JP3094180B2 - Process for producing isobutylene by oxidative dehydrogenation of isobutane - Google Patents

Process for producing isobutylene by oxidative dehydrogenation of isobutane

Info

Publication number
JP3094180B2
JP3094180B2 JP04053553A JP5355392A JP3094180B2 JP 3094180 B2 JP3094180 B2 JP 3094180B2 JP 04053553 A JP04053553 A JP 04053553A JP 5355392 A JP5355392 A JP 5355392A JP 3094180 B2 JP3094180 B2 JP 3094180B2
Authority
JP
Japan
Prior art keywords
isobutane
catalyst
oxygen
selectivity
isobutylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04053553A
Other languages
Japanese (ja)
Other versions
JPH05255134A (en
Inventor
祐作 滝田
利明 宇井
顕仙 奥迫
直輝 三浦
功一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP04053553A priority Critical patent/JP3094180B2/en
Priority to DE1993620386 priority patent/DE69320386T2/en
Priority to EP19930102015 priority patent/EP0557790B1/en
Priority to CA 2090266 priority patent/CA2090266A1/en
Publication of JPH05255134A publication Critical patent/JPH05255134A/en
Application granted granted Critical
Publication of JP3094180B2 publication Critical patent/JP3094180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はイソブタンを酸化脱水素
してイソブチレンを製造する方法に関する。詳しくは、
特定の触媒の存在下にイソブタンを分子状酸素により気
相接触酸化脱水素してイソブチレンを製造する方法に関
する。
The present invention relates to a method for producing isobutylene by oxidatively dehydrogenating isobutane. For more information,
The present invention relates to a method for producing isobutylene by subjecting isobutane to gas phase catalytic oxidative dehydrogenation with molecular oxygen in the presence of a specific catalyst.

【0002】[0002]

【従来の技術】工業的に有用な不飽和炭化水素を対応す
る飽和炭化水素から製造する方法として酸化脱水素があ
る。炭素数が3及び4の飽和炭化水素を酸化脱水素する
ことにより不飽和炭化水素を製造する試みとしては、以
下に示す例等が知られている。
2. Description of the Related Art Oxidative dehydrogenation is a method for producing an industrially useful unsaturated hydrocarbon from a corresponding saturated hydrocarbon. The following examples are known as attempts to produce unsaturated hydrocarbons by oxidatively dehydrogenating saturated hydrocarbons having 3 and 4 carbon atoms.

【0003】ケムテック(Chemtech.(197
3)March 第186−189頁)には、塩化カリ
ウム、塩化リチウム、塩化マンガンを酸化アルミニウム
に担持した触媒の存在下、プロパン、n−ブタン、イソ
ブタンの酸化脱水素反応を行った例が報告されている。
[0003] Chemtech. (197)
3) March pp. 186-189) report an example in which propane, n-butane, and isobutane were subjected to an oxidative dehydrogenation reaction in the presence of a catalyst in which potassium chloride, lithium chloride, and manganese chloride were supported on aluminum oxide. ing.

【0004】ヨーロッパ特許189,282号は、スズ
とリンの酸化物からなる触媒の存在下、エタン、プロパ
ン、イソブタンの酸化脱水素に関するものであるが、該
明細書の実施例にはエタンからエチレンを製造する反応
例しか報告されていない。
[0004] EP 189,282 relates to the oxidative dehydrogenation of ethane, propane and isobutane in the presence of a catalyst comprising an oxide of tin and phosphorus, but the examples in the specification refer to ethane to ethylene. Only a reaction example for producing is reported.

【0005】米国特許4,751,342号にはニッケ
ル、スズ、リンの酸化物からなる触媒の存在下、プロパ
ン、n−ブタンの酸化脱水素反応でそれぞれ対応する不
飽和炭化水素を製造する例が報告されている。
US Pat. No. 4,751,342 discloses an example of producing corresponding unsaturated hydrocarbons by oxidative dehydrogenation of propane and n-butane in the presence of a catalyst comprising oxides of nickel, tin and phosphorus. Have been reported.

