JPH0722210B2 - Slab type solid-state laser oscillator - Google Patents

Slab type solid-state laser oscillator

Info

Publication number
JPH0722210B2
JPH0722210B2 JP60114248A JP11424885A JPH0722210B2 JP H0722210 B2 JPH0722210 B2 JP H0722210B2 JP 60114248 A JP60114248 A JP 60114248A JP 11424885 A JP11424885 A JP 11424885A JP H0722210 B2 JPH0722210 B2 JP H0722210B2
Authority
JP
Japan
Prior art keywords
state laser
solid
medium
laser
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60114248A
Other languages
Japanese (ja)
Other versions
JPS61272985A (en
Inventor
寛人 黒田
貞一 鈴木
Original Assignee
寛人 黒田
ホーヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 寛人 黒田, ホーヤ株式会社 filed Critical 寛人 黒田
Priority to JP60114248A priority Critical patent/JPH0722210B2/en
Publication of JPS61272985A publication Critical patent/JPS61272985A/en
Publication of JPH0722210B2 publication Critical patent/JPH0722210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08095Zig-zag travelling beam through the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はスラブ形固体レーザ発振装置に関するもので
ある。
The present invention relates to a slab type solid-state laser oscillator.

[従来技術] 一般に、固体レーザはフラッシュランプ等により光をポ
ンピングしてレーザ光を発振させるが、ポンピングに際
してレーザ媒質のレーザ活性イオンによる光吸収が起こ
るため、レーザ媒質の表面から温度が上昇して温度勾配
を生じ、そのためレーザ媒質中に著しい熱歪が生じる。
この熱歪はレーザ光の発振パターンやモードを乱し、著
しい場合はレーザ発振が不可能となる。この問題点を解
決するため、スラブ形固体レーザ発振装置が提案されて
いる(レーザーハンドブック、レーザー学会編、昭和57
年12月15日発行、231頁)。これは固体レーザ媒質をス
ラブ状に形成し、全反射を利用して光をジグザグ状に通
すことにより前述の熱歪による弊害を防止したものであ
る。光は媒質の対向する平面間をジグザグ状に通るた
め、すべての光が高温の表面部と低温の中心部とを同じ
光路長だけ通ることとなって光路差が発生せず、レーザ
光のモードやパターンの乱れを防止することができ、媒
質中に温度分布が生じても、熱歪により媒質が破壊され
るまでモードや発振パターンを乱すことなくレーザ光を
発振させることができる。
[Prior Art] Generally, a solid-state laser oscillates laser light by pumping light with a flash lamp or the like, but since light absorption by laser active ions of the laser medium occurs during pumping, the temperature rises from the surface of the laser medium. A temperature gradient is created, which causes significant thermal strain in the laser medium.
This thermal strain disturbs the oscillation pattern or mode of the laser light, and if it is significant, laser oscillation becomes impossible. In order to solve this problem, a slab type solid-state laser oscillator has been proposed (Laser Handbook, edited by Laser Society, Showa 57).
Issued December 15, 2012, p. 231). In this, the solid laser medium is formed in a slab shape and the light is passed in a zigzag shape by utilizing the total reflection, thereby preventing the above-mentioned harmful effects due to thermal strain. Since light passes in zigzag between the opposing planes of the medium, all the light passes through the surface of the high temperature and the center of the low temperature for the same optical path length, no optical path difference occurs, and the laser light mode It is possible to prevent the disturbance of the pattern and the pattern, and even if the temperature distribution occurs in the medium, it is possible to oscillate the laser light without disturbing the mode or the oscillation pattern until the medium is destroyed by thermal strain.

しかしながら、スラブ固体レーザ発振装置においては、
固体レーザ媒質内で発振したレーザ光が固体レーザ媒質
の側面から散逸しない様にする必要がある。
However, in the slab solid state laser oscillator,
It is necessary to prevent the laser light oscillated in the solid laser medium from escaping from the side surface of the solid laser medium.

このため従来は、固体レーザ媒質の表面を光学的に鏡面
研磨して、レーザ光の散逸を防止している。しかし固体
レーザ媒質を光学的に鏡面研磨するため形状や大きさに
制限が加わる問題があった。例えば、固体レーザ媒質と
して結晶を用いることは理想的であるが、鏡面研磨が可
能な結晶を得ることは困難であり、また小さい結晶の集
めて大きな固体レーザ媒質とすることも不可能であっ
た。
Therefore, conventionally, the surface of the solid-state laser medium is optically mirror-polished to prevent the dissipation of the laser light. However, since the solid laser medium is optically mirror-polished, there is a problem that the shape and size are limited. For example, it is ideal to use a crystal as a solid-state laser medium, but it is difficult to obtain a crystal that can be mirror-polished, and it is also impossible to collect small crystals into a large solid-state laser medium. .

[発明の目的] そこで本発明は、上述した固体レーザ媒質の鏡面研磨及
び種々の制約のない大出力のスラブ形固体レーザ発振装
置を提供することを目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a slab type solid state laser oscillation device having a large output without mirror-polishing the above-mentioned solid state laser medium and various restrictions.

[発明の構成] そこで上記目的を達成するため、両端面がブリュースタ
角を有した固体レーザ媒質が、複数個に分割され、又は
複数個の独立した固体レーザ媒質からなると共に、光学
的鏡面研磨が施されて前記固体レーザ媒質からのレーザ
光を反射し、かつ、前記ブリュースタ角と同一角に設定
され、さらに前記レーザ光の反射を防止する反射防止膜
が設けられた両端面を備えた透明容器に、前記固体レー
ザ媒質と同一の屈折率を有して前記固体レーザ媒質を循
環冷却するマッチングオイルと共に収容されてなる、こ
とを特徴とする。
Therefore, in order to achieve the above object, a solid-state laser medium having both end surfaces having Brewster's angles is divided into a plurality of pieces, or is composed of a plurality of independent solid-state laser media, and an optical mirror polishing is performed. Is provided to reflect the laser light from the solid-state laser medium, and is set at the same angle as the Brewster angle, and further provided with both end faces provided with an antireflection film for preventing the reflection of the laser light. It is characterized in that it is housed in a transparent container together with matching oil having the same refractive index as the solid-state laser medium and circulatingly cooling the solid-state laser medium.

[発明の実施例] 以下、図面に示すこの発明の実施例について説明する。Embodiments of the Invention Embodiments of the invention shown in the drawings will be described below.

第1、2図はこの発明の一実施例を示し、1はブリュー
スタ角に形成された両端面2、2′および互いに平行に
対向した上下両面3、3′を透明にしてなる容器(透明
容器)であって、両端面2、2′および上下両面3、
3′は適宜の透明部材の表面に光学的鏡面研磨を施した
ものである。また、両端面2、2′には反射防止用の多
層膜を付してレーザ光の反射による損失を防止するよう
にしてある。4は容器下面3′によって容器1内に支持
されたレーザ媒質(固体レーザ媒質;以後適宜レーザ媒
質と略称する)であって、このものは光の進路方向に関
して平行に複数個に分割されている。なお、先に両端面
2,2′がブリュースタ角を持って形成されていると述べ
た。これは第1図からもわかる様にレーザ媒質4の両端
面がブリュースタ角に設定されていることによる。即
ち、容器の両端面の角度とレーザ媒質4の両端面の角度
とは同じである。レーザ媒質4と容器の両端面2、2′
および上下両面3、3′との間に形成される空間には、
レーザ媒質4と同一の屈折率を有するマッチングオイル
6が満たされ、マッチングオイル6は容器1の両側に設
けた好ましくは多数の流入口7および流出口8を通って
容器1内を流通することによりレーザ媒質4の冷却媒体
として作用するようになっている。
FIGS. 1 and 2 show an embodiment of the present invention, in which 1 is a container (transparent) in which both end faces 2 and 2'formed at Brewster's angle and upper and lower both faces 3 and 3'which face each other in parallel are transparent. A container) having both end surfaces 2, 2'and upper and lower surfaces 3,
Reference numeral 3'denotes a surface of an appropriate transparent member which is optically mirror-polished. In addition, a multilayer film for antireflection is attached to both end surfaces 2 and 2'to prevent loss due to reflection of laser light. Reference numeral 4 denotes a laser medium (solid-state laser medium; hereinafter appropriately referred to as a laser medium) supported in the vessel 1 by a vessel lower surface 3 ', which is divided into a plurality of pieces parallel to the light traveling direction. . In addition, both end surfaces first
It is said that 2,2 'are formed with Brewster's angle. This is because both end faces of the laser medium 4 are set to Brewster's angle as can be seen from FIG. That is, the angles of both end faces of the container and the laser medium 4 are the same. Both ends 2 and 2'of the laser medium 4 and the container
And the space formed between the upper and lower surfaces 3, 3 ',
A matching oil 6 having the same refractive index as the laser medium 4 is filled, and the matching oil 6 flows through the container 1 through preferably a plurality of inlets 7 and outlets 8 provided on both sides of the container 1. It serves as a cooling medium for the laser medium 4.

容器1は、たとえば次のようにして組立てることができ
る。厚さ2mmのステンレス板を容器の両側面に使用し、
厚さ2mmの透明なサファイヤ板の表面を光学的鏡面に研
磨してさらに波長1.05μmの光に対する反射防止膜を蒸
着したものを両端面2、2′の構成部材とするととも
に、厚さ2mmの透明なサファイヤ板の表面を光学的鏡面
に研磨したものを上下両面3、3′の構成部材として、
これらをそれぞれ前記のステンレス板に液漏れ防止用パ
ッキング材を介してねじ止めすることによって作ること
ができる。レーザ媒質4としては、たとえば、Nd(ネオ
ジム)を含有したリン酸塩レーザガラスLHG8(株式会社
保谷硝子製)を、ダイヤモンド砥石320番で研磨して厚
さ9mm、幅40mm、長さ150mmで両端面が30度に傾斜した角
柱体とし、これを複数本レーザ光の進路方向と平行に並
べて使用することができ、また角柱体に代えて円柱体を
使用することもできる。さらに、またレーザ媒質を球状
体とし、これを複数個使用しても差支えない。上記ガラ
スレーザ媒質4の屈折率▲n20 D▼は1.52005であるの
で、この場合のマッチングオイル6としては、屈折率▲
20 D▼が1.63321の2−クロロナフタレンを四塩化炭素
に溶解して▲n20 D▼=1.52005の屈折率に調整して使用
することができる。
The container 1 can be assembled, for example, as follows. Use a 2 mm thick stainless steel plate on both sides of the container,
The surface of a transparent sapphire plate with a thickness of 2 mm is polished to an optical mirror surface and an antireflection film for light with a wavelength of 1.05 μm is vapor-deposited to form both end faces 2 and 2 ′, and with a thickness of 2 mm. A transparent sapphire plate whose surface is polished to an optical mirror surface is used as a constituent member for the upper and lower surfaces 3, 3 '.
Each of these can be made by screwing to the stainless plate through a liquid leakage preventing packing material. As the laser medium 4, for example, a phosphate laser glass LHG8 (manufactured by Hoya Glass Co., Ltd.) containing Nd (neodymium) is polished with a diamond grindstone No. 320 to have a thickness of 9 mm, a width of 40 mm, and a length of 150 mm. It is possible to use prisms whose planes are inclined at 30 degrees and arrange them in parallel with the traveling direction of a plurality of laser beams, and use cylinders instead of prisms. Further, the laser medium may have a spherical shape and a plurality of spherical bodies may be used. Since the refractive index ▲ n 20 D ▼ of the glass laser medium 4 is 1.52005, the matching oil 6 in this case has a refractive index ▲
n 20 D ▼ can be used to adjust the 2-chloro-naphthalene was dissolved in carbon tetrachloride ▲ n 20 D ▼ = 1.52005 refractive index of 1.63321.

9、9′は容器1の上下両面3、3′を挟んで配置さ
れ、かつ内面が反射面となったランプハウスであって、
その内部には励起用光源としてのフラッシュランプ10、
10′がそれぞれ設置される。またランプハウス9、9′
の左右両側には、好ましくは多数の流入口11、11′およ
び流出口12、12′が設けられ、ここを通ってフラッシュ
ランプ10、10′の冷却媒体(一般には水)が流通するよ
うになっている。そしてランプハウス9、9′から冷却
媒体を抜取った状態において、容器1はレーザ媒質4を
収容したままランプハウス9、9′間の所定位置に着脱
できるようになっている。13はレーザ光を100%反射す
る多層膜が付された全反射ミラー、14はレーザ光を50%
程度反射する多層膜が付された半反射ミラーである。
Reference numerals 9 and 9'indicate a lamp house which is arranged with the upper and lower surfaces 3 and 3'of the container 1 sandwiched therebetween and whose inner surface is a reflective surface.
Inside, a flash lamp 10 as a light source for excitation,
10 'are installed respectively. Also the lamp house 9, 9 '
A plurality of inlets 11, 11 'and outlets 12, 12' are preferably provided on both the left and right sides of the so that the cooling medium (generally water) for the flash lamps 10, 10 'flows therethrough. Has become. When the cooling medium is removed from the lamp houses 9 and 9 ', the container 1 can be attached and detached at a predetermined position between the lamp houses 9 and 9'while containing the laser medium 4. 13 is a total reflection mirror with a multilayer film that reflects 100% of the laser light, 14 is 50% of the laser light
It is a semi-reflective mirror with a multilayer film that reflects a certain degree.

上記のレーザ発振装置は、フラッシュランプ10、10′に
より光をポンピングするとレーザ媒質4中のレーザ発振
イオンを励起させてレーザ光が発振するが、レーザ媒質
4を収容した容器1の内部空間にはレーザ媒質4と同一
の屈折率を有するマッチングオイル6が満たされている
ため、レーザ光はレーザ媒質4の表面では反射せず容器
1の内面(上下両面)で反射する。また、光吸収によっ
てレーザ媒質には熱歪が生ずるが、本発明のレーザ媒質
は複数個に分割されているため、分割されていない同体
積のレーザ媒質を用いた場合ほど、熱歪が過大になるこ
とがない。
In the above laser oscillating device, when light is pumped by the flash lamps 10 and 10 ′, laser oscillating ions in the laser medium 4 are excited to oscillate laser light. However, in the internal space of the container 1 containing the laser medium 4, Since the matching oil 6 having the same refractive index as the laser medium 4 is filled, the laser light is not reflected by the surface of the laser medium 4 but reflected by the inner surface (both upper and lower surfaces) of the container 1. Further, although thermal distortion occurs in the laser medium due to light absorption, since the laser medium of the present invention is divided into a plurality of pieces, the thermal strain becomes excessive as compared with the case where a laser medium of the same volume which is not divided is used. Never be.

なお、上記実施例では容器1の両端面2、2′および上
下両面3、3′の構成部材としてサファイヤ板を例示し
たが、透明でかつ化学的にも安定であり、しかもマッチ
ングオイルより屈折率が大きなものであれば、これらを
サファイヤ板の代りに使用することができ、たとえばLE
30(株式会社保谷硝子製無アルカリガラス)などが使用
可能である。また上記実施例ではマッチングオイル6を
容器1内に流通させるようにしたが、適宜の止栓によっ
て容器1内に封入してもよい。さらに上記実施例ではレ
ーザ媒質4としてLHG8を例示したが、本発明はこれに限
定されることはない。ちなみに、屈折率がLHG8とは異な
るレーザ媒質の場合でも、2−クロロナフタレンと四塩
化炭素との混合比によってそのレーザ媒質に適合した屈
折率のマッチングオイルに調整することができる。また
2−クロロナフタレンに限らず、2−ブロムナフタレ
ン、リン酸トリクレシル等、結晶の屈折率測定に使用さ
れるマッチングオイルで、かつ経時変化のないものであ
れば、いずれも本発明で使用することができる。四塩化
炭素は水等のOH基をもつものに比べて、リン酸塩ガラス
に対して反応性が著しく低く、長期間これと接触しても
ガラス表面を変質させない点ですぐれているが、四塩化
炭素以外では、ガラスとの反応がなく、かつ上記のマッ
チングオイルを溶解できるものが使用でき、なかでも沸
点の高いものの方が望ましい。とくに光屈折率の低いレ
ーザ媒質に対しては、たとえばエチレングリコールと水
またはアルコール系をマッチングオイルとして使用でき
る。そして、複数個に分割された固体レーザー媒質を円
柱体とすることにより、マッチングオイルによる冷却効
果を一層向上させることもできる。
In the above embodiment, the sapphire plate was illustrated as a constituent member of both end surfaces 2, 2'and upper and lower surfaces 3, 3'of the container 1, but it is transparent and chemically stable, and the refractive index is higher than that of the matching oil. Can be used instead of the sapphire plate, for example LE
30 (non-alkali glass made by Hoya Glass Co., Ltd.) can be used. Although the matching oil 6 is circulated in the container 1 in the above embodiment, it may be sealed in the container 1 by an appropriate stopper. Further, although the laser medium 4 is exemplified by the LHG 8 in the above-mentioned embodiment, the present invention is not limited to this. By the way, even in the case of a laser medium having a refractive index different from that of LHG8, it is possible to adjust the matching oil having a refractive index suitable for the laser medium by the mixing ratio of 2-chloronaphthalene and carbon tetrachloride. Further, not only 2-chloronaphthalene, but also 2-bromonaphthalene, tricresyl phosphate, and the like matching oils used for measuring the refractive index of crystals, and those that do not change with time, can be used in the present invention. You can Carbon tetrachloride has a significantly lower reactivity with phosphate glass than that having OH groups such as water, and is excellent in that it does not deteriorate the glass surface even if it is in contact with it for a long time. Other than carbon chloride, those which do not react with glass and can dissolve the above matching oil can be used, and among them, those having a high boiling point are preferable. Particularly for a laser medium having a low photorefractive index, for example, ethylene glycol and water or alcohol can be used as a matching oil. Further, by making the solid laser medium divided into a plurality of cylinders, the cooling effect by the matching oil can be further improved.

[発明の効果] この発明は上記のように構成したので、レーザ媒質が複
数個に分割されているため、レーザ媒質を全体として大
型化しても熱歪により破壊されることがなく、大出力化
が可能となる。レーザ光はレーザ媒質の表面では反射せ
ず、容器の内面で反射するため、容器の反射面を鏡面状
にかつ平行に保持しておきさえすれば、レーザ媒質はそ
の表面に光学的研磨を施す必要がないうえ、形状にも制
約を受けず、ガラスのみならずたとえば結晶をレーザ媒
質に使用することもできる。しかも容器の上下両面を鏡
面状に保持しておくことは、レーザ媒質の表面を鏡面状
に保持しておくことに比べてずっと容易であり、したが
って本発明の装置は長期間にわたり安心して使用するこ
とができる等のすぐれた効果を有するものである。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, since the laser medium is divided into a plurality of pieces, even if the size of the laser medium is increased as a whole, it is not destroyed by thermal strain, and a large output is achieved. Is possible. Since the laser light does not reflect on the surface of the laser medium but reflects on the inner surface of the container, the laser medium is optically polished on the surface as long as the reflecting surface of the container is held in a mirror-like and parallel manner. It is not necessary and is not restricted in shape, and not only glass but also crystals, for example, can be used as the laser medium. In addition, it is much easier to keep the upper and lower surfaces of the container mirror-like, as compared to keeping the surface of the laser medium mirror-like, and therefore the device of the present invention can be used safely for a long period of time. It has excellent effects such as being able to.

【図面の簡単な説明】[Brief description of drawings]

図面はこの発明の一実施例を示し、第1図は縦断正面
図、第2図は縦断側面図である。 1…容器、2、2′…容器端面、3…容器上面、3′…
容器下面、4…レーザ媒質、6…マッチングオイル、
7、11、11′…流入口、8、12、12′…流出口、9、
9′…ランプハウス、10、10′…フラッシュランプ、13
…全反射ミラー、14…半反射ミラー。
The drawings show one embodiment of the present invention. FIG. 1 is a vertical sectional front view, and FIG. 2 is a vertical sectional side view. 1 ... container, 2 2 '... container end face, 3 ... container top face, 3' ...
Lower surface of container, 4 ... Laser medium, 6 ... Matching oil,
7, 11, 11 '... Inlet, 8, 12, 12' ... Outlet, 9,
9 '... Lamp house, 10, 10' ... Flash lamp, 13
… Total reflection mirror, 14… Semi-reflection mirror.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】両端面がブリュースタ角を有した固体レー
ザ媒質が、 複数個に分割され、又は複数個の独立した固体レーザ媒
質からなると共に、 内側が光学的に鏡面研磨されて前記固体レーザ媒質から
のレーザ光を反射し、かつ、前記ブリュースタ角と同一
角に設定され、さらに前記レーザ光の反射を防止する反
射防止膜が設けられた両端面を備えた透明容器に、 前記固体レーザ媒質と同一の屈折率を有して前記固体レ
ーザ媒質を循環冷却するマッチングオイルと共に収容さ
れてなる、 ことを特徴とするスラブ形固体レーザ発振装置。
1. A solid-state laser medium having both ends having Brewster's angles, divided into a plurality of or composed of a plurality of independent solid-state laser media, and the inside of which is optically mirror-polished to form the solid-state laser. In a transparent container having both end faces that reflect laser light from a medium and are set at the same angle as the Brewster angle, and further provided with antireflection films for preventing reflection of the laser light, the solid-state laser A slab-type solid-state laser oscillating device having the same refractive index as that of the medium and being housed together with a matching oil that circulates and cools the solid-state laser medium.
【請求項2】前記固体レーザ媒質にレーザ発振させる励
起用光エネルギが前記透明容器の上下面を通して前記透
明容器内に導入されてなる、 特許請求の範囲第1項記載のスラブ形固体レーザ発振装
置。
2. The slab-type solid-state laser oscillator according to claim 1, wherein pumping light energy for causing the solid-state laser medium to oscillate is introduced into the transparent container through the upper and lower surfaces of the transparent container. .
【請求項3】前記固体レーザ媒質が、ガラスレーザ媒質
からなる、 特許請求の範囲第1項記載のスラブ形固体レーザ発振装
置。
3. The slab-type solid-state laser oscillator according to claim 1, wherein the solid-state laser medium is a glass laser medium.
【請求項4】前記マッチングオイルが、2−クロロナフ
タリンと四塩化炭素とからなる、 特許請求の範囲第1項記載のスラブ形固体レーザ発振装
置。
4. The slab type solid-state laser oscillator according to claim 1, wherein the matching oil comprises 2-chloronaphthalene and carbon tetrachloride.
【請求項5】複数個に分割された前記固体レーザ媒質の
分割面又は複数個の独立した前記固体レーザ媒質の隣接
面が、レーザ光の進路方向と平行である、 特許請求の範囲第1項記載のスラブ形固体レーザ発振装
置。
5. A division surface of the solid laser medium divided into a plurality of pieces or an adjoining surface of the plurality of independent solid state laser media is parallel to a traveling direction of a laser beam. The slab type solid-state laser oscillator described.
【請求項6】複数個に分割され、又は複数個の独立した
個々の前記固体レーザ媒質のレーザ光進行断面形状が円
形を有してなる、 特許請求の範囲第1項記載のスラブ形固体レーザ発振装
置。
6. The slab-type solid-state laser according to claim 1, wherein the laser light traveling cross-section of each of the individual solid-state laser media divided into a plurality of pieces or a plurality of independent pieces has a circular shape. Oscillator.
【請求項7】複数個の独立した前記固体レーザ媒質が、
球状を有してなる、 特許請求の範囲第1項記載のスラブ形固体レーザ発振装
置。
7. A plurality of independent solid-state laser media,
The slab-type solid-state laser oscillator according to claim 1, which has a spherical shape.
JP60114248A 1985-05-29 1985-05-29 Slab type solid-state laser oscillator Expired - Lifetime JPH0722210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60114248A JPH0722210B2 (en) 1985-05-29 1985-05-29 Slab type solid-state laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60114248A JPH0722210B2 (en) 1985-05-29 1985-05-29 Slab type solid-state laser oscillator

Publications (2)

Publication Number Publication Date
JPS61272985A JPS61272985A (en) 1986-12-03
JPH0722210B2 true JPH0722210B2 (en) 1995-03-08

Family

ID=14633004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60114248A Expired - Lifetime JPH0722210B2 (en) 1985-05-29 1985-05-29 Slab type solid-state laser oscillator

Country Status (1)

Country Link
JP (1) JPH0722210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215013A (en) * 1997-01-30 1998-08-11 Fanuc Ltd Laser oscillation apparatus
DE10137069A1 (en) 2001-07-28 2003-02-20 Haas Laser Gmbh & Co Kg Laser-active solid body optical pumping device, injects pumped light into solid body on its face while distributing light by reflection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL55912A (en) * 1977-11-14 1982-02-28 Gen Electric Face-pumped laser with diffraction-limited output beam

Also Published As

Publication number Publication date
JPS61272985A (en) 1986-12-03

Similar Documents

Publication Publication Date Title
US3633126A (en) Multiple internal reflection face-pumped laser
US5394427A (en) Housing for a slab laser pumped by a close-coupled light source
JP3178729B2 (en) Ring laser
KR100227179B1 (en) The manufacture apparatus for reflection type holographic optic element of high quality
US3602836A (en) Laser structure with a segmented laser rod
JPS6032998B2 (en) Multiple prism type beam expander
US5125001A (en) Solid laser device
US5148441A (en) Solid state laser
US6055263A (en) Solid-state laser oscillating device
US3935444A (en) Polarized light beam source in a vehicle headlight
JPH0722210B2 (en) Slab type solid-state laser oscillator
US3646474A (en) Symmetrically pumped slab laser
US3983511A (en) Normal incidence face pumped disc laser
JPS6337514B2 (en)
JPH1187813A (en) Solid laser oscillator
JPH0214587A (en) Solid laser equipment
JPS60194589A (en) Slab type solid-state laser oscillation device
EP0897206A1 (en) Laser oscillator
US3533674A (en) Holographic recording via three-level solid state laser material
JP2760116B2 (en) Solid-state laser device
JPH098384A (en) Solid state laser and laser light transmission method
JPS61272986A (en) Slab type solid-state laser oscillator
JPH0466396B2 (en)
JPH0366185A (en) Slab type laser oscillator
JPH0611665A (en) Optical system for laser apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term