起光に対して透明で
かつ、スラブより低屈折率の間接冷却支持材であシ、ス
ラブは冷媒(3)によって間接冷却支持材(2)ヲ介し
て冷却式れる。(5)は励起ランプで冷媒(6)によっ
て冷却され、(4)はスラブ冷媒(3)とランプ冷媒の
仕切シ板で、有効な励起光に対して透明である。(7)
は励起光の集光器でスラブの幅方向: ’// 。In addition, in Fig. 2, (2) is an indirect cooling support material that is transparent to the excitation light and has a lower refractive index than the slab, and the slab is cooled by the coolant (3) through the indirect cooling support material (2). Cooled type. (5) is an excitation lamp cooled by a refrigerant (6), and (4) is a partition plate between the slab refrigerant (3) and the lamp refrigerant, which is transparent to effective excitation light. (7)
is the excitation light concentrator in the width direction of the slab: '//.
長手方向:tの全@Vi、を均一に励起すべく If#
成されている。(8)は筐体で(80)はそのスペーサ
ーである。αQはスラブ側面でその外部近傍山は析不性
の傷い物質、例えば気体が満たされているが真2である
。スラブ端面(至)、α尋の外部近傍(ロ)、−gも2
111面同様断熱状態にある。Longitudinal direction: To uniformly excite all @Vi of t If#
has been completed. (8) is the casing, and (80) is its spacer. αQ is the side surface of the slab, and the peaks near the outside thereof are filled with a non-dissolvable, damaged substance, such as gas, and is true 2. Slab end face (to), external vicinity of α fathom (b), -g is also 2
Like surface 111, it is in an insulated state.
また、スラブの冷却も励起と同様、部方向:W。In addition, cooling of the slab is also performed in the same direction as excitation.
長手方向:を全@域に渡って均一に行われる。Longitudinal direction: is performed uniformly over the entire @ area.
次に上記実施例の作用動作について説明する。Next, the operation of the above embodiment will be explained.
ラング(5)及び集光器(7)によって全饋戚をほぼ均
一に励起でれたスラブ(1)は、そのエネルギーの−部
を部分反射鏡(1oa)、全反射鏡(lob)、折返し
ミラー(9a)、(9b)によって構成される共振器に
よってレーザビーム(lld)として取シ出される。The slab (1), which has all its components excited almost uniformly by the rung (5) and the condenser (7), sends a -part of the energy to the partial reflection mirror (1OA), total reflection mirror (LOB), and reflection. The light is extracted as a laser beam (lld) by a resonator formed by mirrors (9a) and (9b).
その他の大部分のエネルギーはスラブ表面■よシ聞接冷
却によって除去される。この際、スラブには第3図に示
すように、中央部で温度が高い2束結度分布が生じる。Most of the other energy is removed by direct cooling across the slab surface. At this time, as shown in FIG. 3, the slab has a two-bundle degree distribution where the temperature is high in the center.
図において、(61)は高温部、(62)は中温部、(
63)は低温部で、σeは励起光を示す。In the figure, (61) is a high temperature section, (62) is a medium temperature section, (
63) is a low temperature part, and σe indicates excitation light.
上記実施例ではスラブ全f@*をほぼ均一に励起し、ス
ラブ全表面からほぼ均一に冷却しているので、温度勾配
は第3図に示すように、はぼ厚み方向のみにしか余生ぜ
ず、従って屈折率分布もほぼ厚み方向のみにしか生じな
い。ここで重要な点はスラブ側面近涛の幅方向のみなら
ず、スラブ端面近傍の長平方向にも温度分布による屈折
率分布が発生しないことである。これに対し、スラブ端
面略山形部Q′7)、(ト)が存在する従来例では、第
8図に示すようにこの略山形部は直接冷却されず、励起
光のもれによる不完全な励起が行われ、スラブ長手方向
にも図に示すような温度勾配が生じ、対応した屈折率分
布が発生することは不可避である。In the above embodiment, the entire slab f@* is excited almost uniformly and cooled almost uniformly from the entire surface of the slab, so the temperature gradient remains only in the thickness direction, as shown in Figure 3. Therefore, the refractive index distribution occurs almost only in the thickness direction. The important point here is that a refractive index distribution due to temperature distribution does not occur not only in the width direction near the side surfaces of the slab but also in the longitudinal direction near the end surfaces of the slab. On the other hand, in the conventional example in which substantially chevron-shaped portions Q'7) and (g) are present on the slab end surface, these substantially chevron-shaped portions are not directly cooled, as shown in FIG. When excitation occurs, a temperature gradient as shown in the figure occurs also in the longitudinal direction of the slab, and it is inevitable that a corresponding refractive index distribution will occur.
