JPS6127097B2 - - Google Patents

Info

Publication number
JPS6127097B2
JPS6127097B2 JP59104916A JP10491684A JPS6127097B2 JP S6127097 B2 JPS6127097 B2 JP S6127097B2 JP 59104916 A JP59104916 A JP 59104916A JP 10491684 A JP10491684 A JP 10491684A JP S6127097 B2 JPS6127097 B2 JP S6127097B2
Authority
JP
Japan
Prior art keywords
catalyst
ethylene
compounds
ethane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59104916A
Other languages
Japanese (ja)
Other versions
JPS6034736A (en
Inventor
Gurin Yangu Furanku
Magunasu Soosuteinson Aarin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of JPS6034736A publication Critical patent/JPS6034736A/en
Publication of JPS6127097B2 publication Critical patent/JPS6127097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエタンのエチレンへの脱水素化用のモ
リブデン含有焼成組成物から成る新規触媒に関す
る。 さて例えばエチレンは約600゜〜1000℃の温度
で行なわれる吸熱反応でエタンを熱分解すること
によつて工業的に製造されるのが慣例とされてき
た(米国特許第3541179号明細書)。このような方
法における反応時間は非常に短かいので、その工
程の流れから熱を効率的に回収することを困難ま
たは不可能にしている。加うるに、使用される高
温反応のための炉または反応容器の構築に特殊合
金の使用を必要とする。また分解反応により水素
やメタンのような低沸点副生物を比較的多量生成
するから、このような副生物からのエチレンの回
収は複雑にし、かつ一層費用がかかつている。 発熱反応に種々のオキシハロゲン化触媒系を用
いてエタンをオキシ脱水素化することは可能であ
る。しかし、これらの反応は少なくとも約500〜
600℃の温度でのみ達成される(米国特許第
3080435号明細書)。加うるにこの場合ハロゲン原
子の存在は、生成されるオレフインの回収の困難
性を増大させる。また反応系内のハロゲンやハロ
ゲン化水素による腐食に耐えるために特殊そして
高価な構築材料が必要である。更にまた、この方
法を経済的に行うためにはハロゲンそれ自体を回
収して再循環させねばならない。 比較的高温における発熱反応により或る選択さ
れたC3アルカンのオキシ脱水素化もまたバナ
ジウムを含有する選定された触媒(米国特許第
3218368号、同第3541179号および同第3856881号
の各明細書)またバナジウムとモリブデンとを含
有する選定された触媒(米国特許第3320331号明
細書)によつて達成されている。 また例えばアクロレインのようなα,β−不飽
和脂肪族アルデヒドからそれに対応するアクリル
酸のようなα,β−不飽和カルボン酸への気相酸
化用にモリブデンおよびバナジウムを含有する触
媒系を使用することも知られている。これらの触
媒系はベルギー特許第821322号、同第821324号お
よび同第821325号の各明細書に開示されているよ
うに元素Mo,VおよびX(但し、XはNb,Tiま
たはTaである)を含有するものである。 しかしながら本発明触媒の提唱以前に公知のこ
れら触媒を用いては、例えばエタンを比較的低い
温度にて好ましい転化率(%)、選択率(%)お
よび生産性にてエチレンに脱水素化することは不
可能であつた。 ここに転化率、選択率および生産性は次のよう
に定義される。 転化率(%)=A/触媒床に供給される反応混合物中のエタンのモル数×100 但し、Aは流出液中のエタンを除いた、すべ
ての炭素含有生成物のモル・エタン−当量合計
(炭素基準)である。 エチレン(または酢酸)に対する選択率(または効率)% =生成されたエチレン(または酢酸)のモル数/A×100 エチレン(または酢酸)の生産性(生成能)
=反応時間1時間当り(触媒床中の)触媒の立
方フイートにつき生成されるエチレン(または
酢酸)のポンド数 式:Mo1Bi0.08Ti0.08Mn0.16Si0.16 で表わされる焼成組成物である。 上に示した触媒組成物の生成に用いるSiには下
記のごとく、触媒の担持に使用できる任意の担体
(支持体)中に存在しうるSi以外のものである。 本発明の新規触媒における元素Mo,Ti、Mn、
BiおよびSiは形の上では酸素と結合して触媒組成
物中に存在し、それ自体種々の酸化物であると信
じられ、かつまた尖晶石やペロブスキー石のよう
な酸化物が化学的に結合したものでもありうる。 本発明の触媒は好ましくは元素Mo,Ti、Mn、
BiおよびSiのおのおのお可溶性化合物(塩、錯塩
またはその他の化合物)の溶液から製造される
が、Siの場合はコロイド状のゾルからもつくりう
る。これらの溶液は1〜7そして好ましくは2〜
6のPHを有する水性系であることが好ましい。前
記元素含有各種化合物の溶液は各元素の所望のグ
ラム原子比率を与えるように充分な量の元素の可
溶性化合物を溶解させることによつて調製する。
選ばれた種々の元素のこれら化合物は可能な程度
に相互に溶解性でなければならない。Si化合物は
通常コロイド状シリカゾルの形で添加される。Si
以外の選ばれたこのような元素の化合物のいづれ
かが、他の化合物と相互に溶解しない場合には、
それらをその溶液系に最後に添加することができ
る。次いでその溶液系中の化合物の混合物から水
または他の溶剤を蒸発によつて除去することによ
つて触媒組成物が製造される。 触媒を担体上に沈積担持させて使用する場合に
は所望の元素化合物を通常次の物理的性質(但
し、これらに限定されるものではない)を有する
微細な多孔性担体上に沈積させる。 表面積が約0.1〜500m3/g、見かけの多孔度が
30〜60%、孔の少なくとも90%が20〜1500ミクロ
ンの孔径を有する、そして粒子またはペレツトの
形が約1/8〜1/16インチの径を有する。この沈積
は担体をすべての化合物の最終混合物中に浸漬さ
せ、大部分の溶剤を蒸発させ、次いでその系を約
80〜220℃で2〜60時間乾燥させることにより達
成させる。こうして乾燥した触媒は次に空気また
は酸素中で約220〜550℃で1/2〜24時間加熱する
ことによつて焼成して所望の