【0006】ドイツ特許2124438号にはアルミナ
担持金属酸化物触媒、ヨウ化水素存在下に、イソブタン
を酸化脱水素してイソブタン転化率28%、選択率85
%でイソブチレンを得たとされている。しかし、ヨウ化
水素を共存させなければならないという短所を有する。
German Patent No. 2,124,438 discloses that isobutane is oxidized and dehydrogenated in the presence of a metal oxide catalyst supported on alumina, hydrogen iodide, to give a conversion of isobutane of 28% and a selectivity of 85.
It is said that isobutylene was obtained in%. However, it has a disadvantage that hydrogen iodide must coexist.

【0007】特開平3−218327号ではスズ、また
はインジウムとリンの酸化物を主成分とする触媒を用い
てプロパン、イソブタンの酸化脱水素反応を行ってい
る。しかしながら、フィードガス中にアンモニアを共存
させなければ、プロピレン、イソブチレンの選択率は低
いという短所を有する。イソブタンと酸素のみを用いた
反応で、転化率14%、イソブチレン選択率32%を得
ている。
In Japanese Patent Application Laid-Open No. 3-218327, oxidative dehydrogenation of propane and isobutane is carried out using a catalyst containing tin or an oxide of indium and phosphorus as a main component. However, if ammonia does not coexist in the feed gas, there is a disadvantage that the selectivity of propylene and isobutylene is low. A reaction using only isobutane and oxygen gave a conversion of 14% and an isobutylene selectivity of 32%.

【0008】以上のように、プロパン、n−ブタン、イ
ソブタンの酸化脱水素反応において、高選択率を得る触
媒系は報告されていない。特に、ハロゲンやアンモニウ
ムを用いないイソブタンの酸化脱水素反応の場合、イソ
ブタン選択率が50%を越える例は報告されていない。
[0008] As described above, there has been no report on a catalyst system capable of obtaining a high selectivity in the oxidative dehydrogenation of propane, n-butane, and isobutane. In particular, in the case of oxidative dehydrogenation of isobutane without using halogen or ammonium, no example has been reported in which the selectivity of isobutane exceeds 50%.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は特定の
組成を有する触媒の存在下にイソブタンの酸化脱水素を
行い、高選択率でイソブチレンを得る方法を提供するこ
とにある。
An object of the present invention is to provide a method for obtaining isobutylene with high selectivity by oxidative dehydrogenation of isobutane in the presence of a catalyst having a specific composition.

【0010】[0010]

【課題を解決するための手段】本発明者らはかかる課題
を解決するため触媒について鋭意検討を重ねた結果、リ
ンの酸化物および特定金属の酸化物からなる触媒が高選
択性を示すことを見出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on catalysts to solve the above-mentioned problems, and as a result, have found that a catalyst comprising an oxide of phosphorus and an oxide of a specific metal exhibits high selectivity. Heading, the present invention has been completed.

【0011】すなわち本発明は、気相にてイソブタンを
分子状酸素により酸化脱水素してイソブチレンを製造す
る方法において、リンの酸化物とリチウム、スカンジウ
ム、チタン、ガリウム、ストロンチウム、イットリウ
ム、ジルコニウム、アンチモン、セシウム、ランタン、
セリウム、サマリウム、ユーロピウム、イッテルビウ
ム、ハフニウム、鉛およびビスマスからなる群より選ば
れた少なくとも1種の元素の酸化物とからなる触媒を用
いることを特徴とするイソブチレンの製造方法である。
That is, the present invention relates to a method for producing isobutylene by oxidatively dehydrogenating isobutane with molecular oxygen in the gas phase, comprising the steps of: preparing an oxide of phosphorus and lithium, scandium, titanium, gallium, strontium, yttrium, zirconium, antimony. , Cesium, lantern,
A process for producing isobutylene, characterized by using a catalyst comprising an oxide of at least one element selected from the group consisting of cerium, samarium, europium, ytterbium, hafnium, lead and bismuth.

【0012】本発明に用いられる触媒は、リン酸または
リン酸塩と金属化合物(金属塩化物、金属硝酸塩、金属
硫酸塩、有機金属化合物、金属酸化物、金属酸化物のア
ンモニウム塩、金属酸化物のシュウ酸塩)等を用いて調
製することができる。
The catalyst used in the present invention comprises phosphoric acid or phosphate and a metal compound (metal chloride, metal nitrate, metal sulfate, organometallic compound, metal oxide, ammonium salt of metal oxide, metal oxide). Oxalate) can be prepared.

【0013】さらに本発明に用いられる触媒は少なくと
も2成分以上の成分で構成されており、その形態はいわ
ゆる複合酸化物として化合物になっていてもよいが、少
なくとも1成分が他の成分の酸化物に担持された形態に
なっていてもよい。また、当該技術分野で通常行なはれ
ている方法であるが、この触媒はシリカ、アルミナ、炭
化珪素、窒化珪素などの担体に担持した状態で使用して
もよい。
Further, the catalyst used in the present invention is composed of at least two or more components, and may be in the form of a compound as a so-called composite oxide, but at least one component is an oxide of another component. It may be in the form of being carried on. Although this is a method commonly used in the art, this catalyst may be used while being supported on a carrier such as silica, alumina, silicon carbide, or silicon nitride.

【0014】本発明の製造方法で用いられる反応原料ガ
スは、主にイソブタンと酸素であるが、不活性ガスなど
で希釈することができる。このようなガスとしては窒
素,ヘリウム,アルゴン,炭酸ガス,水蒸気,さらにメ
タン、エタン、プロパン、ブタンなどの軽アルカンも使
用できる。
The raw material gases used in the production method of the present invention are mainly isobutane and oxygen, but can be diluted with an inert gas or the like. Examples of such a gas include nitrogen, helium, argon, carbon dioxide, water vapor, and light alkanes such as methane, ethane, propane, and butane.

【0015】本発明の製造方法で用いられる酸素の供給
源には特に制限はないが、通常、純酸素、酸素富化空
気、空気などがもちいられる。反応原料ガス中のイソブ
タン対酸素のモル比に制限はないが、酸素モル比が少な
すぎると反応が酸素供給律速となり、反応速度が遅く単
位触媒あたりの生産性が悪くなる。逆に酸素モル比が大
きくなるとイソブチレン以外の酸化副生物が多くなり選
択率が低下してくる。さらに、燃焼範囲に入り安全上問
題になる場合もある。そこで、反応原料ガス中のイソブ
タン対酸素のモル比が1:0.05〜1であることが好
ましい。
The source of oxygen used in the production method of the present invention is not particularly limited, but usually, pure oxygen, oxygen-enriched air, air or the like is used. There is no limitation on the molar ratio of isobutane to oxygen in the reaction raw material gas. However, if the molar ratio of oxygen is too small, the reaction is rate-controlled by the supply of oxygen, and the reaction rate is low, resulting in poor productivity per unit catalyst. Conversely, as the oxygen molar ratio increases, the amount of by-products other than isobutylene increases and the selectivity decreases. Further, there is a case where the fuel enters the combustion range and poses a safety problem. Therefore, it is preferable that the molar ratio of isobutane to oxygen in the reaction raw material gas be 1: 0.05 to 1.

【0016】本発明の製造方法で用いられる反応原料ガ
ス中のイソブタン濃度も制限はないが、イソブタン濃度
が低すぎると反応速度が遅く、単位触媒あたりの生産性
が悪くなる。反応原料ガス中のイソブタン濃度は10〜
95vol%であることが好ましい。
Although the isobutane concentration in the reaction raw material gas used in the production method of the present invention is not limited, if the isobutane concentration is too low, the reaction rate is slow, and the productivity per unit catalyst is deteriorated. The isobutane concentration in the reaction raw material gas is 10
It is preferably 95 vol%.

【0017】反応温度はイソブタン濃度、反応原料ガス
中のモル比、接触時間により異なるが、通常200℃〜
700℃、好ましくは250℃〜600℃の範囲であ
る。反応圧力は通常、1〜50bar、好ましくは1〜
3barの範囲である。
The reaction temperature varies depending on the isobutane concentration, the molar ratio in the raw material gas, and the contact time.
700 ° C, preferably in the range of 250 ° C to 600 ° C. The reaction pressure is generally between 1 and 50 bar, preferably between 1 and 50 bar.
In the range of 3 bar.