このような状況下では、厚み方向に異なる位置のレーザ
光路0す、(1)、■υは、山形端部aη、(ト)にお
いて、温度分布に伴う屈折率分布によって異なる光路畏
を経験することになシ、レーザビームは歪む。Under such circumstances, the laser optical paths 0s, (1), ■υ at different positions in the thickness direction experience different optical paths at the chevron edges aη, (g) due to the refractive index distribution associated with the temperature distribution. In particular, laser beams are distorted.
また、スラブの熱的変形も端部形状を又映した複雑なも
のとなる。Further, the thermal deformation of the slab becomes complicated as it also reflects the shape of the end portion.
以上の現象は、いわゆるエンド・エフェクトと言われる
ものである。The above phenomenon is what is called an end effect.
これに対し、本発明では、スラブ端面が表面に対し垂直
である単純な形状であるため、熱的変形は単純なものと
なシ、レーザビームの歪は低減される。In contrast, in the present invention, since the end face of the slab has a simple shape perpendicular to the surface, thermal deformation is simple and distortion of the laser beam is reduced.
さらに、従来例において、スラグ端部は部分的にしか励
起されず、他の部分はレーザ光の吸収部となっていたの
に対し、本発明では、スラブ全頭載を端部迄はぼ均一に
励起しているため吸収部が存在せず、発振効率の向上が
望める他、高価なレーザ媒質の有効利用と言う観点から
も効果は太きい。そして、本発明ではスラブの形状が直
方体であシ、従来例に比べ端部の光学研磨面数が減シ、
コストの低減も望める。又、直方体スラブは他の従来例
である斜方体スラブに比べても製作が容易であることは
明白である。Furthermore, in the conventional example, the slag end was only partially excited, and the other part became a laser beam absorption part, whereas in the present invention, the entire slab head is almost uniformly excited up to the end. Since there is no absorption part present, the oscillation efficiency can be expected to be improved, and the effect is significant from the standpoint of effective use of expensive laser media. In the present invention, the shape of the slab is a rectangular parallelepiped, and the number of optically polished surfaces at the end is reduced compared to the conventional example.
Cost reduction can also be expected. Furthermore, it is clear that the rectangular parallelepiped slab is easier to manufacture than the other conventional rhombic slab.
次にレーザビームの入出射方法と偏光について述べる。Next, we will discuss the laser beam input/output method and polarization.
第4図は本発明の一実施例に係る光路及びビーム伝搬角
と、偏光を示した説明図である。FIG. 4 is an explanatory diagram showing the optical path, beam propagation angle, and polarization according to an embodiment of the present invention.
θiはスラブ端面への入射角、00は端面での屈折角、
θrfd’スラブ内の全反射角である。レーザビームの
人出射方7去としては、まずθ1をプリューター角二〇
Bにとり伝搬ビームをP偏光とする方法がある。スラブ
がNd : YAGの場合、屈折率n=1.82で大気
からの入射ではθi二θB=61.2°、θ0=27.
5゜θr=62.5°であシ、間接冷却支持材をガラス
:n=1.5とすflは、臨界角二〇〇=65.5°と
なυ、θr〉θCで全反射条件は満足される。θi is the angle of incidence on the end face of the slab, 00 is the angle of refraction at the end face,
θrfd' is the total reflection angle within the slab. As a method for emitting a laser beam, there is a method in which θ1 is set to a Prüther angle of 20 B and the propagating beam is made into P-polarized light. When the slab is Nd:YAG, the refractive index n=1.82, and when incident from the atmosphere, θi2θB=61.2°, θ0=27.
5゜θr = 62.5°, indirect cooling support material is glass: n = 1.5, fl is critical angle 200 = 65.5°, υ, θr〉θC, total reflection condition is satisfied.
尚、ブリュースター入射の場合、レーザ媒質であるスラ
ブの材質を決めれば、θ0.θrは一義的に決まるが、
θrが内部全反射を満するよりなθ1に対して端面に無
反射コーティング(13d)、(14d)を施し、ビー
ム伝搬角の設計自由度を上げることも可能である。特に
第5図に示すようにS偏光に対する無反射コーティング
(13f)、 (14f)を施し、内部全反射をS偏光
とすることも可能である。In the case of Brewster incidence, if the material of the slab that is the laser medium is determined, θ0. θr is uniquely determined, but
It is also possible to increase the degree of freedom in designing the beam propagation angle by applying anti-reflection coatings (13d) and (14d) to the end faces for θ1 where θr satisfies total internal reflection. In particular, as shown in FIG. 5, it is also possible to apply anti-reflection coatings (13f) and (14f) for S-polarized light so that the total internal reflection becomes S-polarized light.
上記実施例では折返しミラーを2つに分ける場合につい
て述べたが、W、6図に示すように1つのコーナーミラ
ー(9c〕で代用することもできる。In the above embodiment, a case has been described in which the folding mirror is divided into two parts, but it can also be replaced with one corner mirror (9c) as shown in FIG.
また、上記一連の実施例ではレーザビームの折返しを外
部光学素子で行っていたが、第7図に示すよう、レーザ
ビーム出力側と異なる側のスラブ端面に金属薄膜、誘電
体多7會膜等の全反射膜(9d)をコーティングするこ
とで、スラブ内部でビームを折返しても良い。尚、この
場合、外部光学素子は不用になシ装置の単純化が行える
他、コスト低減の意味でも効果は大きい。In addition, in the series of embodiments described above, the laser beam was reflected by an external optical element, but as shown in FIG. 7, a thin metal film, a dielectric multilayer film, etc. The beam may be reflected inside the slab by coating with a total reflection film (9d). In this case, an external optical element is not required, which simplifies the apparatus, and is also highly effective in terms of cost reduction.
以上のように、本発明によれば、レーザ媒質をその端面
がレーザ媒質の光学的平滑面に対して垂直な直方体とし
、かつ上記レーザ媒實内をレーザビームが異なる光路で
伝搬して上記レーザ媒質を相補的に満たすように、上記
レーザ媒質の端部に複数の全反射部及び部分反射部を配
設して固体レーザ装置を構成するようにしたので、ビー
ム品質と出力安定性の向上が望め、また効率が高く、コ
ストの安価な装置が得られる効果がある。As described above, according to the present invention, the laser medium is formed into a rectangular parallelepiped whose end face is perpendicular to the optically smooth surface of the laser medium, and the laser beam propagates in the laser medium through different optical paths, thereby causing the laser beam to emit light. Since the solid-state laser device is constructed by arranging a plurality of total reflection parts and partial reflection parts at the end of the laser medium so as to fill the medium in a complementary manner, beam quality and output stability can be improved. This has the effect of providing a highly efficient and inexpensive device.
また、レーザ媒質はその全頭載が励起されると共に、上
記レーザ媒質の側面及び端面は断熱され、光学的平滑面
は全面が冷却されるようにすることにより、さらに光学
歪が抑えられ、ビーム品質がよく、安定性の優れた固体
レーザ装置が得られる。In addition, the entire head of the laser medium is excited, the side and end surfaces of the laser medium are insulated, and the entire optically smooth surface is cooled, thereby further suppressing optical distortion and beam A solid-state laser device of good quality and excellent stability can be obtained.
さらに、レーザ媒質の一方の端面は、全反射膜がコーテ
ィングされ、上記レーザ媒質内のビーム光路を上記全反
射膜により折返すようにすれば装置が単純化し、コスト
も低減する効果がある0Furthermore, one end face of the laser medium is coated with a total reflection film, and if the beam optical path within the laser medium is turned back by the total reflection film, the device can be simplified and costs can be reduced.
i1図は本発明の一実施例による固体レーザ装置のビー
ム伝搬径路を示す側面構成図、第2図(a)。
(b)は各々本発明の一実施例による固体レーザ装置を
示す横断面構成図及び縦断面構成図、第3図(a)。
(b)は各々本発明の一実施例に係るレーザ媒質内の温
度分布を示す分布図、第4囚は本発明の一実施例に係る
ビーム伝搬角と偏光状、報を示す説明図、第5図は本発
明の他の実施例に係るビーム伝搬角と偏光状態を示す説
明図、第6図及び第7図は各々本発明の他の実施例によ
る固体レーザ装置を示す側面構成図、第8図は従来の固
体レーザ装置を示す側面構成図、第9図は第8図■−■
線断面図、並びに第1O図(a) 、 (b)は各々従
来の固体レーザ装置の動作時における温度分布とビーム
径路を示した横断面構成図及び11@面構成図である。
(1)・・・レーザ媒質、(3)・・・冷媒、(5)・
・・励起ランプ、(9a)、(9b)・・・折返しミラ
ー (9c)・・・コーナミラ(9d〕・・・全反射膜
、(10a )・・・部分反射鏡、(10b)−・・全
反射鏡、(1ユa)、(11b)、(lld) ・・・
レーザビーム、(ロ)・・・表面、α、i 、 (14
1・・・端部、 C10・・・側面、(1,(9・・・
励起光
なお、図中同一符号は同−又は相当部分を示す。Figure i1 is a side configuration diagram showing a beam propagation path of a solid-state laser device according to an embodiment of the present invention, and Figure 2(a). 3(b) is a cross-sectional configuration diagram and a vertical sectional configuration diagram showing a solid-state laser device according to an embodiment of the present invention, and FIG. 3(a). (b) is a distribution diagram showing the temperature distribution in the laser medium according to an embodiment of the present invention, and Figure 4 is an explanatory diagram showing the beam propagation angle, polarization state, and information according to an embodiment of the present invention. FIG. 5 is an explanatory diagram showing a beam propagation angle and polarization state according to another embodiment of the present invention, and FIGS. 6 and 7 are side configuration diagrams showing a solid-state laser device according to another embodiment of the present invention, respectively. Figure 8 is a side configuration diagram showing a conventional solid-state laser device, and Figure 9 is a diagram of Figures 8 - ■.
The line sectional view and FIGS. 1O (a) and 1(b) are a cross-sectional configuration diagram and a 11@-plane configuration diagram showing the temperature distribution and beam path during operation of a conventional solid-state laser device, respectively. (1)... Laser medium, (3)... Refrigerant, (5)...
...Excitation lamp, (9a), (9b)...Folding mirror (9c)...Corner mirror (9d)...Total reflection film, (10a)...Partial reflection mirror, (10b)... Total reflection mirror, (1Ua), (11b), (lld)...
Laser beam, (b) ... surface, α, i, (14
1... End, C10... Side, (1, (9...
Excitation light Note that the same reference numerals in the drawings indicate the same or corresponding parts.
Claims (3)
2つの側面を有し、上記光軸に直交する断面がほぼ矩形
のレーザ媒質内をレーザビームがジグザグ状に伝搬する
固体レーザ装置において、上記レーザ媒質はその端面が
上記光学的平滑面に対して垂直な直方体であり、かつ、
上記レーザ媒質内を上記レーザビームが異なる光路で伝
搬して上記レーザ媒質を相補的に満たすように、上記レ
ーザ媒質の端部に複数の全反射部及び部分反射部を配設
したことを特徴とする固体レーザ装置。(1) A solid-state laser in which a laser beam propagates in a zigzag pattern in a laser medium that has two optically smooth surfaces and two side surfaces facing each other along the optical axis, and whose cross section perpendicular to the optical axis is approximately rectangular. In the apparatus, the laser medium has a rectangular parallelepiped whose end face is perpendicular to the optically smooth surface, and
A plurality of total reflection parts and partial reflection parts are arranged at an end of the laser medium so that the laser beam propagates in the laser medium on different optical paths and complementarily fills the laser medium. solid-state laser device.
記レーザ媒質の側面及び端面は断熱され、光学的平滑面
は全面が冷却されていることを特徴とする請求項1記載
の固体レーザ装置。(2) The solid-state laser device according to claim 1, wherein the entire region of the laser medium is excited, the side and end faces of the laser medium are insulated, and the optically smooth surface is entirely cooled. .
グされ、上記レーザ媒質内のビーム光路を上記全反射膜
により折返す請求項1記載の固体レーザ装置。(3) A solid-state laser device according to claim 1, wherein one end face of the laser medium is coated with a total reflection film, and the beam optical path within the laser medium is folded by the total reflection film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16564188A JP2586110B2 (en) | 1988-06-30 | 1988-06-30 | Solid-state laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16564188A JP2586110B2 (en) | 1988-06-30 | 1988-06-30 | Solid-state laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0214587A true JPH0214587A (en) | 1990-01-18 |
JP2586110B2 JP2586110B2 (en) | 1997-02-26 |
Family
ID=15816222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16564188A Expired - Fee Related JP2586110B2 (en) | 1988-06-30 | 1988-06-30 | Solid-state laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2586110B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03293787A (en) * | 1990-04-12 | 1991-12-25 | Mitsubishi Electric Corp | Solid state laser |
JPH0474781U (en) * | 1990-11-02 | 1992-06-30 | ||
JP2003023194A (en) * | 2001-07-05 | 2003-01-24 | Japan Atom Energy Res Inst | Solid-state laser amplifier |
JP2008522409A (en) * | 2004-11-26 | 2008-06-26 | ジェフリー, ジー マンニ, | High gain diode pumped laser amplifier. |
CN104604049A (en) * | 2012-08-03 | 2015-05-06 | M·A·斯图尔特 | Slab laser and amplifier and method of use |
-
1988
- 1988-06-30 JP JP16564188A patent/JP2586110B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03293787A (en) * | 1990-04-12 | 1991-12-25 | Mitsubishi Electric Corp | Solid state laser |
JPH0474781U (en) * | 1990-11-02 | 1992-06-30 | ||
JP2003023194A (en) * | 2001-07-05 | 2003-01-24 | Japan Atom Energy Res Inst | Solid-state laser amplifier |
JP2008522409A (en) * | 2004-11-26 | 2008-06-26 | ジェフリー, ジー マンニ, | High gain diode pumped laser amplifier. |
US9525262B2 (en) | 2011-08-04 | 2016-12-20 | Martin A. Stuart | Slab laser and amplifier and method of use |
US10777960B2 (en) | 2011-08-04 | 2020-09-15 | Martin A. Stuart | Slab laser and amplifier |
CN104604049A (en) * | 2012-08-03 | 2015-05-06 | M·A·斯图尔特 | Slab laser and amplifier and method of use |
JP2015528217A (en) * | 2012-08-03 | 2015-09-24 | スチュアート,マーティン,エー. | Slab laser and amplifier and method of use |
EP2880722A4 (en) * | 2012-08-03 | 2016-04-27 | Martin A Stuart | Slab laser and amplifier and method of use |
EP3185373A1 (en) * | 2012-08-03 | 2017-06-28 | Stephen Lee Cunningham | Slab laser and amplifier |
CN104604049B (en) * | 2012-08-03 | 2019-08-13 | M·A·斯图尔特 | Slab laser and amplifier and its application method |
Also Published As
Publication number | Publication date |
---|---|
JP2586110B2 (en) | 1997-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7839908B2 (en) | Mode control waveguide laser device | |
US4208636A (en) | Laser apparatus | |
US5091915A (en) | Semiconductor laser excited solid laser device | |
JP2007012981A (en) | Laser with high reflective coating on interior total reflection surface of optical element | |
US5148441A (en) | Solid state laser | |
JP2010034413A (en) | Solid-state laser apparatus | |
JPS6182488A (en) | Solid state laser device | |
JPH0214587A (en) | Solid laser equipment | |
US6625194B1 (en) | Laser beam generation apparatus | |
JP2012160645A (en) | Solid-state laser device | |
JPH098384A (en) | Solid state laser and laser light transmission method | |
JP2760116B2 (en) | Solid-state laser device | |
JPH03234073A (en) | Harmonic wave generating laser device | |
JPH05323403A (en) | Higher harmonic generator | |
JP2692012B2 (en) | Solid-state laser device | |
JP2007322695A (en) | Wavelength conversion element | |
JPH0466396B2 (en) | ||
JP2542576B2 (en) | Solid-state laser oscillator | |
JPS63114184A (en) | Slab type laser to which reflecting film is formed | |
JPH0366185A (en) | Slab type laser oscillator | |
JPH09289347A (en) | Laser device | |
JP3430049B2 (en) | Solid state laser device | |
JPH0282673A (en) | Solid-state laser device | |
JPH0451501Y2 (en) | ||
JPH06175181A (en) | Variable wavelength laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |