JPS61272386A - Gas feeder - Google Patents

Gas feeder

Info

Publication number
JPS61272386A
JPS61272386A JP11404085A JP11404085A JPS61272386A JP S61272386 A JPS61272386 A JP S61272386A JP 11404085 A JP11404085 A JP 11404085A JP 11404085 A JP11404085 A JP 11404085A JP S61272386 A JPS61272386 A JP S61272386A
Authority
JP
Japan
Prior art keywords
gas
plasma
introduction means
discharge chamber
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11404085A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamaguchi
泰広 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11404085A priority Critical patent/JPS61272386A/en
Publication of JPS61272386A publication Critical patent/JPS61272386A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control a plasma stream and to form a thin film uniform in the thickness by providing the second gas introducing means opposite to a plasma conduction port of an electric discharge chamber and providing plural pieces of both the passage of the plasma stream and an injection hole of the second gas to the introducing means. CONSTITUTION:The first gas such as N2 introduced into the inside of an electric discharge chamber 1 via an introduction means 12 is made to a plasma with the microwave which is generated in a magnetron 3 and introduced via the waveguides 4, 5. This plasma stream 15 is introduced into a reaction chamber 7 through the plural passages provided to a tip part 10A of the second gas introduction means 10 via a connection port 8. The introduced plasma stream 15 is induced on a substrate 14 with the second gas such as SiH4 which is injected through plural injection holes via a feed path 17 of the second gas introduction means. The reaction and the combination are performed on the surface of the substrate 14 and a thin film such as silicon nitride is formed on the surface of the substrate 14.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置を製造するための基板に薄膜を形成
するマイクロ波プラズマCV D (Cムーーcaj 
va岸f)<pc、aL、tL鴎)装置に用いられるガ
ス供給装置忙関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to microwave plasma CVD (CVD) for forming a thin film on a substrate for manufacturing semiconductor devices.
This is related to the gas supply device used in the device.

〔発明の背景〕[Background of the invention]

従来のマイクロ波プラズマCVD装置は、例えば特開昭
56−155545号公報に記載の図面(第5図)K示
すように、第1ガス導入手段25を有し、かつ導入窓2
3を介してマイクロ波導入管24′に連通ずる放電室2
1と、該放電室21にプラズマ引出し窓28を介して連
通ずると共に第2ガス導大手段26を有し、かつ基台3
0上に載置した基板31を内鵞する反応室22とにより
構成されている。
A conventional microwave plasma CVD apparatus has a first gas introduction means 25 and an introduction window 2, as shown in the drawing (FIG. 5) K described in, for example, Japanese Patent Application Laid-Open No. 56-155545.
3, the discharge chamber 2 communicates with the microwave introduction tube 24' through
1, communicates with the discharge chamber 21 via a plasma extraction window 28, has a second gas guide means 26, and has a base 3.
The reaction chamber 22 accommodates a substrate 31 placed on top of the reaction chamber 22.

上記放電室21の外周には、電子サイクロトロン29が
設けられ、また上記プラズマ引出し窓28の下側には、
第2ガス導入手段26の要部である任意数の噴出孔(図
示せず)を有する環状管26Aが設置されている。
An electron cyclotron 29 is provided on the outer periphery of the discharge chamber 21, and below the plasma extraction window 28,
An annular pipe 26A, which is a main part of the second gas introduction means 26, is installed having an arbitrary number of ejection holes (not shown).

上記のような構造では、各基板51に対して上記環状管
26Aの各噴出孔の相対位置が異なるため、各基板31
におけるガス流れの条件は同様でないので、各基板31
0表面上に形成される膜厚を均一化することが困難であ
る。
In the above structure, since the relative position of each jet hole of the annular tube 26A is different with respect to each substrate 51, each substrate 31
Since the gas flow conditions in each substrate 31 are not similar,
It is difficult to make the thickness of the film formed on the zero surface uniform.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点にかんがみ、基板表面上に均一な膜厚
を有する薄膜を形成するのに好適なガス供給装置を提供
することを目的と嗜するものである。
In view of the above points, it is an object of the present invention to provide a gas supply device suitable for forming a thin film having a uniform thickness on the surface of a substrate.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために、マイクロ波プラズ
マCVD装置を構成する放電室と反応室とを連通し、該
連通部近傍の反応室内に第2ガス導入手段を設け、該第
2ガス導入手段に放電室からのプラズマ流の流通する通
路を複数個設けると共に、第2ガスの各噴出孔を前記各
通路の近傍に、かつ平行にそれぞれ設けるか、または前
記各通路に直交するようにそれぞれ設けることを特徴と
する。
In order to achieve the above object, the present invention communicates a discharge chamber and a reaction chamber that constitute a microwave plasma CVD apparatus, provides a second gas introduction means in the reaction chamber near the communication part, and provides a means for introducing a second gas into the reaction chamber. The means is provided with a plurality of passages through which the plasma flow from the discharge chamber flows, and each ejection hole for the second gas is provided in the vicinity of and parallel to each of the passages, or each of the ejection holes is provided so as to be orthogonal to each of the passages. It is characterized by providing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面について説明する。第1
図は同実施例の基本構成を示す断面図である。同図にお
いて、放電室1はマグネトロン5を備える矩形状導波管
4に通達する円形状導波管5内に設けられ、該放電室1
には第1ガス導入手段2が取付けられている。前記円形
状導波管5の外周部には、コイル6A、 6Bが設けら
れている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a sectional view showing the basic configuration of the same embodiment. In the figure, a discharge chamber 1 is provided within a circular waveguide 5 that communicates with a rectangular waveguide 4 provided with a magnetron 5.
A first gas introduction means 2 is attached to the. Coils 6A and 6B are provided on the outer periphery of the circular waveguide 5.

上記放電室1の下方に設置され、該放電室1に連結口8
を介して連通ずる反応室Z内には、該連絡口8の近傍に
第2ガス導入手段1oが設置されると共に、該第2ガス
導入手段10の下方に基板14を載置した基台15が配
設されている。また、上記反応室7の底部には排気口9
が設けらおよび第6図(第2図のA−A断面図)に示す
ように、プラズマ流15の流通する複数個の通路11お
よび該通路11の近傍釦、かつ平行にそれぞれ配設され
た複数個の第2ガス噴出孔12を設けた先端部10Aと
、該先端部10Aと一体に形成され、前記第2ガス噴出
孔12に連通ずる第2ガス供給路17(第1図参照)を
有する基部10Bとからなる。前記通M11と噴出孔1
2の大きさおよび位置は、基板14の大きさ、位置およ
び枚数に応じて適当に選定するものとする。
A connection port 8 is installed below the discharge chamber 1 and connected to the discharge chamber 1.
A second gas introduction means 1o is installed in the vicinity of the communication port 8 in the reaction chamber Z, which communicates with the reaction chamber Z through the communication port 8, and a base 15 on which a substrate 14 is placed below the second gas introduction means 10. is installed. Further, an exhaust port 9 is provided at the bottom of the reaction chamber 7.
As shown in FIG. 6 (A-A sectional view in FIG. 2), a plurality of passages 11 through which the plasma flow 15 flows and buttons near the passages 11 are arranged in parallel. A distal end portion 10A provided with a plurality of second gas ejection holes 12, and a second gas supply path 17 (see FIG. 1) that is formed integrally with the distal end portion 10A and communicates with the second gas ejection holes 12. It consists of a base portion 10B having a base portion 10B. Said passage M11 and jet hole 1
The size and position of 2 shall be appropriately selected depending on the size, position, and number of substrates 14.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

第1ガス導入手段2を介して放電室1内に導入された第
1ガス例えばN2は、マグネトロン3で発生し導波管4
,5を経て放電室1に導入されたマイクロ波によりプラ
ズマ化される。このプラズマ化されたガスの流れ15(
以下、プラズマ流と称す)へは、放電室1の連絡口8を
経て第2ガス導入手段の先端部10Aに設けた通路11
を流通して反応室7内に導入される。
A first gas, for example, N2, introduced into the discharge chamber 1 via the first gas introducing means 2 is generated in the magnetron 3 and is introduced into the waveguide 4.
, 5 into the discharge chamber 1 and is converted into plasma by microwaves. This plasma gas flow 15 (
A passage 11 provided at the tip 10A of the second gas introduction means passes through the communication port 8 of the discharge chamber 1 to the plasma flow (hereinafter referred to as plasma flow).
is introduced into the reaction chamber 7 through the flow.

上記反応室7に導入されたプラズマ流15は、第2ガス
導入手段の基部10Bに設けた供給路17を経て第2ガ
ス導入手段の先端部10Aに設けた噴出孔12から噴出
される第2ガス例えば5LHaにより基板14上に導び
かれる。該基板140表面で前記N2と5LH4が反応
、化合することKよシ、基板140表面に窒化シリコン
の薄膜が形成される。一方、反応室7内の排ガスは排出
口9よυ排気される。
The plasma flow 15 introduced into the reaction chamber 7 passes through a supply path 17 provided at the base 10B of the second gas introduction means, and is ejected from the ejection hole 12 provided at the tip 10A of the second gas introduction means. A gas such as 5LHa is introduced onto the substrate 14. As the N2 and 5LH4 react and combine on the surface of the substrate 140, a thin film of silicon nitride is formed on the surface of the substrate 140. On the other hand, the exhaust gas in the reaction chamber 7 is exhausted through the exhaust port 9.

この場合、コイル6A、 6Bは放電室1内に磁場を発
生させ、プラズマ密度を高め・る作用を行なう。
In this case, the coils 6A and 6B generate a magnetic field within the discharge chamber 1, thereby increasing the plasma density.

上述の実施例では、第2〜ガス導入手段10の噴出孔1
2を、プラズマ流15の流通する通路11に平行に設置
したが、これに代り第4図に示すように第2ガスの噴出
孔12Aを、前記通路11に直交するように設けてもよ
い。このように構成すれば、上記通路11および噴出孔
12Aをそれぞれ流通する第1ガスと第2ガスとの菅突
により、該第2ガスの励磁される割合を増加させること
がでよる。
In the above-mentioned embodiment, the ejection holes 1 of the second to gas introduction means 10
2 was installed parallel to the passage 11 through which the plasma flow 15 flows, but instead, the second gas ejection hole 12A may be provided perpendicular to the passage 11 as shown in FIG. With this configuration, the rate of excitation of the second gas can be increased due to the collision between the first gas and the second gas flowing through the passage 11 and the ejection hole 12A, respectively.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、反応室内に第2
ガス導入手段を放電室のプラズマ導出口に対向するよう
に設置し、該第2ガス導入手段にプラズマ流の通路と第
2ガス噴出孔をそれぞれ複数個設けたため、プラズマ流
を制御することがでよるから、基板表面に均一な膜厚の
薄膜を形成することが可能である。
As explained above, according to the present invention, the second
Since the gas introduction means is installed to face the plasma outlet of the discharge chamber, and the second gas introduction means is provided with a plurality of plasma flow passages and a plurality of second gas ejection holes, it is possible to control the plasma flow. Therefore, it is possible to form a thin film with a uniform thickness on the surface of the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるガス供給装置の一実施勺を適用
したマイクロ波プラズマCVD装置の基本構成を示す断
面図、第2図は第1図のガス供給装置の平面図、第3図
は第2図のA−A断面図、第4図は第2ガス導入手段の
変形例を示す断面図、第5図は従来のマイクロ波プラズ
マCVD装置の基本構成を示す断面図である。 1・・・放電室、2・・・第1ガス導入手段、7・・・
反応室、8・・・プラズマ導出口、10・・・第2ガス
導入手段、11・・・通路、12.12A・・・噴出孔
、14・・・基板。 第 1 図 第 2 図 第 3 図 第4図 第 5 図
FIG. 1 is a sectional view showing the basic configuration of a microwave plasma CVD apparatus to which an embodiment of the gas supply device according to the present invention is applied, FIG. 2 is a plan view of the gas supply device shown in FIG. 1, and FIG. FIG. 4 is a cross-sectional view showing a modification of the second gas introducing means, and FIG. 5 is a cross-sectional view showing the basic configuration of a conventional microwave plasma CVD apparatus. DESCRIPTION OF SYMBOLS 1...Discharge chamber, 2...First gas introduction means, 7...
Reaction chamber, 8... Plasma outlet, 10... Second gas introduction means, 11... Passage, 12.12A... Ejection hole, 14... Substrate. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 第1ガス導入手段を有し、かつマイクロ波により励磁さ
れてプラズマを発生させる放電室と、該放電室に連通す
ると共に第2ガス導入手段を有し、かつ基板表面に薄膜
を成長させる反応室とを備えるプラズマCVD装置にお
いて、前記第2ガス導入手段を前記放電室のプラズマ導
出口に対設させると共に、該第2ガス導入手段に放電室
からのプラズマ流を前記基板側に導く通路を複数個設け
、第2ガスの各噴出孔を前記各通路の近傍に、かつ平行
にそれぞれ設けるか、または前記各通路に直交するよう
にそれぞれ設けることを特徴とするガス供給装置。
a discharge chamber that has a first gas introduction means and is excited by microwaves to generate plasma; and a reaction chamber that communicates with the discharge chamber and has a second gas introduction means and that grows a thin film on the substrate surface. In the plasma CVD apparatus, the second gas introduction means is disposed opposite to the plasma outlet of the discharge chamber, and the second gas introduction means has a plurality of passages for guiding the plasma flow from the discharge chamber to the substrate side. 1. A gas supply device, characterized in that each ejection hole for the second gas is provided in the vicinity of and parallel to each of the passages, or is provided perpendicularly to each of the passages.
JP11404085A 1985-05-29 1985-05-29 Gas feeder Pending JPS61272386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11404085A JPS61272386A (en) 1985-05-29 1985-05-29 Gas feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11404085A JPS61272386A (en) 1985-05-29 1985-05-29 Gas feeder

Publications (1)

Publication Number Publication Date
JPS61272386A true JPS61272386A (en) 1986-12-02

Family

ID=14627520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11404085A Pending JPS61272386A (en) 1985-05-29 1985-05-29 Gas feeder

Country Status (1)

Country Link
JP (1) JPS61272386A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313941A (en) * 1988-06-14 1989-12-19 Sumitomo Metal Ind Ltd Thin film formation and device thereof
US5024182A (en) * 1988-07-15 1991-06-18 Mitsubishi Denki Kabushiki Kaisha Thin film forming apparatus having a gas flow settling device
US5304250A (en) * 1991-07-11 1994-04-19 Sony Corporation Plasma system comprising hollow mesh plate electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313941A (en) * 1988-06-14 1989-12-19 Sumitomo Metal Ind Ltd Thin film formation and device thereof
US5024182A (en) * 1988-07-15 1991-06-18 Mitsubishi Denki Kabushiki Kaisha Thin film forming apparatus having a gas flow settling device
US5304250A (en) * 1991-07-11 1994-04-19 Sony Corporation Plasma system comprising hollow mesh plate electrode

Similar Documents

Publication Publication Date Title
JP4273932B2 (en) Surface wave excitation plasma CVD equipment
US6417111B2 (en) Plasma processing apparatus
EP1300878B1 (en) Device for plasma processing
JP5377587B2 (en) Antenna, plasma processing apparatus, and plasma processing method
US20060096540A1 (en) Apparatus to manufacture semiconductor
US7666479B2 (en) Apparatus and method of gas injection sequencing
US20020017364A1 (en) Systems and methods for two-sided etch of a semiconductor substrate
US20070227659A1 (en) Plasma etching apparatus
CN110178201A (en) Method and apparatus for low temperature silicon nitride layer
JP2006324400A (en) Showerhead and surface wave exciting plasma processing device
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
JP2009004157A (en) Plasma generating device
JPS61272386A (en) Gas feeder
KR20020010465A (en) Semiconductor fabricating apparatus having improved shower head
JPS6213573A (en) Cvd device
JPH1154440A (en) Semiconductor manufacturing device
JP4273983B2 (en) Surface wave excitation plasma CVD equipment
JP2013020973A (en) Plasma processing apparatus
JPH0231423A (en) Process of forming patterned dielectric layer
JP4517935B2 (en) Shower plate and surface wave excitation plasma processing apparatus
KR20040096044A (en) Inductive plasma chamber having multi discharge tube bridge
JP2000195800A (en) Surface treatment device
JPH0250429A (en) Plasma processing apparatus
JPH07118464B2 (en) Plasma deposition device
JPH04154117A (en) Low pressure cvd system