Mo1Bi0.08Ti0.08Mn0.16Si0.16組成物を生成させる。 使用できる担体は、シリカ、酸化アルミニウ
ム、炭化ケイ素、ジルコニア、チタニアおよびそ
れらの混合物である。 この場合担持された触媒は通常約10〜50重量%
の触媒組成物を含有し、その残りは担体である。 モリブデンは好ましくはパラ−モリブデン酸ア
ンモニウムのようなモリブデンのアンモニウム塩
の形で、或は酢酸塩、シユウ酸塩、マンデル酸塩
およびグリコール酸塩のようなモリブデンの有機
酸塩の形で溶液中に導入する。また使用できる他
の水溶性モリブデン化合物は部分的に水溶性の酸
化モリブデン、モリブデン酸およびモリブデンの
塩化物である。 チタンは好ましくは乳酸アンモニウムと配位し
た水溶性キレートの形で溶液中に導入する。使用
できる他の水溶性チタン化合物はベータージケト
ン塩酸塩、カルボン酸、アミン、アルコールまた
はアルカノールアミンにチタンが配位、結合また
は錯化したものである。 マンガン及びビスマスは好ましくは硝酸塩の形
で溶液中に導入する。使用できるこれらの元素の
他の水溶性化合物は水溶性塩化物およびこのよう
な元素の酢酸塩、シユウ酸塩、酒石酸塩、乳酸
塩、サリチル酸塩、ギ酸塩および炭酸塩のような
有機酸塩である。 ケイ素は好ましくは水性コロイドシリカ
(SiO2)ゾルの形で触媒系中に導入する。 触媒が最も効果的であるためには、Mo,Ti、
Mn、BiおよびSi金属成分はそれらの可能な最高
酸化状態以下に幾分還元されているものであると
信ぜられる。これは触媒をつくる溶液系中に導入
されるNH3のような還元剤または有機錯化剤のよ
うな有機還元剤の存在下で触媒を熱処理する間に
達成される。これら触媒の還元は水素またはエタ
ン、エチレンまたはプロピレンのような炭化水素
が触媒床を通過することにより酸化反応が行なわ
れる反応容器中でも起りうる。 担体に担持または未担持の触媒は固定床または
流動床で使用することができる。 本発明の触媒は水以外の希釈剤の添加なしにエ
タンを選択的にオキシ脱水素化して最終生成物と
してエチレンおよび酢酸を次に示す如き転化率
(%)、効率(%)および生産性にて生ぜしめ得
る。 この場合水を添加しない正常の反応過程ではオ
キシ脱水素化されたエタン1モルにつき1モルの
水が生成される。このようにこの反応中に生成し
た水はそこに生成されるエチレン1モルにつき約
0.05〜0.25モルの酢酸を生成させる。しかるに水
を添加した場合に付加的量すなわち生成されるエ
チレン1モルにつき約0.25〜0.95モルまで増大さ
れた酢酸の生成をもたらす。
The present invention relates to a new catalyst comprising a molybdenum-containing calcined composition for the dehydrogenation of ethane to ethylene. For example, it has been customary for ethylene to be produced industrially by thermally decomposing ethane in an endothermic reaction carried out at temperatures of about 600 DEG to 1000 DEG C. (U.S. Pat. No. 3,541,179). The reaction times in such processes are very short, making it difficult or impossible to efficiently recover heat from the process stream. In addition, the construction of the furnace or reaction vessel for the high temperature reactions used requires the use of special alloys. The cracking reactions also produce relatively large amounts of low boiling byproducts such as hydrogen and methane, making recovery of ethylene from such byproducts complex and more expensive. It is possible to oxydehydrogenate ethane using a variety of oxyhalogenation catalyst systems in an exothermic reaction. However, these reactions are at least ca.
achieved only at a temperature of 600°C (U.S. Patent No.
3080435 specification). In addition, the presence of halogen atoms in this case increases the difficulty in recovering the olefin produced. Special and expensive construction materials are also required to withstand corrosion from halogens and hydrogen halides within the reaction system. Furthermore, in order to carry out the process economically, the halogen itself must be recovered and recycled. Oxydehydrogenation of certain C 3 alkanes by an exothermic reaction at relatively high temperatures is also possible with selected catalysts containing vanadium (U.S. Pat.
3,218,368, 3,541,179 and 3,856,881) and selected catalysts containing vanadium and molybdenum (US Pat. No. 3,320,331). Also, catalyst systems containing molybdenum and vanadium are used for the gas phase oxidation of α,β-unsaturated aliphatic aldehydes, such as acrolein, to the corresponding α,β-unsaturated carboxylic acids, such as acrylic acid. It is also known that These catalyst systems contain the elements Mo, V and It contains. However, using these catalysts known prior to the proposal of the catalyst of the present invention, it was not possible to dehydrogenate, for example, ethane to ethylene at relatively low temperatures with favorable conversion (%), selectivity (%), and productivity. was impossible. Here, conversion rate, selectivity and productivity are defined as follows. Conversion rate (%) = A/Number of moles of ethane in the reaction mixture fed to the catalyst bed x 100 where A is the sum of mole-ethane-equivalents of all carbon-containing products, excluding ethane in the effluent. (carbon standard). Selectivity (or efficiency)% for ethylene (or acetic acid) = Number of moles of ethylene (or acetic acid) produced/A x 100 Productivity (production ability) of ethylene (or acetic acid)
= pounds of ethylene ( or acetic acid ) produced per cubic foot of catalyst ( in the catalyst bed) per hour of reaction time . This is a firing composition. The Si used to form the catalyst compositions shown above is other than Si, which can be present in any carrier (support) that can be used to support the catalyst, as described below. Elements Mo, Ti, Mn, in the new catalyst of the present invention,
Bi and Si are physically present in the catalyst composition combined with oxygen and are themselves believed to be various oxides, and also chemically form oxides such as spinel and perovskite. It can also be a combination. The catalyst of the invention preferably contains the elements Mo, Ti, Mn,
Bi and Si are each produced from solutions of soluble compounds (salts, complexes, or other compounds), but Si can also be produced from colloidal sols. These solutions contain 1-7 and preferably 2-7
Preferably it is an aqueous system with a pH of 6. Solutions of the various compounds containing the elements are prepared by dissolving sufficient soluble compounds of the elements to provide the desired gram atomic proportions of each element.
These compounds of the various elements selected must be mutually soluble to the extent possible. The Si compound is usually added in the form of a colloidal silica sol. Si
If any of the selected compounds of such elements are not mutually soluble with other compounds,
They can be added last to the solution system. A catalyst composition is then prepared by removing water or other solvent from the mixture of compounds in the solution system by evaporation. When the catalyst is deposited and supported on a carrier, the desired elemental compound is usually deposited on a fine porous carrier having the following physical properties (but not limited to these): The surface area is approximately 0.1-500m 3 /g, and the apparent porosity is
30-60%, at least 90% of the pores have a pore size of 20-1500 microns, and the particle or pellet form has a diameter of about 1/8-1/16 inch. This deposition immerses the support in the final mixture of all compounds, evaporates most of the solvent, and then leaves the system at approximately
This is achieved by drying at 80-220°C for 2-60 hours. The thus dried catalyst is then calcined by heating in air or oxygen at about 220-550°C for 1/2-24 hours to give the desired
A Mo 1 Bi 0. 08 Ti 0. 08 Mn 0. 16 Si 0. 16 composition is produced. Supports that can be used are silica, aluminum oxide, silicon carbide, zirconia, titania and mixtures thereof. In this case the supported catalyst is usually about 10-50% by weight.
of the catalyst composition, the remainder being the carrier. The molybdenum is preferably in solution in the form of an ammonium salt of molybdenum, such as ammonium para-molybdate, or in the form of an organic acid salt of molybdenum, such as acetate, oxalate, mandelate and glycolate. Introduce. Other water-soluble molybdenum compounds that can also be used are partially water-soluble molybdenum oxide, molybdic acid and molybdenum chloride. Titanium is preferably introduced into the solution in the form of a water-soluble chelate coordinated with ammonium lactate. Other water-soluble titanium compounds that can be used are betadiketone hydrochloride, titanium coordinated, bonded or complexed to carboxylic acids, amines, alcohols or alkanolamines. Manganese and bismuth are preferably introduced into the solution in the form of nitrates. Other water-soluble compounds of these elements that can be used are water-soluble chlorides and organic acid salts such as acetates, oxalates, tartrates, lactates, salicylates, formates and carbonates of such elements. be. Silicon is preferably introduced into the catalyst system in the form of an aqueous colloidal silica (SiO 2 ) sol. For the catalyst to be most effective, Mo, Ti,
It is believed that the Mn, Bi and Si metal components are somewhat reduced below their highest possible oxidation state. This is accomplished during heat treatment of the catalyst in the presence of an organic reducing agent, such as NH 3 or an organic complexing agent, which is introduced into the solution system that makes up the catalyst. Reduction of these catalysts can also occur in a reaction vessel in which the oxidation reaction is carried out by passing hydrogen or a hydrocarbon such as ethane, ethylene or propylene through the catalyst bed. Supported or unsupported catalysts can be used in fixed or fluidized beds. The catalyst of the present invention selectively oxydehydrogenates ethane without the addition of diluents other than water to produce ethylene and acetic acid as the final products with the following % conversion, % efficiency and productivity. It can be caused by In this case, in a normal reaction process without addition of water, 1 mol of water is produced for every mol of oxydehydrogenated ethane. The water thus produced during this reaction is approximately
0.05-0.25 mol of acetic acid is produced. However, the addition of water results in the production of an additional amount of acetic acid, approximately 0.25 to 0.95 moles per mole of ethylene produced.

【表】【table】

【表】 最終生成物 転化率% 効率% 生産性
[Table] Final product Conversion rate % Efficiency % Productivity

Claims (1)

【特許請求の範囲】 1 式:Mo1Bi0.08Ti0.08Mn0.16Si0.16 で表わされる焼成組成物から成る、エタンのエチ
レンへの脱水素化用のモリブデン含有触媒組成
物。
[Claims] 1. A molybdenum-containing catalyst composition for the dehydrogenation of ethane to ethylene, comprising a calcined composition of the formula: Mo 1 Bi 0 . 08 Ti 0 . 08 Mn 0 . 16 Si 0 . 16 thing.
JP59104916A 1975-10-01 1984-05-25 Molybdenum-containing catalyst composition Granted JPS6034736A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61883675A 1975-10-01 1975-10-01
US618836 1975-10-01

Publications (2)

Publication Number Publication Date
JPS6034736A JPS6034736A (en) 1985-02-22
JPS6127097B2 true JPS6127097B2 (en) 1986-06-24

Family

ID=24479327

Family Applications (4)

Application Number Title Priority Date Filing Date
JP51116705A Granted JPS5242806A (en) 1975-10-01 1976-09-30 Process for preparing ethylfne by low temperature oxy dehydrogenation of ethane
JP57058999A Expired JPS6059012B2 (en) 1975-10-01 1982-04-10 Molybdenum-containing catalyst
JP59104916A Granted JPS6034736A (en) 1975-10-01 1984-05-25 Molybdenum-containing catalyst composition
JP59104915A Granted JPS6034734A (en) 1975-10-01 1984-05-25 Molybdenum-containing catalyst

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP51116705A Granted JPS5242806A (en) 1975-10-01 1976-09-30 Process for preparing ethylfne by low temperature oxy dehydrogenation of ethane
JP57058999A Expired JPS6059012B2 (en) 1975-10-01 1982-04-10 Molybdenum-containing catalyst

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP59104915A Granted JPS6034734A (en) 1975-10-01 1984-05-25 Molybdenum-containing catalyst

Country Status (9)

Country Link
JP (4) JPS5242806A (en)
BE (1) BE846778A (en)
CA (1) CA1096891A (en)
DE (1) DE2644107C2 (en)
FR (1) FR2326393A1 (en)
GB (4) GB1538107A (en)
IT (2) IT1070811B (en)
NL (1) NL188404C (en)
SE (1) SE425481B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849637A1 (en) * 1978-11-16 1980-05-29 Hoechst Ag CARRIER CATALYST AND METHOD FOR THE PRODUCTION THEREOF
JPS56109282A (en) * 1980-02-01 1981-08-29 Chugai Ro Kogyo Kaisha Ltd Thermal decomposition apparatus for wastes such as waste vinyl chloride
FR2511671A1 (en) * 1981-08-18 1983-02-25 Davy Mckee Ag DEHYDROGENATION PROCESS
DE3208571A1 (en) * 1982-03-10 1983-09-22 Basf Ag, 6700 Ludwigshafen OXIDATION CATALYST, ESPECIALLY FOR THE PRODUCTION OF METHACRYLIC ACID BY GAS PHASE OXIDATION OF METHACROLEIN
JPS5995144U (en) * 1983-11-24 1984-06-28 中外炉工業株式会社 Combustion device for waste pyrolysis furnace
US4524236A (en) * 1984-06-28 1985-06-18 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
US4596787A (en) * 1985-04-11 1986-06-24 Union Carbide Corporation Process for preparing a supported catalyst for the oxydehydrogenation of ethane to ethylene
JPS62202925A (en) * 1986-03-03 1987-09-07 Kawasaki Heavy Ind Ltd Fluidized bed furnace
US5162578A (en) * 1987-06-12 1992-11-10 Union Carbide Chemicals & Plastics Technology Corporation Acetic acid from ethane, ethylene and oxygen
US5260250A (en) * 1989-07-05 1993-11-09 Bp Chemicals Limited Catalyst for the production of ethylene and acetic acid
US5210293A (en) * 1989-07-05 1993-05-11 Bp Chemicals Limited Process and catalyst for the production of ethylene and acetic acid
AU4898699A (en) 1999-07-16 2001-02-05 Reatech Phosphor addition in gasification
JP2001330774A (en) 2000-03-14 2001-11-30 Nikon Corp Zoom lens
US7402719B2 (en) * 2002-06-13 2008-07-22 Velocys Catalytic oxidative dehydrogenation, and microchannel reactors for catalytic oxidative dehydrogenation
DE102006018885A1 (en) * 2006-04-18 2007-10-25 Leibnitz-Institut für Katalyse e.V. an der Universität Rostock Process for the preparation of olefins, aldehydes and carboxylic acids by oxidation of alkanes
DE102008017311A1 (en) * 2008-04-04 2009-10-08 Süd-Chemie AG Process for producing a nanocrystalline molybdenum mixed oxide catalyst
DE102008017308B4 (en) * 2008-04-04 2014-09-25 Süd-Chemie Ip Gmbh & Co. Kg Process for the preparation of nanocrystalline bismuth-molybdenum mixed oxide catalysts
EP3339275A1 (en) * 2016-12-22 2018-06-27 Linde Aktiengesellschaft Method and installation for the production of ethylene and acetic acid
EP4025341A2 (en) * 2019-09-04 2022-07-13 Nova Chemicals (International) S.A. Molybdenum-vanadium-iron- and/or molybdenum-vanadium-aluminium-based oxidative dehydrogenation catalyst materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119883A (en) * 1960-08-08 1964-01-28 Du Pont Dehydrogenation of ethane
BE622441A (en) * 1961-09-14
US3320331A (en) * 1966-01-27 1967-05-16 Exxon Research Engineering Co Oxidative dehydrogenation of aliphatic hydrocarbons over aluminum phosphate supported molybdenum and vanadium
FR1590081A (en) * 1968-01-10 1970-04-13
DE1800063B2 (en) * 1968-10-01 1976-11-11 Nautschno-Issledowatelskij Institut Monomerow Dlja Sintetitscheskowo Kautschuka, Jaroslawl (Sowjetunion) METHOD OF MANUFACTURING MONOPOLFINS AND DIOLEFINS
BE787078A (en) * 1971-08-02 1973-02-02 Tsailingold Anatoly L PROCESS FOR OBTAINING ALCENES AND ALCADIENES
US3933933A (en) * 1972-04-19 1976-01-20 Phillips Petroleum Company Oxidative dehydrogenation processes
JPS5331121B2 (en) * 1972-08-16 1978-08-31

Also Published As

Publication number Publication date
IT1070811B (en) 1985-04-02
IT1206587B (en) 1989-04-27
FR2326393B1 (en) 1980-07-04
FR2326393A1 (en) 1977-04-29
GB1563646A (en) 1980-03-26
BE846778A (en) 1977-03-30
JPS6034736A (en) 1985-02-22
IT7820249A0 (en) 1978-02-13
DE2644107C2 (en) 1985-11-14
GB1538107A (en) 1979-01-10
JPS5814947A (en) 1983-01-28
JPS6127096B2 (en) 1986-06-24
DE2644107A1 (en) 1977-04-07
SE7610886L (en) 1977-04-02
NL188404B (en) 1992-01-16
SE425481B (en) 1982-10-04
JPS6034734A (en) 1985-02-22
JPS6059012B2 (en) 1985-12-23
CA1096891A (en) 1981-03-03
JPS5242806A (en) 1977-04-04
GB1563644A (en) 1980-03-26
JPS6361291B2 (en) 1988-11-28
GB1563645A (en) 1980-03-26
NL188404C (en) 1992-06-16
NL7610835A (en) 1977-04-05

Similar Documents

Publication Publication Date Title
JPS6127097B2 (en)
TWI283663B (en) Methods for producing unsaturated carboxylic acids and unsaturated nitriles
JP4758990B2 (en) Selective conversion of alkanes to unsaturated carboxylic acids.
TWI262101B (en) Promoted multi-metal oxide catalyst
US7345199B2 (en) Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
JP4317211B2 (en) Catalyst for gas phase partial oxidation reaction and method for producing the same
JP6068617B2 (en) Ethylene and acetic acid production process
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP2009142815A (en) Catalyst composition for ammoxidation of alkane and olefin and methods of making and using same
JP2011212683A (en) Oxidation catalyst and its preparation
JPH1017523A (en) Production of acetic acid
JP2010527948A (en) Oxidative dehydrogenation using boria-alumina catalyst
JP4081824B2 (en) Acrylic acid production method
JP2000070714A (en) Production of catalyst for production of unsaturated nitrile
JP3961834B2 (en) Catalyst for the oxidation of lower olefins to unsaturated aldehydes, process for their production and use
JPH09124580A (en) Production of aromatic or heteroaromatic nitrile, supported catalyst therefor, and production of the catalyst
JPS60149543A (en) Oxidation of unsaturated aldehyde
JPS588894B2 (en) Oxidation catalyst produced by NH↓3 and oxidation method
JP4809532B2 (en) Catalyst for catalytic oxidation of propane to acrylic acid, its production and use
JP2006527083A (en) Catalyst composition and process for selective oxidation of ethane and / or ethylene to acetic acid
JP2004534650A (en) Catalysts for selective oxidation and ammoxidation of alkanes and / or alkenes, especially in the process of obtaining acrylic acid, acrylonitrile and their derivatives
JPS58131933A (en) Manufacture of anthraquinone
JP3502526B2 (en) Vanadium-phosphorus oxide, method for producing the same, catalyst for gas phase oxidation comprising the oxide, and method for partial gas phase oxidation of hydrocarbons
JPH10175885A (en) Production of ethylene
JP3094180B2 (en) Process for producing isobutylene by oxidative dehydrogenation of isobutane