JP2003023194A - Solid-state laser amplifier - Google Patents

Solid-state laser amplifier

Info

Publication number
JP2003023194A
JP2003023194A JP2001204578A JP2001204578A JP2003023194A JP 2003023194 A JP2003023194 A JP 2003023194A JP 2001204578 A JP2001204578 A JP 2001204578A JP 2001204578 A JP2001204578 A JP 2001204578A JP 2003023194 A JP2003023194 A JP 2003023194A
Authority
JP
Japan
Prior art keywords
crystal
laser
angle
incident
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001204578A
Other languages
Japanese (ja)
Inventor
Yoichiro Maruyama
庸一郎 丸山
Masanori Oba
正規 大場
Masaaki Kato
政明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2001204578A priority Critical patent/JP2003023194A/en
Publication of JP2003023194A publication Critical patent/JP2003023194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solid-state laser amplifier utilizing a laser crystal in which amplification is repeated a large number of times using a single amplifier by spatially turning back a laser light emitted from the laser crystal using a laser crystal having opposite ends cut at Brewster's angle or an angle close to that and directing the laser light again toward the laser crystal while varying the incident angle. SOLUTION: Using a single laser crystal having opposite ends cut at Brewster's angle or an angle close to that, an incident light is directed toward that crystal and the outgoing laser light from the crystal is directed again toward the crystal a plurality of times while varying the incident angle spatially. Since the laser light advances each time through the crystal while reflecting in zigzag a plurality of times, the laser crystal is thoroughly utilized for irradiation resulting in a solid state laser amplifier having an enhanced optical energy takeout efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザー結晶を利
用したレーザー光の増幅器に関するものである。特に、
本発明は、ブリュースター角度又はそれに近い角度で両
端を切断したレーザー結晶を使用し、レーザー結晶から
出たレーザー光を空間的に折り返し、入射角度を変えて
再びレーザー結晶に入射することによって1個の増幅器
で多数回増幅することを特長とする固体レーザー増幅器
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser light amplifier using a laser crystal. In particular,
The present invention uses a laser crystal whose both ends are cut at Brewster's angle or at an angle close to it, spatially folds the laser light emitted from the laser crystal, changes the incident angle, and re-enters the laser crystal to produce one laser light. It is a solid-state laser amplifier characterized by being amplified many times by the amplifier of.

【0002】[0002]

【従来の技術】従来、固体レーザー発振器で発生するレ
ーザー光の出力を増幅するためには、発振器からのレー
ザー光を複数の増幅器に入射させるか、或いは増幅器中
を折り返し往復させて出力を高める方法が用いられてい
る。
2. Description of the Related Art Conventionally, in order to amplify the output of laser light generated by a solid-state laser oscillator, the laser light from the oscillator is made incident on a plurality of amplifiers or is folded back and forth through the amplifiers to increase the output. Is used.

【0003】複数の増幅器を用いる方法では、出力を増
強するためレーザー光を各増幅器で徐々に増幅する。こ
のため各増幅器内に蓄積されたエネルギーのかなりの部
分が光として取り出されず、増幅器内に残留し、レーザ
ー発振効率が低いという問題がある。
In the method using a plurality of amplifiers, laser light is gradually amplified by each amplifier in order to enhance the output. For this reason, there is a problem that a considerable part of the energy accumulated in each amplifier is not extracted as light and remains in the amplifier, resulting in low laser oscillation efficiency.

【0004】折り返し増幅法では、レーザー光を往復さ
せるためにレーザー結晶への入射角度を変えたり、結晶
の一方を反射面として利用するなどの方法が使われてい
る。これまでの方法では、レーザー結晶への入射角度を
変化させると出てくるレーザー光線の角度も変化するた
め光路の調整や熱レンズ効果の補正が非常に困難であっ
た。
In the folding amplification method, a method of changing the incident angle to the laser crystal in order to make the laser beam reciprocate, or utilizing one of the crystals as a reflecting surface is used. In the conventional methods, it is very difficult to adjust the optical path and correct the thermal lens effect because the angle of the laser beam that emerges also changes when the angle of incidence on the laser crystal changes.

【0005】[0005]

【発明が解決しようとする課題】上記の折り返し増幅器
は以下のような問題が発生しており、解決する必要が生
じていた。まず、第1に、レーザー出力が高くなると、
レーザー結晶は熱で歪み、この結果、結晶がレンズのよ
うに働き(熱レンズ効果)、最悪の場合、結晶内に焦点
を結んで結晶を破壊する。
The folding amplifier described above has the following problems, and it is necessary to solve them. First of all, when the laser output becomes high,
The laser crystal is distorted by heat, and as a result, the crystal acts like a lens (thermal lens effect) and, in the worst case, focuses inside the crystal and destroys it.

【0006】第2に、レーザー結晶内にはエネルギーが
蓄えられているが、1回の折り返しではこれを効率良く
引き出すことができない。
Secondly, although energy is stored in the laser crystal, it cannot be efficiently extracted with one turn.

【0007】[0007]

【課題を解決するための手段】本発明は、上記問題を解
決するためのものであり、まず、上記第1の問題を解決
するために、本発明では、増幅された入射レーザー光を
空間的に異なる角度でレーザー結晶に再入射する。従っ
てこの時レンズ効果が発生しないように像転送を行うこ
とにより熱レンズ効果が抑えられる。
The present invention is intended to solve the above problems. First, in order to solve the first problem, the present invention uses an amplified incident laser beam spatially. Re-enters the laser crystal at different angles. Therefore, at this time, the thermal lens effect is suppressed by performing image transfer so that the lens effect does not occur.

【0008】又、上記第2の問題を解決するために、本
発明では、レーザー光を以下に述べる様な条件で複数回
折り返すことでエネルギー引き出し効率を向上させるこ
とができる。
Further, in order to solve the second problem, in the present invention, the energy extraction efficiency can be improved by returning the laser light a plurality of times under the conditions described below.

【0009】即ち、本発明は、ブリュースター角度又は
それに近い角度で両端を切断した1個のレーザー結晶を
使用し、入射光をその結晶に入射後、結晶から出たレー
ザー光を空間的に複数回折り返して入射角度を変えて結
晶に再入射させ、そのつど結晶内をレーザー光をジグザ
グに複数回全反射して進行させ、レーザー結晶をまんべ
んなく照射利用することにより、光エネルギーの引き出
し効率を向上させた固体レーザー増幅器である。
That is, the present invention uses one laser crystal whose both ends are cut at a Brewster's angle or an angle close thereto, and after the incident light is incident on the crystal, a plurality of laser lights emitted from the crystal are spatially separated. Improves the extraction efficiency of light energy by turning back and re-incident on the crystal by changing the incident angle, and by making total reflection of the laser light in zigzag multiple times in the crystal to make progress and irradiating the laser crystal evenly. This is a solid-state laser amplifier.

【0010】[0010]

【発明の実施の形態】上記のブリュースター角度は、レ
ーザー光のような単色で直線偏光の光が結晶などに入射
する時、偏光方向が入射面に垂直な光の反射係数がゼロ
(損失が無い)になる入射角である。図3に示されるよ
うに、この角度(θ)は光が入射する媒質の屈折率
(n)によって変化し、θ=tan-1nで表される。例
えば、Nd:YAG結晶の屈折率は1.818であるの
で、そのブリュースター角度は約61.19度になる。
BEST MODE FOR CARRYING OUT THE INVENTION The above Brewster angle is such that when monochromatic linearly polarized light such as laser light is incident on a crystal or the like, the reflection coefficient of light whose polarization direction is perpendicular to the incident surface is zero (loss is Incident angle. As shown in FIG. 3, this angle (θ) changes depending on the refractive index (n) of the medium into which light is incident, and is represented by θ = tan −1 n. For example, since the Nd: YAG crystal has a refractive index of 1.818, its Brewster angle is about 61.19 degrees.

【0011】上記レーザー光の複数回折り返しを行うた
めには、例えば、結晶の切断角度を約28.8度、結晶
長を81mmとする。このレーザー結晶内の全反射回数
が整数回になる条件を選定する。例えば、入射角度が6
1.5度で15回、51.8度で17回、44.1度で
19回、37.8度で21回等である。この条件を使う
ことによって、例えば、上記角度で結晶への入射角度を
変え、最後の37.8度の角度で入射したレーザー光を
ミラーを使って折り返すことによって合計8回の折り返
し増幅が可能となる。なお、YAG結晶の臨界角度は3
3.3度であるから、レーザー光の結晶内での反射角度
がこれ以上であれば、入射光は結晶内で全反射されて出
てくることになるので8回以上の折り返しも可能とな
る。
In order to perform the above-mentioned multiple reflection of the laser light, for example, the crystal cutting angle is about 28.8 degrees and the crystal length is 81 mm. The conditions are selected so that the total number of times of total reflection within the laser crystal is an integer. For example, if the incident angle is 6
It is 15 times at 1.5 degrees, 17 times at 51.8 degrees, 19 times at 44.1 degrees, 21 times at 37.8 degrees, and so on. By using this condition, for example, the incident angle to the crystal is changed at the above-mentioned angle, and the laser light incident at the last 37.8 degrees is folded back by using the mirror, thereby making it possible to carry out folding amplification eight times in total. Become. The critical angle of YAG crystal is 3
Since it is 3.3 degrees, if the reflection angle of the laser light in the crystal is more than this, the incident light will be totally reflected in the crystal and come out, so that it can be folded eight times or more. .

【0012】さらに、結晶へのレーザー光の入射角度を
変えると結晶内での全反射回数が変わり光路も変化す
る。この結果、レーザー結晶がまんべんに照射される。
このため一層エネルギー引き出し効率が向上する。以
下、本発明を実施例に基づいてせつめいする。
Furthermore, when the incident angle of the laser beam on the crystal is changed, the number of total reflections in the crystal is changed and the optical path is also changed. As a result, the laser crystal is evenly irradiated.
Therefore, the energy extraction efficiency is further improved. Hereinafter, the present invention will be described based on examples.

【0013】[0013]

【実施例】(実施例1)図1にレーザー光が結晶内を4
往復(8回通過)する場合を示す。1は入射レーザー
光、2は増幅光取り出し用偏光素子、3は偏光回転用1
/2波長板、4はファラデー回転子、5はレーザー結
晶、6は像転送用レンズ、7は絶縁破壊防止用真空セ
ル、8は折り返し用ミラー、9は増幅されて取り出され
るレーザー光である。
[Example] (Example 1) In FIG.
It shows the case of going back and forth (passing 8 times). 1 is an incident laser beam, 2 is a polarization element for extracting amplified light, and 3 is a polarization rotation 1
/ 2 wavelength plate, 4 Faraday rotator, 5 laser crystal, 6 image transfer lens, 7 dielectric breakdown preventing vacuum cell, 8 folding mirror, and 9 amplified and extracted laser light.

【0014】入射レーザー光1は、増幅光取り出し用偏
光素子2、偏光回転用1/2波長板3、ファラデー回転
子4を通過してレーザー結晶5に入射する。結晶を出た
レーザー光は2枚の像転送用レンズ6でレーザー結晶中
に転送される。この時のレーザー光の入射角度は上で述
べた角度に設定する。即ち、入射角度をブリュースター
角度又はそれに近い角度の約59.1度に設定した。こ
れは結晶端での熱の影響などを考慮して決定された。
The incident laser light 1 passes through a polarized element 2 for extracting amplified light, a 1/2 wavelength plate 3 for polarization rotation, and a Faraday rotator 4, and is incident on a laser crystal 5. The laser light emitted from the crystal is transferred into the laser crystal by the two image transfer lenses 6. The incident angle of the laser light at this time is set to the angle described above. That is, the incident angle was set to about 59.1 degrees, which is the Brewster angle or an angle close thereto. This was determined in consideration of the influence of heat at the crystal edge.

【0015】入射レーザー光は結晶内部で全反射し、増
幅されたレーザー光は入射角度と同じ角度で結晶から出
てくる。この時、1回目と同様に結晶中の像を2枚のレ
ンズ6を使って再度結晶中に転送する。レーザー光の結
晶への入射角度を上で述べた角度に設定し、同じ操作を
さらに2回行う。最後は結晶の出口に折り返しミラー8
を置くことによって、増幅されたレーザー光9は同じ光
路を戻って、増幅光取り出し用偏光素子2で光路の外に
取り出される。即ち、図2では、レーザー光は全部で4
回結晶内を往復(8回通過)する場合を示している。
The incident laser light is totally reflected inside the crystal, and the amplified laser light emerges from the crystal at the same angle as the incident angle. At this time, similarly to the first time, the image in the crystal is transferred into the crystal again by using the two lenses 6. The angle of incidence of the laser light on the crystal is set to the angle described above, and the same operation is performed twice more. At the end, a mirror 8 is folded at the exit of the crystal.
Is set, the amplified laser beam 9 returns to the same optical path and is extracted outside the optical path by the amplified light extraction polarization element 2. That is, in FIG. 2, the laser light is 4 in total.
It shows the case of reciprocating (passing 8 times) in the recrystallized crystal.

【0016】(実施例2)図2にレーザー光を4回結晶
中を通過させた場合の実験結果を示す。入射光が1回レ
ーザー結晶を通過することによって結晶内に蓄積された
エネルギーの24%が光として取り出される。このレー
ザー光がさらに4回結晶内を折り返すことによって蓄積
エネルギーの62%が光として取り出される。
(Embodiment 2) FIG. 2 shows an experimental result when a laser beam is passed through a crystal four times. As the incident light passes through the laser crystal once, 24% of the energy stored in the crystal is extracted as light. This laser light is turned back inside the crystal four times, and 62% of the stored energy is extracted as light.

【0017】[0017]

【発明の効果】本発明においては、ブリュースター角度
又はそれに近い角度で両端を切断した1個のレーザー結
晶を使用し、入射光をその結晶に入射後、結晶から出た
レーザー光を空間的に複数回折り返して再入射させ、そ
のつど結晶内をレーザー光をジグザグに複数回全反射し
て進行させ、レーザー結晶をまんべんなく照射利用する
ことにより、光エネルギーの引き出し効率を向上させる
ことができる、という本発明に特有な顕著な効果を生ず
る。
INDUSTRIAL APPLICABILITY In the present invention, one laser crystal whose both ends are cut at Brewster's angle or an angle close to it is used, and after incident light is incident on the crystal, the laser light emitted from the crystal is spatially separated. It is possible to improve the extraction efficiency of light energy by making multiple reflections and re-incidents, and by totally reflecting the laser light in the crystal multiple times in a zigzag manner and by irradiating and utilizing the laser crystal evenly. The remarkable effect peculiar to this invention is produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の空間的な増幅方法の一例を示す図で
ある。
FIG. 1 is a diagram showing an example of a spatial amplification method of the present invention.

【図2】 レーザー光が結晶内を4回折り返す場合のエ
ネルギー引き出し効率を示す図である。
FIG. 2 is a diagram showing energy extraction efficiency when laser light is returned four times in a crystal.

【図3】 ブリュースター角度を示す図である。FIG. 3 is a diagram showing Brewster angles.

【符号の説明】[Explanation of symbols]

1:入射レーザー光 2:増幅光取り出し用偏光素子 3:偏光回転用1/2波長板 4:ファラデー回転子 5:レーザー結晶 6:像転送用レンズ 7:絶縁破壊防止用真空セル 8:折り返し用ミラー 9:増幅されて取り出されるレーザー光 1: Incident laser light 2: Polarizing element for extracting amplified light 3: 1/2 wavelength plate for polarization rotation 4: Faraday rotator 5: Laser crystal 6: Lens for image transfer 7: Vacuum cell for insulation breakdown prevention 8: Folding mirror 9: Laser light amplified and taken out

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 政明 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 Fターム(参考) 5F072 AB01 AK03 AK09 JJ01 JJ02 JJ06 KK05 KK15 KK18 KK30 MM00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaaki Kato             4 of 2 Shirane, Shikata, Tokai-mura, Naka-gun, Ibaraki Prefecture               Japan Atomic Energy Research Institute Tokai Research Center F term (reference) 5F072 AB01 AK03 AK09 JJ01 JJ02                       JJ06 KK05 KK15 KK18 KK30                       MM00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ブリュースター角度又はそれに近い角度
で両端を切断したレーザー結晶を利用した固体レーザー
増幅器。
1. A solid-state laser amplifier using a laser crystal whose both ends are cut at a Brewster's angle or an angle close thereto.
【請求項2】 レーザー結晶内をレーザー光がジグザグ
に複数回全反射することを特長とする固体レーザー増幅
器。
2. A solid-state laser amplifier characterized in that laser light is totally reflected in a zigzag manner a plurality of times in a laser crystal.
【請求項3】 レーザー結晶へ入射するレーザー光の入
射角度が可変であることを特長とする固体レーザー増幅
器。
3. A solid-state laser amplifier characterized in that the incident angle of laser light incident on a laser crystal is variable.
【請求項4】 レーザー結晶から出たレーザー光を空間
的に折り返し、入射角度を変えて再びレーザー結晶に入
射することによって1個の増幅器で多数回増幅すること
を特長とする固体レーザー増幅器。
4. A solid-state laser amplifier characterized in that a laser beam emitted from a laser crystal is spatially folded back and is incident on the laser crystal again at a different incident angle so that the laser light is amplified many times by one amplifier.
【請求項5】 空間的な増幅方法において熱レンズ効果
を補正することができることを特長とする固体レーザー
増幅器。
5. A solid-state laser amplifier characterized by being able to correct the thermal lens effect in a spatial amplification method.
JP2001204578A 2001-07-05 2001-07-05 Solid-state laser amplifier Pending JP2003023194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204578A JP2003023194A (en) 2001-07-05 2001-07-05 Solid-state laser amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204578A JP2003023194A (en) 2001-07-05 2001-07-05 Solid-state laser amplifier

Publications (1)

Publication Number Publication Date
JP2003023194A true JP2003023194A (en) 2003-01-24

Family

ID=19041019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204578A Pending JP2003023194A (en) 2001-07-05 2001-07-05 Solid-state laser amplifier

Country Status (1)

Country Link
JP (1) JP2003023194A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059471A (en) * 2005-08-22 2007-03-08 Hamamatsu Photonics Kk Optical amplifier and mopa laser device
JP2008522409A (en) * 2004-11-26 2008-06-26 ジェフリー, ジー マンニ, High gain diode pumped laser amplifier.
WO2015029285A1 (en) * 2013-09-02 2015-03-05 三菱電機株式会社 Laser amplification device
WO2018037538A1 (en) * 2016-08-25 2018-03-01 株式会社メガオプト Laser amplifying medium, laser oscillator, and laser amplifier

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189778A (en) * 1986-02-17 1987-08-19 Toshiba Corp Laser oscillator
JPH0214587A (en) * 1988-06-30 1990-01-18 Mitsubishi Electric Corp Solid laser equipment
JPH06216438A (en) * 1992-11-30 1994-08-05 Fuji Electric Co Ltd Slab type solid laser device
JPH0750440A (en) * 1993-08-09 1995-02-21 Fuji Electric Co Ltd Slab type solid-state laser equipment
JPH0799358A (en) * 1993-09-29 1995-04-11 Fuji Electric Co Ltd Solid state-laser system
JPH07193307A (en) * 1993-11-05 1995-07-28 Trw Inc Solid laser source, method of removing influence of multiplerefraction and zigzag amplifier
JPH08191165A (en) * 1995-01-11 1996-07-23 Fuji Electric Co Ltd Slab type solid-state laser
JPH09181378A (en) * 1995-12-25 1997-07-11 Japan Atom Energy Res Inst Solid laser amplifier and solid laser device
JPH09214024A (en) * 1996-02-02 1997-08-15 Fanuc Ltd Solid-state laser oscillator
JPH09312430A (en) * 1996-05-22 1997-12-02 Sadao Nakai Zig-zag slab solid-state laser and amplifier
JPH09321371A (en) * 1996-05-27 1997-12-12 Fuji Electric Co Ltd Slab-shaped solid-state laser apparatus
JPH118428A (en) * 1997-06-18 1999-01-12 Nec Corp Solid-state laser oscillator
JPH11346018A (en) * 1998-05-29 1999-12-14 Nec Corp Solid slab laser
JP2000252573A (en) * 1999-03-03 2000-09-14 Fuji Electric Co Ltd Laser oscillation device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189778A (en) * 1986-02-17 1987-08-19 Toshiba Corp Laser oscillator
JPH0214587A (en) * 1988-06-30 1990-01-18 Mitsubishi Electric Corp Solid laser equipment
JPH06216438A (en) * 1992-11-30 1994-08-05 Fuji Electric Co Ltd Slab type solid laser device
JPH0750440A (en) * 1993-08-09 1995-02-21 Fuji Electric Co Ltd Slab type solid-state laser equipment
JPH0799358A (en) * 1993-09-29 1995-04-11 Fuji Electric Co Ltd Solid state-laser system
JPH07193307A (en) * 1993-11-05 1995-07-28 Trw Inc Solid laser source, method of removing influence of multiplerefraction and zigzag amplifier
JPH08191165A (en) * 1995-01-11 1996-07-23 Fuji Electric Co Ltd Slab type solid-state laser
JPH09181378A (en) * 1995-12-25 1997-07-11 Japan Atom Energy Res Inst Solid laser amplifier and solid laser device
JPH09214024A (en) * 1996-02-02 1997-08-15 Fanuc Ltd Solid-state laser oscillator
JPH09312430A (en) * 1996-05-22 1997-12-02 Sadao Nakai Zig-zag slab solid-state laser and amplifier
JPH09321371A (en) * 1996-05-27 1997-12-12 Fuji Electric Co Ltd Slab-shaped solid-state laser apparatus
JPH118428A (en) * 1997-06-18 1999-01-12 Nec Corp Solid-state laser oscillator
JPH11346018A (en) * 1998-05-29 1999-12-14 Nec Corp Solid slab laser
JP2000252573A (en) * 1999-03-03 2000-09-14 Fuji Electric Co Ltd Laser oscillation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522409A (en) * 2004-11-26 2008-06-26 ジェフリー, ジー マンニ, High gain diode pumped laser amplifier.
JP2007059471A (en) * 2005-08-22 2007-03-08 Hamamatsu Photonics Kk Optical amplifier and mopa laser device
WO2015029285A1 (en) * 2013-09-02 2015-03-05 三菱電機株式会社 Laser amplification device
JPWO2015029285A1 (en) * 2013-09-02 2017-03-02 三菱電機株式会社 Laser amplifier
US9698556B2 (en) 2013-09-02 2017-07-04 Mitsubishi Electric Corporation Laser amplification device
WO2018037538A1 (en) * 2016-08-25 2018-03-01 株式会社メガオプト Laser amplifying medium, laser oscillator, and laser amplifier

Similar Documents

Publication Publication Date Title
JP2746845B2 (en) Solid state laser source, method of removing birefringence effects, and zigzag amplifier
US4734911A (en) Efficient phase conjugate laser
JP4925085B2 (en) Deep ultraviolet laser light generation method and deep ultraviolet laser device
US5504763A (en) System for minimizing the depolarization of a laser beam due to thermally induced birefringence
JP3588195B2 (en) Solid state laser amplifier
US6384966B1 (en) Multiple pass optical amplifier with thermal birefringence compensation
KR20100135772A (en) Multi-pass optical power amplifier
KR102344775B1 (en) High Efficiency Laser System for Third Harmonic Generation
KR0149771B1 (en) Solid state laser for highpower laser beam generation
JPH07505979A (en) Method and apparatus for generating and using high-density excited ions in a laser medium
JP2000107875A (en) Device for irradiating laser beam
CN103069668B (en) Polarization central authorities for the Coherent coupling of strong intracavity beam extract laser cavity
JP2003023194A (en) Solid-state laser amplifier
Yoshida et al. Two-beam-combined 7.4 J, 50 Hz Q-switch pulsed YAG laser system based on SBS phase conjugation mirror for plasma diagnostics
JP2008098496A (en) Chirp pulse amplifier, and amplification method
JP2007227447A (en) Regenerative amplifier, mode lock laser, and gain smoothing method
JP4772545B2 (en) Pulse compressor and laser generator
JP3596068B2 (en) Laser amplifier and laser oscillator
JP2002252404A (en) Double wavelength laser device
JP2005268506A (en) Solid laser amplifier
JPH09331097A (en) Solid laser system
US5293394A (en) Raman laser
JP2006203117A (en) Solid-state laser device
US5838710A (en) Optical amplification device
JPH04196376A (en) Laser excitation solid-state laser device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907