JPS60194589A - Slab type solid-state laser oscillation device - Google Patents

Slab type solid-state laser oscillation device

Info

Publication number
JPS60194589A
JPS60194589A JP4924484A JP4924484A JPS60194589A JP S60194589 A JPS60194589 A JP S60194589A JP 4924484 A JP4924484 A JP 4924484A JP 4924484 A JP4924484 A JP 4924484A JP S60194589 A JPS60194589 A JP S60194589A
Authority
JP
Japan
Prior art keywords
medium
solid
container
state laser
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4924484A
Other languages
Japanese (ja)
Inventor
Sadaichi Suzuki
貞一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP4924484A priority Critical patent/JPS60194589A/en
Publication of JPS60194589A publication Critical patent/JPS60194589A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable long-time use without the need to keep the surface of a solid-state laser medium in mirror form, by a method wherein the solid-state laser medium is contained in a container, which is also filled with a matching oil having the same refractive index as that of said medium. CONSTITUTION:Flash lamps 10 and 10' as the light source for excitation are arranged in lamp houses 9 and 9' respectively, and the coolant flows through preferably many inlets 11 and 11' and outlets 12 and 12' provided on both sides right and left of the lamp houses 9 and 9'. When light is pumped by the flash lamps 10 and 10', a laser beam oscillates, by excitation of laser oscillation ions in the laser medium 4. However, since the internal space of the container 1 containing the laser medium 4 is filled with the matching oil 6 having the same refractive index as that of the medium 4, the laser beam is reflected not on the surface of the medium 4 but on the inner surface of the container 1; thereby, it is not necessary to keep the surface of the medium 4 in mirror form.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はスラブ形固体し−倉ア発振装買に関づるbの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a slab-type solid-state oscillator equipment.

1従来技術」 一股に、固体レーザはフラッシュランプ等にJ、り光を
ボンピング1ノてし・−ザ光の発振を行うが、レーザ媒
質のレー17”活性イオンによる光吸収が起るため、レ
ーザ媒質の表面から温度がIl ’j?シ’(温度勾配
を生じ、そのためレーIJ”媒質中に著しい熱歪を生じ
る。この熱歪はレーリ゛光の発振パターンやモードを乱
し、苔しい場合はレーザ発ITMが不可能となる。この
問題貞を解決りるI、:め、スラブ形固体レーザ発振装
置が提案されている(レーリ゛−ハンドブック、レー膏
アー学会編、昭和57年12月15日発行、231頁)
。これは同体レーリ゛媒負をスラブ状に形成し、全反射
を利用して光をジグリ゛グ状に通りことにより前述の熱
歪による影響を防止l〔ものである。光は媒質の対向り
る平面間をジグリ゛グ状に通るため、りべ−Cの光が高
温の表面部と低山1の中心部とを同じ光路長だC)通る
こととtτつ−(光路差が発生Uず、レーザ光のモード
やパターンの乱れを防11することかでき、媒質中に温
度分布が牛じく−19、熱歪により媒質が破壊されるJ
、でし−ドや発振パターンを乱りことなくレーザ光を発
振さμることがでさるらのCある。
1. Prior Art" A solid-state laser oscillates light by pumping light into a flash lamp, etc., but the light is absorbed by active ions in the laser medium. , the temperature from the surface of the laser medium generates a temperature gradient, which causes significant thermal strain in the laser medium. This thermal strain disturbs the oscillation pattern and mode of the laser beam, causing moss In order to solve this problem, a slab-type solid-state laser oscillation device has been proposed (Rayleigh Handbook, edited by the Rayleigh Society of Japan, 1982). (Published December 15th, 231 pages)
. This method uses a homogeneous Rayleigh medium in the form of a slab, and uses total reflection to pass light in a zigzag pattern, thereby preventing the effects of thermal strain mentioned above. Since light passes between opposing planes of the medium in a zigzag pattern, the light from the lever C passes through the high-temperature surface and the center of the low mountain 1 with the same optical path length C) and tτ. (It is possible to prevent optical path differences from occurring, to prevent disturbances in the mode and pattern of the laser beam, and to prevent the temperature distribution in the medium from being destroyed by thermal strain.)
, it is possible to oscillate a laser beam without disturbing the code or oscillation pattern.

しかしながら、従来のスラブ形固体し−ザ発振装置は、
光を!A!?f中に全反射を利用しく通ずために必要な
媒質のス・1内2表面をつねに完全な鏡面状に保持しく
J3か<> 4Jればなら<メいという欠点があった1
、どくにガラスレーザ媒質では、レーリ゛性能の良いガ
ラスはど化学的耐久性が悪く、スラグ形レしリー媒質ど
じで安心し−C長期間使用りるごどはで゛さ2)かっ!
、:、、−リなわら、長期間使用づることにより表面が
冷7.II媒質(酋通には水)と反応を生じ!こり、溶
出したり、さらに【よ体重期間に大気中の水蒸気と反応
を41じて、当初の鏡面を保持り−ることが不可能であ
り、効率の低下を生じていた。
However, conventional slab-type solid-state oscillators
the light! A! ? There was a drawback that J3<>4J had the disadvantage that the inner and outer surfaces of the medium needed to take full advantage of total reflection during f should always be kept perfectly mirror-like.
However, when using a glass laser medium, glass with good relay performance has poor chemical durability, whereas a slag type relay medium is safe and cannot be used for a long period of time (2).
, :,, - However, the surface becomes cold due to long-term use7. II A reaction occurs with the medium (water for Suitsu)! It is impossible to maintain the original mirror surface due to stiffness, elution, and further reaction with water vapor in the atmosphere during the drying period, resulting in a decrease in efficiency.

1発明の目的] この発明はL記従来のもののbつ欠点をIJI除し、固
体レーリ゛媒質の表面を鏡面状に保持し’Ca3 <必
要がなく、長期間にわたって使用りることのでさるスラ
ブ形固体し−11発振装置を提供づることを目的とJ゛
るものである。
1. Purpose of the Invention] The present invention eliminates the drawbacks of the conventional method as described in L above, maintains the surface of the solid Rayleigh medium in a mirror-like state, eliminates the need for 'Ca3 <, and can be used for a long period of time. The purpose is to provide a -11 oscillation device with a solid-state shape.

し発明の構成] この発明は−し開目的を達成Jるため、両端面をブリュ
ースタ角に形成し、かつこの両端面およびzjいに平行
に対向した側面を透明にしくなる容器内に、固体レーザ
媒質を収容りるどともに、前記固体レーザ媒質と同一の
屈折率を0覆るマップングメイルを満たした+f+)成
を有している。
[Structure of the Invention] In order to achieve the object of the present invention, a container having both end faces formed at Brewster's angle and having both end faces and parallel opposing sides made transparent, It houses a solid-state laser medium and has a +f+) configuration filled with a mapping mail that has the same refractive index as the solid-state laser medium.

[5R,明の実施例」 以下、図面に示Jこの発明の実施例についC説明する。[5R, Ming Example” Embodiments of the invention shown in the drawings will be described below.

第1.2図はこの発明の一実施例を示し、′1は両端面
2.2′をブリ」−スタ角に形成し、かつ両端面2.2
′おJ、びηいに平(jに対向した。]−ト両側面3.
3′を透明にしてなる容器であって、両端面2.2′お
よび両側面3.3′は適宜の透明部祠の表面に光学的鏡
面(σ]磨を施したうえ、両端面2.2′に反用防11
−用の多層膜をイ」シてレーたレーザ“媒質ぐあって、
レーIF媒質4と両端面2.2′および両側面3.3′
との間に形成される容器1内の空間には、レーザ媒質4
ど同一のtill折率を右JるマッヂングAイル6が渦
たされ、マツチングオイル6は容器1の左右両側に設(
プた好ましくは多数の流入1」7おにび流出[」8を通
って容器1内を流通りることによりレーザ媒質4の冷n
1媒体ど」)゛(作用りるJ、うになっている。たとえ
ば、容器1は、両端面2.2′J3よび両側面3.3′
を開【」とl)だIQさ2 mmのステンレス枠に、厚
さ2mmの透明なりノアイA/板の表面を光学的鏡面状
に1σ1磨したうえ波長1.05μn1光に対りる反躬
防IL膜を魚盾しfcものを両端面2.2′の構成部拐
どじ(液漏れ防1F用バッキング祠を介してねじ止めし
、よlこ厚さ2 mmの透明な1)−ノアイヤ扱の表面
を光学的鏡面状に(σ1磨したものを両側面3.3′の
構成部月として液漏れ防IL用パッー1−ング拐を介し
てねじ止めすることによっτfすることかでさ、・しち
るん各構成部拐をねじ1−めりるのに先)γっで、レー
ザ媒質4を支持部月5.5’Fスjンレス枠に固定Jる
ムのである。レーザ媒v”14としでは、たどえば、N
d(ネオジム)を含有したリン)I!ij!Qfレー1
FガラスL lIG 8 (株式会社保谷硝子製)をグ
イA7モンド砥石320番て?dl磨し−(j9さ9 
mm、幅4omm、長’iL 150mmで両端面が3
0度の傾斜をなし!、:形状に形成したものを使用する
ことがでさ、このガラスレーザ媒質4の屈折率025は
1.52005である。この場合、マッヂングAイル6
どしては、屈折率n が1.63321の2−り1団ナ
フタレンを四り 塩化炭素に溶解し1 r120−1.5200!iの屈
折率に調 −一 整して使用づることができる。
Fig. 1.2 shows an embodiment of the present invention, in which both end faces 2.2' are formed at a bristle star angle, and both end faces 2.2'
'O J, and η Ni flat (opposed to J.) - both sides3.
3' is transparent, and both end faces 2.2' and both side faces 3.3' are optically mirror-polished (σ) on the surfaces of appropriate transparent parts, and both end faces 2.2' and both side faces 3.3' are made optically mirror polished (σ). 2′ counter-use defense 11
- When the laser medium is irradiated with a multilayer film,
Ray IF medium 4 and both end surfaces 2.2' and both side surfaces 3.3'
The space inside the container 1 formed between the laser medium 4 and
The matting oil 6 is swirled with the same till refractive index, and the matting oil 6 is provided on both the left and right sides of the container 1 (
The laser medium 4 is cooled by flowing through the container 1, preferably through a plurality of inflows 1'7 and outflows [8].
For example, the container 1 has both end faces 2.2'J3 and both side faces 3.3'
The surface of the plate is polished to an optical mirror surface by 1σ1 and has a reflection resistance against light with a wavelength of 1.05 μn1. The anti-IL film is shielded and the fc is removed from the components on both end faces 2.2' (screwed through the backing hole for liquid leakage prevention 1F, transparent 1 with a thickness of 2 mm) - Noah By making the surface of the handle optically mirror-like (σ1 polished) and fixing it with screws through the leak-preventing IL fittings as the component parts 3 and 3' on both sides, First, remove the screws 1 and 1) to secure the laser medium 4 to the support frame 5.5'F stainless steel frame. Assuming the laser medium v”14, N
d (phosphorus containing neodymium)) I! ij! Qf Ray 1
F Glass L IG 8 (manufactured by Hoya Glass Co., Ltd.) with A7 Mondo whetstone No. 320? dl polish-(j9sa9
mm, width 4om, length 'iL 150mm, both end faces are 3
No slope of 0 degrees! The refractive index 025 of this glass laser medium 4 is 1.52005. In this case, the mapping A file 6
Then, 2-di-group naphthalene with a refractive index n of 1.63321 is dissolved in carbon tetrachloride, and 1 r120-1.5200! It can be used by adjusting the refractive index of i.

9.9′は容器1の上下にその十王両側面3.3′を境
界面として配置され、かつ内面が反則面となったランプ
ハウスであって、ランプハウス9、9′内には励起用光
源どしてのフラッジ」−ランプ10.10′ がそれぞ
れ配置され、またランプハウス9.0′ のノL右両側
に設(プだ好ましくは多数の流入L111.11’ J
、;よび流出l」12.12′ を通ってフラ蓬シコラ
ンプ10.10′の冷却媒体(一般には水)が流通りる
ようになつCいる。そしCランツバウス9.9′から冷
却媒体を扱取った状態にd3いて、容器1はレーリ゛媒
質4を収容したままランプハウス9.9′間の所定位n
から図示しない適宜の着脱手段によっC(友取り可(l
■に、また所定位置に装着Iすfilに構成されCいる
。13はシー1ア光を100%反q・1−りる多層膜が
イ・]された全反則ミラー、14はレーリ゛光をjlO
%程度反射リ−るす層膜が(=Jされた半反身4ミラー
Cある。
Reference numeral 9.9' denotes a lamp house which is arranged above and below the container 1 with both side surfaces 3.3' of the container 1 as boundary surfaces, and whose inner surface is a reciprocal surface. 10.10' lamps 10.10' and 10.10' are arranged respectively on the right side of the lamp house 9.0' (preferably a large number of inflow lamps 111.11' J
, and through the outflow 12.12' the cooling medium (generally water) of the lamp 10.10' is allowed to flow. Then, in the state d3 where the cooling medium has been handled from C Landsbaus 9.9', the container 1 is moved to a predetermined position n between the lamp houses 9.9' while containing the Rayleigh medium 4.
C (can be removed) by an appropriate attachment/detachment means (not shown)
(2) Also, it is configured to be installed in a predetermined position. 13 is a full-reflection mirror with a multilayer film that reflects 100% of the seer light, and 14 is a mirror that reflects the Rayleigh light by 100%.
There are 4 semi-reversed mirrors C with a reflection layer film of about 10% (=J).

上記のレーリ゛発振装置ffは、フラッジ−2ランプ1
0.10′ により光をボンピングするどレーザ媒質4
中のレーリ゛発振イAンを励起さけ−Cレレー゛光が発
振りるが、レーザ媒質/lを収容しIこ容器1の内部空
間に【Jレーリ゛媒質4と同一の屈11i率を右するマ
ツチングメイル6がi63 l、=されているため、レ
ーザ光はレーザ媒質4の表面では反則けず容器1の内面
で反射することどなり、そのためレーザ媒質4の表面は
鏡面状に保持覆る必要がない。
The above-mentioned Rayleigh oscillator ff consists of Flood-2 lamp 1
0.10' laser medium 4
By exciting the Rayleigh oscillator inside A, a C laser beam is emitted. Since the matching mail 6 on the right is i63 l, the laser beam is not reflected on the surface of the laser medium 4 but is reflected on the inner surface of the container 1. Therefore, the surface of the laser medium 4 needs to be kept mirror-like and covered. There is no.

なお、上記実施例では容器1の両端面2.2′J3J:
び両側面3.3′の構成部材どしくリ−)7’ −(A
7板を例示しICが、透明でかつ化学的に安定のbので
マッヂングオイルより屈折率の大きなりのてあれば使用
可能で、たどえば1lE30(株式会えI (!谷硝子
製無アルカリガラス)(”bJ、い。J、たl−1j実
施例ではマッヂングオイル6を容器1内に流通さけるよ
うにしたが、適宜の1[栓にJ、っ(容器1内に」」大
してしよい。また上記実施例ではレーザ媒質1どしてl
 l−I 08を例示したが、これに限定せず、また屈
折率が1. l−I G 8とは¥?I ’cKるレー
リ゛媒質の場合でも、2〜り「1[」ノノタレンと四J
Li化炭素とによってそのレーザ媒質に適合したl1i
l )11碍’のマツ1ングΔイルに調整りることがぐ
さる9、また2−り【]L]ナフタレンに限らず、2−
ブ]1ムナフタレン、リン酸1〜リクレシル等、結晶の
屈折率測定に使用りるマッヂングオイルでかつ経時変化
のないしのであれば使用りることができる。また四塩化
炭ヌ4【よ水等の011基をbつしのに比べで、リン酸
塩刀ラスに対して反応+!1が名しく低く長期間接触し
くb)J5ス表面を変V(ざUないイ1益なものである
が、四塩化炭素以外では、ガラスとの反応 4・、 が
なく、かつL記のマツチング、1−(ルを溶解できるも
のであれば使用Jることができ、しかも沸点の高いbの
の方が望ましい。とくに光屈折率の低いレーリ゛媒質に
対しくは、たとえば−[ブレレグ1.!−1−ルど水J
、たはアル−1−ル系をマツ1ングΔイルどしく使用で
さる。。
In the above embodiment, both end faces 2.2'J3J of the container 1:
7'-(A
The IC is transparent and chemically stable, so it can be used as long as it has a higher refractive index than the matting oil. In the embodiment, the matting oil 6 was prevented from flowing into the container 1, but an appropriate amount of 1 [J, t (into the container 1)] was added to the stopper. Also, in the above embodiment, the laser medium 1 is
Although I-I 08 is shown as an example, the refractive index is not limited to this, and the refractive index is 1. What is l-I G 8? Even in the case of a Rayleigh medium with I'cK, 2 to ``1['' nonotalene and 4
l1i adapted to the laser medium by carbon lithium
l) It is easy to adjust to the pine 1 ring delta of 11 碍'.
Any matting oil used for measuring the refractive index of crystals, such as mnaphthalene, 1-licresyl phosphate, etc., can be used as long as it does not change over time. Also, when comparing the 011 group of carbon tetrachloride 4 [Yomizu etc. with b Tsushino, it reacts + to phosphate sword lass! 1) is known to be low and does not cause long-term contact b) It is useful to avoid changing the surface of the J5 glass, but other than carbon tetrachloride, it does not react with glass and has the following properties: Matching, 1-(b) can be used as long as it can dissolve it, and b, which has a high boiling point, is preferable.Especially for Rayleigh media with a low optical refractive index, for example, -[Brereg 1 .!-1-Rudo water J
, or al-1-alyl-based resins can be used in conjunction with pine wood. .

1発明の効果1 この発明はL記のように構成したので、レーザ光はレー
リ゛媒YNの表面Cは反則I!ヂ容器の内面τ反射りる
ことどなり、そのため、容器の反射面を鏡面状にかつ平
1−1に保持し−C83ささえりれば、レーリ゛媒質の
表面は鏡面状に保持してd−j <必要がないうえ、形
状にし制約を受りず、板状に限らずたとえば結晶を使用
することしでき、しかも容器の反射面を鏡面状に保持し
ておくことはシー11媒T1の表面を鏡面状に保持して
d3<ことに比べ(ずつと容易ぐあり、したがって長1
1J間にわたり安心して使用覆ることが(・さる等のJ
ぐれ!、:効果を(1づるbの−Cある。
1 Effect of the Invention 1 This invention is configured as shown in L, so that the laser beam is emitted from the surface C of the ray medium YN due to the irregularity I! Therefore, if the reflective surface of the container is held mirror-like and flat 1-1 and supported by -C83, the surface of the Rayleigh medium is held mirror-like and d- j <It is not necessary, and there are no restrictions on the shape. For example, crystals can be used instead of being limited to plate shapes. Moreover, keeping the reflective surface of the container mirror-like is the surface of Sea 11 medium T1. Compared to holding d3 in a mirror-like state, it is easier to
Can be used safely for 1J (Monkey etc.)
Gure! , :The effect is (1 zu b -C.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示し、第1図は縦断正面図
、第2図(31縦断側面図ひある。 1・・・容器、2.2′・・・端面、3.、:3’・・
・側面、4・・・レーザ“媒?T、5,5′・・・支持
部祠、(5・・・マツ1ングΔイル、7.11.11’
 ・・・流入]」、 ε’、12゜12′ ・・・流出
IL9,9’ ・・・ランプハウス、+(1,10’ 
・・・フラッジZlシンゾ、13・・・全反射ミラー、
14・・・、1′−反0」ミシー 出 願 人 株式会ネI保谷硝了 代 IIP 人 朝 011] 幸
The drawings show one embodiment of the present invention, and FIG. 1 is a longitudinal sectional front view, and FIG. 2 (31 longitudinal sectional side view). '...
・Side surface, 4... Laser "medium? T, 5, 5'... Support part shrine, (5... Pine 1 ring Δ Ile, 7.11.11'
...inflow]", ε', 12°12' ...outflow IL9,9' ...lamp house, +(1,10'
...Fludge Zl Shinzo, 13...Total reflection mirror,
14..., 1'-anti-0'' Missy Applicant Person Co., Ltd. Ne I Hoya Soryo IIP Person Morning 011] Sachi

Claims (1)

【特許請求の範囲】 1 両端面をブリュースタ角に形成し、かつこの両端面
おj、び1jいに平行に対向した側面を透明にしてなる
容器内に、固体シー11媒質を収容づるととしに、前記
固体レーザ媒質とfil −の屈折率を右するマツチン
グメイルを満たしたことを特徴と−りるスラゾ形固体し
−リ“発振装置。 2 前記マツチングメイルは前記固体レーク11を冷)
JI する冷却媒体として用いられる特許請求の範囲第
1項記載のスラブ形固体レーザ発振装置。 3 前記透明側面を介して励起用光エネル1!が前記容
器内に尋人される1’l Fl晶求の範囲第1項記載の
スラブ形固体し−リ゛発振装置。 4 前記固体レーリ゛媒質はガラスレーザ媒質からなる
’l’l’ ii’l請求の範囲第1項記載のスラブ形
固体し−IF発振装置。 511a記マツチングAイルは2−り110プ−フタレ
ンと四塩化炭素とからなる特h′E品求の範囲第1 ]
j’4記載のスラブ形固体し−ザ発振装Ff a
[Claims] 1. A solid sea medium 11 is housed in a container having both end faces formed at Brewster's angle and a side face parallel to the end faces j and 1j being transparent. The slazo-type solid-state laser oscillation device is characterized in that it is filled with a matching mail that matches the refractive index of the solid-state laser medium and the solid-state laser medium. cold)
A slab-type solid-state laser oscillation device according to claim 1, which is used as a cooling medium for JI. 3 Excitation light energy 1 through the transparent side surface! 2. A slab-type solid-state resonator oscillator according to claim 1, in which 1'l Fl is crystallized in said container. 4. The slab-type solid-state IF oscillator according to claim 1, wherein the solid-state laser medium is a glass laser medium. 511a, the matching A-il consists of 2-110-p-phthalene and carbon tetrachloride.
Slab type solid state oscillator device Ff a described in j'4
JP4924484A 1984-03-16 1984-03-16 Slab type solid-state laser oscillation device Pending JPS60194589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4924484A JPS60194589A (en) 1984-03-16 1984-03-16 Slab type solid-state laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4924484A JPS60194589A (en) 1984-03-16 1984-03-16 Slab type solid-state laser oscillation device

Publications (1)

Publication Number Publication Date
JPS60194589A true JPS60194589A (en) 1985-10-03

Family

ID=12825444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4924484A Pending JPS60194589A (en) 1984-03-16 1984-03-16 Slab type solid-state laser oscillation device

Country Status (1)

Country Link
JP (1) JPS60194589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452258U (en) * 1987-09-28 1989-03-31
EP0897206A1 (en) * 1997-01-30 1999-02-17 Fanuc Ltd. Laser oscillator
WO2007033813A2 (en) * 2005-09-19 2007-03-29 Trumpf Laser Gmbh + Co. Kg Maintaining device for pump lamps of high-power lasers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481794A (en) * 1977-11-14 1979-06-29 Gen Electric Plane ponping laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481794A (en) * 1977-11-14 1979-06-29 Gen Electric Plane ponping laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452258U (en) * 1987-09-28 1989-03-31
EP0897206A1 (en) * 1997-01-30 1999-02-17 Fanuc Ltd. Laser oscillator
EP0897206A4 (en) * 1997-01-30 2000-10-04 Fanuc Ltd Laser oscillator
WO2007033813A2 (en) * 2005-09-19 2007-03-29 Trumpf Laser Gmbh + Co. Kg Maintaining device for pump lamps of high-power lasers
WO2007033813A3 (en) * 2005-09-19 2008-02-14 Trumpf Laser Gmbh & Co Kg Maintaining device for pump lamps of high-power lasers

Similar Documents

Publication Publication Date Title
JP2690324B2 (en) Laser with improved cooling system
JP3178729B2 (en) Ring laser
US4208636A (en) Laser apparatus
IL34265A (en) Multiple internal reflection facepumped laser
AU730093B2 (en) Thermally improved slab laser pump cavity apparatus with integral concentrator
US5303256A (en) Quasi-monolithic saturable optical element
JPH03190293A (en) Slab type laser medium
GB2240402A (en) Gradient index liquid crystal devices method of fabrication thereof
Brown et al. Parasitic oscillations, absorption, stored energy density and heat density in active-mirror and disk amplifiers
JPS60194589A (en) Slab type solid-state laser oscillation device
JPS5616948A (en) Optical memory medium
US3914018A (en) Yttrium orthovanadate optical polarizer
JPH06350171A (en) Solid-state laser device and integral sphere
JP2002048911A (en) Beam splitter and laser system using the same
US5692005A (en) Solid-state laser
JPH1187813A (en) Solid laser oscillator
US5741595A (en) Ultraviolet optical part having coat of ultraviolet optical thin film, and wavelength-changing device and ultraviolet light source unit having coat of ultraviolet optical thin film
JPH0722210B2 (en) Slab type solid-state laser oscillator
JPS63114184A (en) Slab type laser to which reflecting film is formed
JPH098384A (en) Solid state laser and laser light transmission method
JPS61272986A (en) Slab type solid-state laser oscillator
JP2542576B2 (en) Solid-state laser oscillator
JPH08330648A (en) Solid-state laser oscillator
JPS60194588A (en) Slab type solid-state laser oscillation device
JPH0466396B2 (en)