【0018】本発明は、固定床、移動床、流動床などい
ずれでも実施できる。流動床で反応させる場合は、酸素
を含まない原料ガスを用いて触媒中の酸素のみでイソブ
タンの酸化脱水素を行い、さらに触媒は別の反応器にて
酸素含有ガスで再酸化する様な反応形態をとることもで
きる。
The present invention can be practiced in any of fixed beds, moving beds, fluidized beds and the like. When the reaction is carried out in a fluidized bed, the reaction is carried out by oxidatively dehydrogenating isobutane using only oxygen in the catalyst using a raw material gas that does not contain oxygen, and then reoxidizing the catalyst with an oxygen-containing gas in a separate reactor. It can also take the form.

【0019】本反応による生成物は主としてイソブチレ
ンであるが、その他に若干のプロピレンとメタンも生成
する。酸化炭素までの完全酸化は少なく、メタクロレイ
ン等の含酸素化合物も一部生成する。
The product of this reaction is mainly isobutylene, but also produces some propylene and methane. There is little complete oxidation to carbon oxide, and some oxygen-containing compounds such as methacrolein are also formed.

【0020】[0020]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明がこれらに限定されるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0021】実施例1 硝酸セリウム6水和物(和光純薬工業製)8.65gを
イオン交換水300mlに加えて溶解させた後、ピロリ
ン酸(和光純薬工業製)2.65gをイオン交換水50
mlに溶解させた液を撹拌混合した。この混合液に25
%アンモニア水をpHが7になるまで加えて沈澱を生成
させた。この沈澱を濾過した後、イオン交換水500m
lで水洗し、120℃で乾燥させ、さらに窒素気流中、
500℃で4時間焼成し、10〜24メッシュに成形し
たものを触媒とした。
Example 1 8.65 g of cerium nitrate hexahydrate (manufactured by Wako Pure Chemical Industries) was added to and dissolved in 300 ml of ion-exchanged water, and 2.65 g of pyrophosphoric acid (manufactured by Wako Pure Chemical Industries) was ion-exchanged. Water 50
The solution dissolved in ml was stirred and mixed. 25
% Ammonia water was added until a pH of 7 formed a precipitate. After filtering this precipitate, 500 m of ion-exchanged water was used.
and dried at 120 ° C. and further in a nitrogen stream.
A catalyst fired at 500 ° C. for 4 hours and formed into a 10 to 24 mesh was used as a catalyst.

【0022】この触媒3.0gを炭化珪素23.0gで
希釈したものを内径15mmのガラス製反応管に充填
し、温度を500℃に保ち イソブタン/酸素/窒素の
モル比が75/5/20の混合ガスを60ml/min
で供給した。反応生成ガスを分析したところ、イソブタ
ンの転化率が6.4%、酸素の転化率が100%、イソ
ブチレンの選択率が75.9%、プロピレンの選択率が
8.3%、メタクロレインの選択率が0.5%であっ
た。
A catalyst prepared by diluting 3.0 g of this catalyst with 23.0 g of silicon carbide was filled into a glass reaction tube having an inner diameter of 15 mm, and the temperature was kept at 500 ° C., and the molar ratio of isobutane / oxygen / nitrogen was 75/5/20. 60ml / min
Supplied with When the reaction product gas was analyzed, the conversion of isobutane was 6.4%, the conversion of oxygen was 100%, the selectivity of isobutylene was 75.9%, the selectivity of propylene was 8.3%, and the selectivity of methacrolein was selected. The rate was 0.5%.

【0023】実施例2 反応温度を500℃から450℃に変更した以外は実施
例1と同様に操作したところ、イソブタンの転化率が
4.5%、酸素の転化率が100%、イソブチレンの選
択率が75.4%、プロピレンの選択率が5.7%、メ
タクロレインの選択率が1.1%であった。
Example 2 The same operation as in Example 1 was carried out except that the reaction temperature was changed from 500 ° C. to 450 ° C., the conversion of isobutane was 4.5%, the conversion of oxygen was 100%, and the selection of isobutylene was carried out. The selectivity was 75.4%, the selectivity for propylene was 5.7%, and the selectivity for methacrolein was 1.1%.

【0024】実施例3〜7 実施例1に示す触媒調製法において、硝酸セリウム6水
和物に代えて表1に示す元素の硝酸塩または硝酸塩の水
和物を、金属:リンの原子比が金属が2価の場合は1:
1、3価の場合は2:3になるような量を用いて、実施
例1と同様の方法にて触媒を調製し、実施例1と同様の
操作を実施したところ、表1の結果を得た。
Examples 3 to 7 In the catalyst preparation method shown in Example 1, a cerium nitrate hexahydrate was replaced by a nitrate or a hydrate of a nitrate of an element shown in Table 1, and the atomic ratio of metal: phosphorus was changed to metal. If is bivalent 1:
A catalyst was prepared in the same manner as in Example 1 by using an amount such that the ratio becomes 1: 3 in the case of monovalent or trivalent, and the same operation as in Example 1 was performed. Obtained.

【0025】[0025]

【表1】 [Table 1]

【0026】実施例8 酢酸ランタン1.5水和物(半井テスク製)21.3g
を、50℃に加熱したイオン交換水150mlに加え溶
解させた。これにイオン交換水50mlに溶解させたピ
ロリン酸8.5gを加えて白色沈澱を生成させた後、ロ
ータリーエバポレーターにて蒸発乾固させたものを窒素
気流中、500℃で4時間焼成し、10〜24メッシュ
に成形したものを触媒とした。この触媒を用い実施例1
と同様の操作をしたところ、イソブタンの転化率が4.
4%、酸素の転化率が93%、イソブチレンの選択率が
59.2%、プロピレンの選択率が19.0%、メタク
ロレインの選択率が2.3%であった。
Example 8 21.3 g of lanthanum acetate 1.5 hydrate (manufactured by Hanui Tesque)
Was added to and dissolved in 150 ml of ion-exchanged water heated to 50 ° C. 8.5 g of pyrophosphoric acid dissolved in 50 ml of ion-exchanged water was added thereto to form a white precipitate, which was then evaporated to dryness by a rotary evaporator and calcined at 500 ° C. for 4 hours in a nitrogen stream to obtain a precipitate. What was formed into 2424 mesh was used as a catalyst. Example 1 using this catalyst
When the same operation as described above was performed, the conversion of isobutane was 4.
The conversion of oxygen was 93%, the selectivity of isobutylene was 59.2%, the selectivity of propylene was 19.0%, and the selectivity of methacrolein was 2.3%.

【0027】実施例9〜12 実施例8に示す触媒調製法において、酢酸ランタン1.
5水和物に代えて表2に示す元素の酢酸塩または酢酸塩
の水和物を、金属:リンの原子比が金属が1価の場合は
2:1、2価の場合は1:1、3価の場合は2:3にな
るような量を用いて、実施例8と同様の方法にて触媒を
調製し、実施例1と同様の操作を実施したところ、表2
の結果を得た。
Examples 9 to 12 In the catalyst preparation method shown in Example 8, lanthanum acetate was used.
Instead of pentahydrate, acetate or hydrate of acetate of an element shown in Table 2 is used. When the metal: phosphorus atomic ratio is 2: 1 when the metal is monovalent, it is 1: 1 when the metal is phosphorus. A catalyst was prepared in the same manner as in Example 8 using an amount of 3: 3 in the case of trivalent, and the same operation as in Example 1 was carried out.
Was obtained.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例14 イオン交換水300mlに、四塩化チタン38.0g
(和光純薬工業製)を徐々に加えて溶解させた。その溶
液にイオン交換水100mlに溶解させたピロリン酸
(和光純薬工業製)38.3gを加えて沈澱を析出させ
た。25%アンモニア水で中和後この沈澱を濾過し、イ
オン交換水1000mlで水洗した後、120℃で乾燥
させ、さらに窒素気流中、500℃で4時間焼成し、1
0〜24メッシュに成形したものを触媒とした。この触
媒を用い実施例1と同様の操作をしたところ、イソブタ
ンの転化率が2.9%、酸素の転化率が100%、イソ
ブチレンの選択率が59.2%、プロピレンの選択率が
6.8%、メタクロレインの選択率が0.1%であっ
た。
Example 14 38.0 g of titanium tetrachloride was added to 300 ml of ion-exchanged water.
(Manufactured by Wako Pure Chemical Industries) was gradually added and dissolved. 38.3 g of pyrophosphoric acid (manufactured by Wako Pure Chemical Industries) dissolved in 100 ml of ion-exchanged water was added to the solution to precipitate a precipitate. After neutralization with 25% aqueous ammonia, the precipitate was filtered, washed with 1000 ml of ion-exchanged water, dried at 120 ° C., and calcined at 500 ° C. for 4 hours in a nitrogen stream to obtain a precipitate.
What was molded into 0 to 24 mesh was used as a catalyst. When the same operation as in Example 1 was performed using this catalyst, the conversion of isobutane was 2.9%, the conversion of oxygen was 100%, the selectivity of isobutylene was 59.2%, and the selectivity of propylene was 6. 8% and methacrolein selectivity was 0.1%.

【0030】実施例15〜17 実施例14に示す触媒調製法において、四塩化チタンに
代えて表3に示す元素の塩化物または塩化物の水和物
を、金属:リンの原子比が金属が3価の場合は2:3、
4価の場合は1:2になるような量を用いて、実施例1
4と同様の方法にて触媒を調製し、実施例1と同様の操
作を実施したところ、表3の結果を得た。
Examples 15 to 17 In the catalyst preparation method shown in Example 14, instead of titanium tetrachloride, chlorides or hydrates of the elements shown in Table 3 were used. 2: 3 for trivalent,
Example 1
A catalyst was prepared in the same manner as in Example 4, and the same operation as in Example 1 was performed. The results in Table 3 were obtained.

【0031】[0031]

【表3】 [Table 3]

【0032】実施例18 オキシ塩化ジルコニウム8水和物(和光純薬工業製)1
77.2gをイオン交換水1リットルに溶解させた溶液
に、二リン酸ナトリウム10水和物(和光純薬工業製)
113.8gを50℃にてイオン交換水450mlに溶
解させた溶液を加えると白色沈澱が生成した。その沈澱
を濾過した後、イオン交換水2リットルで水洗し、12
0℃で乾燥させ、さらに窒素気流中、500℃で4時間
焼成し、10〜24メッシュに成形したものを触媒とし
た。この触媒を用い実施例1と同様の操作をしたとこ
ろ、イソブタンの転化率が3.5%、酸素の転化率が9
9%、イソブチレンの選択率が54.8%、プロピレン
の選択率が3.9%、メタクロレインの選択率が0%で
あった。
Example 18 Zirconium oxychloride octahydrate (manufactured by Wako Pure Chemical Industries) 1
Sodium diphosphate decahydrate (manufactured by Wako Pure Chemical Industries) was added to a solution prepared by dissolving 77.2 g in 1 liter of ion-exchanged water.
When a solution prepared by dissolving 113.8 g in 450 ml of ion-exchanged water at 50 ° C. was added, a white precipitate was formed. After the precipitate was filtered, the precipitate was washed with 2 liters of ion-exchanged water.
The catalyst was dried at 0 ° C., baked at 500 ° C. for 4 hours in a nitrogen stream, and shaped into a 10 to 24 mesh. When the same operation as in Example 1 was performed using this catalyst, the conversion of isobutane was 3.5%, and the conversion of oxygen was 9%.
The selectivity for isobutylene was 54.8%, the selectivity for propylene was 3.9%, and the selectivity for methacrolein was 0%.

【0033】実施例19 リン酸リチウム0.5水和物(片山化学工業製)を空気
中500℃で4時間焼成した後、打錠成形し10〜24
メッシュに成形したものを触媒とした。この触媒を用い
実施例1と同様の操作をしたところ、イソブタンの転化
率が2.4%、酸素の転化率が83%、イソブチレンの
選択率が57.2%、プロピレンの選択率が7.1%、
メタクロレインの選択率が2.7%であった。
Example 19 Lithium phosphate pentahydrate (manufactured by Katayama Chemical Co., Ltd.) was calcined in air at 500 ° C. for 4 hours, and then tableted to form a tablet.
What was formed into a mesh was used as a catalyst. When the same operation as in Example 1 was performed using this catalyst, the conversion of isobutane was 2.4%, the conversion of oxygen was 83%, the selectivity of isobutylene was 57.2%, and the selectivity of propylene was 7. 1%,
The selectivity for methacrolein was 2.7%.

フロントページの続き (72)発明者 奥迫 顕仙 愛媛県新居浜市惣開町5番1号 住友化 学工業株式会社内 (72)発明者 三浦 直輝 愛媛県新居浜市惣開町5番1号 住友化 学工業株式会社内 (72)発明者 永井 功一 愛媛県新居浜市惣開町5番1号 住友化 学工業株式会社内 (56)参考文献 特開 平3−218327(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 5/48 B01J 27/16 B01J 27/18 C07C 11/09 C07B 61/00 300 CA(STN) REGISTRY(STN)Continued on the front page (72) Inventor Kensen Okusako 5-1 Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical Industries, Ltd. (72) Inventor Naoki Miura 5-1 Sokai-cho, Niihama-shi, Ehime Sumitomo Chemical (72) Inventor Koichi Nagai 5-1 Sokai-cho, Niihama-shi, Ehime Prefecture Sumitomo Chemical Industries, Ltd. (56) References JP-A-3-218327 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C07C 5/48 B01J 27/16 B01J 27/18 C07C 11/09 C07B 61/00 300 CA (STN) REGISTRY (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気相にてイソブタンを分子状酸素により
酸化脱水素してイソブチレンを製造する方法において、
リンの酸化物とリチウム、スカンジウム、チタン、ガリ
ウム、ストロンチウム、イットリウム、ジルコニウム、
アンチモン、セシウム、ランタン、セリウム、サマリウ
ム、ユーロピウム、イッテルビウム、ハフニウム、鉛お
よびビスマスからなる群より選ばれた少なくとも1種の
元素の酸化物とからなる触媒を用いることを特徴とする
イソブチレンの製造方法。
A method for producing isobutylene by oxidatively dehydrogenating isobutane with molecular oxygen in the gas phase,
Oxides of phosphorus and lithium, scandium, titanium, gallium, strontium, yttrium, zirconium,
A method for producing isobutylene, comprising using a catalyst comprising an oxide of at least one element selected from the group consisting of antimony, cesium, lanthanum, cerium, samarium, europium, ytterbium, hafnium, lead and bismuth.
【請求項2】 酸化脱水素の反応温度が200〜600
℃である請求項1記載のイソブチレン製造方法。
2. The reaction temperature of oxidative dehydrogenation is 200 to 600.
The method for producing isobutylene according to claim 1, wherein the temperature is ° C.
【請求項3】 該混合気体中のイソブタン対酸素のモル
比が1:0.05〜1である請求項1記載の製造方法。
3. The method according to claim 1, wherein the molar ratio of isobutane to oxygen in the mixed gas is 1: 0.05 to 1.
【請求項4】 該混合気体中のイソブタン濃度が10〜
95vol%である請求項1記載のイソブチレン製造方
法。
4. An isobutane concentration in the mixed gas of 10 to 10.
The method for producing isobutylene according to claim 1, wherein the content is 95 vol%.
JP04053553A 1992-02-28 1992-03-12 Process for producing isobutylene by oxidative dehydrogenation of isobutane Expired - Fee Related JP3094180B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04053553A JP3094180B2 (en) 1992-03-12 1992-03-12 Process for producing isobutylene by oxidative dehydrogenation of isobutane
DE1993620386 DE69320386T2 (en) 1992-02-28 1993-02-09 Process for the preparation of isobutylene by oxidative dehydrogenation of isobutane
EP19930102015 EP0557790B1 (en) 1992-02-28 1993-02-09 Process for producing isobutylene by oxidative dehydrogenation of isobutane
CA 2090266 CA2090266A1 (en) 1992-02-28 1993-02-24 Process for producing isobutylene by oxidative dehydrogenation of isobutane and catalyst therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04053553A JP3094180B2 (en) 1992-03-12 1992-03-12 Process for producing isobutylene by oxidative dehydrogenation of isobutane

Publications (2)

Publication Number Publication Date
JPH05255134A JPH05255134A (en) 1993-10-05
JP3094180B2 true JP3094180B2 (en) 2000-10-03

Family

ID=12945993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04053553A Expired - Fee Related JP3094180B2 (en) 1992-02-28 1992-03-12 Process for producing isobutylene by oxidative dehydrogenation of isobutane

Country Status (1)

Country Link
JP (1) JP3094180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306583B2 (en) 2004-01-14 2012-11-06 J.M. Stanneck, Limited Liability Company Variable configuration apparatus
KR101618407B1 (en) 2013-09-16 2016-05-04 주식회사 엘지화학 Oxidative Dehydrogenation Catalyst of Butane, Method for Preparing Them, and Oxidative Dehydrogenation Method of Butane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445241B1 (en) * 2012-11-28 2014-09-29 롯데케미칼 주식회사 Preparation method of iso-butylene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8306583B2 (en) 2004-01-14 2012-11-06 J.M. Stanneck, Limited Liability Company Variable configuration apparatus
KR101618407B1 (en) 2013-09-16 2016-05-04 주식회사 엘지화학 Oxidative Dehydrogenation Catalyst of Butane, Method for Preparing Them, and Oxidative Dehydrogenation Method of Butane

Also Published As

Publication number Publication date
JPH05255134A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
TWI283663B (en) Methods for producing unsaturated carboxylic acids and unsaturated nitriles
KR100284061B1 (en) Method of producing acrylic acid
JP4346822B2 (en) Molybdenum-vanadium catalyst for the low temperature selective oxidation of propylene, its production and use
EP1732681A2 (en) Catalyst composition for the selective conversion of alkanes to unsaturated carboxylic acids, method of making and method of using thereof
JPS6127097B2 (en)
US6037305A (en) Use of Ce/Zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
US4046821A (en) Oxychlorination of hydrocarbons in the presence of non-halide copper containing catalysts
JP3094180B2 (en) Process for producing isobutylene by oxidative dehydrogenation of isobutane
EP0557790B1 (en) Process for producing isobutylene by oxidative dehydrogenation of isobutane
JP3331629B2 (en) Catalyst for the production of nitriles from alkanes
JPH10237011A (en) Production of acrylic acid from acrolein by redox reaction and use of solid oxide mixture composition as oxidation-reduction system for the reaction
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JP2837256B2 (en) Method for producing unsaturated compound
JP3786437B2 (en) Ethylbenzene dehydrogenation catalyst and production method thereof
US4025461A (en) Oxychlorination of hydrocarbons in the presence of non-halide copper containing catalysts
JP3127381B2 (en) Production of isobutylene by oxidative dehydrogenation of isobutane
JPH0710782A (en) Production of isobutylene and methacrolein
JP4454009B2 (en) Method for improving selectivity of ammoxidation reaction and method for producing unsaturated nitrile using the same
JPH09278680A (en) Production of alkene and/or oxygen-containing compound
JP3897400B2 (en) Catalyst composition for alkane ammoxidation and method for producing nitrile compound using the same
JP2697441B2 (en) Phenol production catalyst and phenol production method
US5220049A (en) Method for preparing unsaturated compounds
JP3003821B2 (en) Method for producing methacrylic acid
JP2883455B2 (en) Method for producing unsaturated carboxylic acid
JPS5949215B2 (en) Method for producing methacrylic acid or acrylic acid

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070804

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees