JPS6034736A - Molybdenum-containing catalyst composition - Google Patents

Molybdenum-containing catalyst composition

Info

Publication number
JPS6034736A
JPS6034736A JP59104916A JP10491684A JPS6034736A JP S6034736 A JPS6034736 A JP S6034736A JP 59104916 A JP59104916 A JP 59104916A JP 10491684 A JP10491684 A JP 10491684A JP S6034736 A JPS6034736 A JP S6034736A
Authority
JP
Japan
Prior art keywords
catalyst
ethane
reactor
gas
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59104916A
Other languages
Japanese (ja)
Other versions
JPS6127097B2 (en
Inventor
フランク、グリン、ヤング
アーリン、マグナス、ソーステインソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Corp
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of JPS6034736A publication Critical patent/JPS6034736A/en
Publication of JPS6127097B2 publication Critical patent/JPS6127097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はエタンのエチレンへの脱水素化用のモリブデン
含有焼成組成物から成る新規触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel catalyst comprising a molybdenum-containing calcined composition for the dehydrogenation of ethane to ethylene.

さて例えばエチレンは約600〜1000℃の温度で行
なわれる吸熱反応でエタンを熱分解することによって工
業的に製造されるのが慣例とされてきた(米国特許第3
,541,179号明細書)にのような方法における反
応時間は非常に短かいので、その工程の流れから熱を効
率的に回収することを困難または不可能にしている。加
うるに、使用される高温反応のだめの炉または反応容器
の構築に特殊合金の使用を必要とする。また分解反応に
より水素やメタンのような低沸点副生物を比較的多量生
成するから、このような副生物からのエチレンの回収を
複雑にし、かつ一層費用がかかつている。
Now, for example, it has been customary for ethylene to be produced industrially by thermally decomposing ethane in an endothermic reaction that takes place at a temperature of about 600 to 1000°C (U.S. Pat.
The reaction times in processes such as those described in US Pat. No. 5,541,179) are very short, making it difficult or impossible to efficiently recover heat from the process stream. In addition, the construction of the high temperature reactor furnace or reaction vessel used requires the use of special alloys. The cracking reaction also produces relatively large amounts of low boiling byproducts such as hydrogen and methane, making recovery of ethylene from such byproducts complicated and more expensive.

発熱反応に種々のオキシハロゲン化触媒系を用いてエタ
ンをオキシ脱水素化することは可能である。しかし、こ
れらの反応は少なくとも約500〜600℃の温度での
み達成される(米国特許第3.080,435号明細書
)。加うるにこの場合ハロゲン原子の存在は、生成され
るオレフィンの回収の困難性を増大させる。また反応系
内のハロゲンやハロゲン化水素による腐食に耐えるため
に特殊そして高価な構築材料が必要である。更にまた、
この方法を経済的に行うためにはハロゲンそれ自体を回
収して再循環させねはならない。
It is possible to oxydehydrogenate ethane using a variety of oxyhalogenation catalyst systems in an exothermic reaction. However, these reactions are only accomplished at temperatures of at least about 500-600°C (US Pat. No. 3,080,435). In addition, the presence of halogen atoms in this case increases the difficulty in recovering the olefins produced. Special and expensive construction materials are also required to withstand corrosion from halogens and hydrogen halides within the reaction system. Furthermore,
In order to carry out this process economically, the halogen itself must be recovered and recycled.

比較的高温における発熱反応により成る選択さレタ≧C
,フルカンのオキシ脱水素化もまたハナシラムを含有す
る選定された触媒(米国特許第3,218,368号、
同第3,541,179号および同第3,856.88
1号の各明細書)またバナジウムとモリブデンとを含有
する選定された触媒(米国特許第3.320.331号
明細書)によって達成されている。
Selected letter ≧C resulting from an exothermic reaction at a relatively high temperature
, the oxydehydrogenation of furcane was also carried out using selected catalysts containing Hanacyram (U.S. Pat. No. 3,218,368;
3,541,179 and 3,856.88
No. 1) and selected catalysts containing vanadium and molybdenum (U.S. Pat. No. 3,320,331).

また例えばアクロレインのようなα、β−不飽和脂肪族
アルデヒドからそれに対応するアクリル酸のようなα、
β−不飽和カルボン酸への気相酸化用にモリブデンおよ
びバナジウムを含有する触媒系を使用することも知られ
ている。これらの触媒系はベルギー特許第821,32
2号、同第821,324号および同第821,325
号の各明細書に開示されているように元素Mo 、 V
およびX(但し、XはNb%TiまたはTaである)を
含有するものである。
Also, from α,β-unsaturated aliphatic aldehydes such as acrolein to the corresponding α,β-unsaturated aliphatic aldehydes such as acrylic acid,
It is also known to use catalyst systems containing molybdenum and vanadium for gas phase oxidation to β-unsaturated carboxylic acids. These catalyst systems are covered by Belgian patent no. 821,32
No. 2, No. 821,324 and No. 821,325
Elements Mo, V as disclosed in each specification of No.
and X (where X is Nb%Ti or Ta).

しかしながら本発明触媒の提唱以前に公知のこれら触媒
を用いては、例えばエタンを比較的低い温度にて好まし
い転化率(%)、選択率(%)および生産性にてエチレ
ンに脱水素化することは不可能であった。
However, using these catalysts known prior to the proposal of the catalyst of the present invention, it was not possible to dehydrogenate, for example, ethane to ethylene at relatively low temperatures with favorable conversion (%), selectivity (%), and productivity. was impossible.

ここに転化率、選択率および生理性は次のように定義さ
れる。
Here, the conversion rate, selectivity and physiological properties are defined as follows.

■。■.

但し、Aは、流出液中のエタンを除いた、すべての炭素
含有生成物のモル・エタン−当量合計(炭素基準)であ
る。
where A is the sum of mole ethane-equivalents (on a carbon basis) of all carbon-containing products excluding ethane in the effluent.

■。■.

効率)% A loxf vy (i tsktff)Ji ) (D
’JE、** (ag。
efficiency)% A loxf vy (itsktff)Ji) (D
'JE,** (ag.

=反応時間1時間当り(触媒床中の)触媒の立方フィー
トにつき生成されるエチレン(または酢酸)のボンド数 本発明の新規触媒は、一般式 %式%) (この式でhは1、jは0.05〜1、そしてkは0.
03〜約2である) で表わされる焼成組成物である。
= the number of bonds of ethylene (or acetic acid) produced per cubic foot of catalyst (in the catalyst bed) per hour of reaction time. is 0.05 to 1, and k is 0.
03 to about 2).

上記の数値h1jおよびkは、触媒組成物中に存在する
元素MO1Ti、地、BisおよびSt の相対的ダラ
ムー原子比率を示す。
The above numbers hj and k indicate the relative atomic proportions of the elements MO1Ti, Ti, Bis and St2 present in the catalyst composition.

上に示した触媒組成物の生成に用いるStには下記のご
とく、触媒の担持に使用できる任意の担体(支持体)中
に存在しうるSt以外のものである。
The St used in the production of the catalyst composition shown above is other than St, which can be present in any carrier (support) that can be used to support the catalyst, as described below.

本発明の新規触媒における元素MO1Ti、Mn、Bi
2よびStは形の上では酸素と結合して触媒組成物中に
存在し、それ自体様々の酸化物であると信じられ、かつ
また尖晶石やペロブスキー石のような酸化物が化学的に
結合したものでもありうる。
Elements MO1Ti, Mn, Bi in the new catalyst of the present invention
2 and St are physically present in the catalyst composition in combination with oxygen and are themselves believed to be various oxides, and oxides such as spinel and perovskite are chemically It can also be a combination.

本発明の触媒は好ましくは元素Mo、Ti%凪、Biお
よびSiのおのおのの可溶性化合物(塩、錯塩またはそ
の他の化合物)の溶液から製造されるが、Stの場合は
コロイド状のゾルからもつくり5る。これらの溶液は1
〜7そして好ましくは2〜6のp■ヲ有する水性系であ
ることが好ましい。前記元素含有各種化合物の溶液は各
元素の所望のダラム原子比率を与えるように充分な量の
各元素の可溶性化合物を溶解させることによって調製す
る。
The catalyst of the present invention is preferably prepared from a solution of a soluble compound (salt, complex or other compound) of each of the elements Mo, Ti, Bi and Si, but also from a colloidal sol in the case of St. 5ru. These solutions are 1
Preferably it is an aqueous system having a p of from 7 to 7 and preferably from 2 to 6. Solutions of the various compounds containing the aforementioned elements are prepared by dissolving sufficient amounts of soluble compounds of each element to provide the desired Durham atomic ratio of each element.

選ばれた種々の元素のこれら化合物は可能な程度に相互
に溶解性でなければならない。St化合物は通常コロイ
ド状シリカゾルの形で添加される。3i以外の選ばれた
このような元素の化合物のいづれかが、他の化合物と相
互に溶解しない場合には、それらをその溶液系に最後に
添加することかできる。次いでその溶液系中の化合物の
混合物から水または他の溶剤を蒸発に、よって除去する
ことに工って触媒組成物が製造される。
These compounds of the various elements selected must be mutually soluble to the extent possible. The St compound is usually added in the form of a colloidal silica sol. If any of the selected compounds of such elements other than 3i are not mutually soluble with the other compounds, they can be added last to the solution system. A catalyst composition is then prepared by removing water or other solvent from the mixture of compounds in the solution system by evaporation.

触媒を担体上に沈積担持させて使用する場合には所望の
元素化合物を通常次の物理的性質(但し、これらに限定
されるものではない)を有する微細な多孔性担体上に沈
積させる。
When using a catalyst deposited and supported on a carrier, the desired elemental compound is usually deposited on a fine porous carrier having the following physical properties (but not limited to these):

表面積が約0.1〜500→リ 見かけの多孔度が30
〜60X、孔の少なくとも90Xが20〜1500ミク
ロンの孔径を有する、そして粒子またはベレットの形が
約工〜上インチの径を有する。
Surface area is approximately 0.1-500→ri Apparent porosity is 30
~60X, at least 90X of the pores have a pore size of 20 to 1500 microns, and the particle or pellet shape has a diameter of about 1 to 10 inches.

 16 この沈積は担体をすべての化合物の最終混合物中に浸漬
させ、大部分の溶剤を蒸発させ、次いでその系を約80
〜220℃で2〜60時間乾燥させることにより達成さ
れる。こうして乾燥した触媒は次に空気または酸素中で
約220〜550℃でん〜24時間加熱することによっ
て焼成して所望のMo1−(Ti、 Mn )j−(B
i%Si )k組成物を生成させる。
16 This deposition immerses the support in the final mixture of all compounds, evaporates most of the solvent, and then reduces the system to about 80%
This is achieved by drying at ~220°C for 2-60 hours. The thus dried catalyst is then calcined by heating in air or oxygen at about 220-550°C for 24 hours to give the desired Mo1-(Ti, Mn)j-(B
i%Si)k composition.

使用できる担体ば、7リカ、酸化アルミニウム、炭化ケ
イ素、ジルコニア、チタニアおよびそれらの混合物であ
る。
Supports that can be used are 7 Lika, aluminum oxide, silicon carbide, zirconia, titania and mixtures thereof.

この場合担持された触媒は通常約10〜50重量%の触
媒組成物を含有し、その残りは担体である。
In this case, the supported catalyst usually contains about 10-50% by weight of the catalyst composition, the remainder being support.

モリブデンは好ましく・はパラ−モリブデン酸アンモニ
ウムのようなモリブデンのアンモニウム塩の形で、或は
酢葭塩、シュウ酸塩、マンデル酸塩およびグリコール酸
塩のようなモリブデンの有機酸塩の形で溶液中に導入す
る。また使用できる他の水溶性モリブデン化合物は部分
的に水溶性の酸化モリブデン、モリブデン酸およびモリ
ブデンの塩化物である。
The molybdenum is preferably dissolved in solution in the form of an ammonium salt of molybdenum, such as ammonium para-molybdate, or in the form of an organic acid salt of molybdenum, such as acerate, oxalate, mandelate and glycolate. Introduce it inside. Other water-soluble molybdenum compounds that can also be used are partially water-soluble molybdenum oxide, molybdic acid and molybdenum chloride.

チタンは好ましくは乳酸アンモニウムと配位した水溶性
キレートの形で溶液中に導入する。使用できる他の可溶
性チタン化合物はベータージケトン酸塩、カルボン酸、
アミン、アルコールまたはアルカノールアミンにチタン
が配位、結合または錯化したものである。
Titanium is preferably introduced into the solution in the form of a water-soluble chelate coordinated with ammonium lactate. Other soluble titanium compounds that can be used are beta-diketonates, carboxylic acids,
Titanium is coordinated, bonded, or complexed to an amine, alcohol, or alkanolamine.

マンガン及びビスマスは好ましくは硝酸塩の形で溶液中
に導入する。使用できるこれら元素の他の水溶性化合物
は水溶性・塩化物およびこのような元素の酢酸塩、シュ
ウ酸塩、泊石酸塩、乳酸塩、サリチル酸塩、ギ酸塩およ
び炭酸塩のような有機酸塩である。
Manganese and bismuth are preferably introduced into the solution in the form of nitrates. Other water-soluble compounds of these elements that can be used are water-soluble chlorides and organic acids such as acetates, oxalates, toriterates, lactates, salicylates, formates and carbonates of such elements. It's salt.

ケイ素は好ましくは水性コロイドシリカ(SiOz)ゾ
ルの形で触媒系中に導入する。
Silicon is preferably introduced into the catalyst system in the form of an aqueous colloidal silica (SiOz) sol.

触媒が最も効果的であるためには、Mo、Ti。For the catalyst to be most effective, Mo, Ti.

地、BiおよびSt金属成分はそれらの可能な最高酸化
状態以下に幾分還元されているものであると信ぜられる
。これは触媒をつ(る溶液系中に導入される旧、のよう
な還元剤または有機鉛化剤のような有機還元剤の存在下
で触媒を熱処理する間に達成される。これら触媒の還元
は水素またはエタン、エチレンまたはプロピレンのよう
な炭化水素が触媒床を通過することにより酸化反応が行
なわれる反応器中でも起りうる。
It is believed that the copper, Bi and St metal components are somewhat reduced below their highest possible oxidation state. This is achieved during heat treatment of the catalyst in the presence of an organic reducing agent, such as a reducing agent or an organic lead agent, which is introduced into the solution system containing the catalyst. can also occur in reactors where the oxidation reaction is carried out by passing hydrogen or a hydrocarbon such as ethane, ethylene or propylene through a bed of catalyst.

担体に担持または未担持の触媒は固定床または流動床で
使用することができる。
Supported or unsupported catalysts can be used in fixed or fluidized beds.

本発明の触媒は水塊外の希釈剤の添加なしにエタンを選
択的にオキシ脱水素化して最終生成物としてエチレンお
よび酢酸を次に示す如き転化率(%)効率(%)および
生産性にて生ぜしめ得る。
The catalyst of the present invention selectively oxydehydrogenates ethane without the addition of diluents outside the water body to produce ethylene and acetic acid as the final products with conversion (%), efficiency (%) and productivity as shown below. It can be caused by

この場合水を添加しない正常の反応過程ではオキシ脱水
素化されたエタン1モルにつき1モルの水が生成される
。このようにこの反応中に生成した水は七こに生成され
るエチレン1モルにつき約0.05〜0.25 モルの
酢酸を生成させる。しかるに水を添加した場合に付加的
量すなわち生成されるエチレン1モルにつき約0.25
〜0.95モルまで増大された酢酸の生成をもたらす・ 最終生成物 (エタン)転化率%効率% 生産性エチレ
ン(添加馬0なし) 2〜7 60〜854〜7.5エ
チレン(添加ntaちり) 2〜8 50〜802〜8
.5酢 酸(添加HtOなし) 2〜7 15〜25 
1.5〜4酢 酸(添加HtOあり) 2〜8 15〜
4525〜5次の実施例は本発明の触媒組成物の製造お
よびこれらtエタンのエチレンへのオキシ脱水素化に使
用することに関し具体的に述べるものである。
In this case, in a normal reaction process without addition of water, 1 mol of water is produced for every mol of oxydehydrogenated ethane. The water thus produced during this reaction yields about 0.05 to 0.25 moles of acetic acid for every mole of ethylene produced. However, when water is added, an additional amount of approximately 0.25
Resulting in the production of acetic acid increased to ~0.95 mole Final product (ethane) conversion % efficiency % Productivity ethylene (without added horse 0) 2-7 60-854-7.5 ethylene (added nta dust ) 2~8 50~802~8
.. 5 Acetic Acid (without added HtO) 2-7 15-25
1.5~4 Acetic acid (with added HtO) 2~8 15~
4525-5 The following examples illustrate the preparation of catalyst compositions of the present invention and their use in the oxydehydrogenation of ethane to ethylene.

触媒の活性は酸素とエタンとを鼓動流(律動流)として
供給する小型U字管反応器内で(試験法A)、或はエタ
ンと酸素とを連続的に並流させる直立管反応器で(試験
法B)、或は逆−混合(back −mix )オート
クレーブ法(試験法C)のいずれかで測定した。これら
の試験法を次に詳細に述べる・触媒試験法人 鼓mt−rイクロ反応器中でエタンのオキシ脱水素化活
性測定用として試験触媒をふるい分けした。
The activity of the catalyst is determined in a small U-tube reactor in which oxygen and ethane are fed in a pulsatile flow (test method A), or in a standtube reactor in which ethane and oxygen are fed in a continuous co-current flow. (Test Method B) or by the back-mix autoclave method (Test Method C). These test methods are described in detail below.The test catalysts were screened for the determination of ethane oxydehydrogenation activity in a Catalyst Testing Corporation Tsutomu MTR microreactor.

この触媒を収容した反応帯域である長さ20吋、径8■
のシリカ0字管を熱亀対割節器によって温度調節を行っ
た流動サントノ(ス中に浸漬して加熱した。この温度の
調節および測定用熱電対はU字管内の触媒のレベルより
も上方に少なくとも3吋高い膚の流動砂中に浸漬した。
The reaction zone containing this catalyst is 20 inches long and 8 inches in diameter.
A silica O-tube was heated by immersing it in a flowing liquid gas whose temperature was controlled by a thermometer.The thermocouple for temperature regulation and measurement was placed above the level of the catalyst in the U-tube. immersed in fluid sand at least 3 inches high.

サンドバス中における温度状況の予備調査は、頂部から
底部までにわたって、調節器でセットされた固定点より
も3度以下の温度変化であることを示した。
A preliminary investigation of the temperature situation in the sand bath showed that from top to bottom the temperature varied by less than 3 degrees above the fixed point set by the regulator.

反応生成物の流れを分粧するためにこのマイクロ反応器
をガスクロマトグラフに正確に連結した。
This microreactor was precisely coupled to a gas chromatograph to separate the reaction product stream.

流量調節器の直後の点でクロマトグラフの内側のヘリウ
ム供給路線をさえぎり、それを口(8)および2−位置
にある弁〔ユニオン、カーバイド社、特別機械部のモデ
ルC4−703を通し、そこから口(6)をもつ手動試
料射出弁〔ユニオン、カーバイド、モデル2112−5
0−21’に通してU字管反応器の入口脚部に導くこと
によって、マイクロ反応器を経て流れるヘリウムキャリ
アの供給をクロマトグラフから捕集した。この系は反応
器入口にゴム隔壁を有する射出口を備えている。反応器
からの生成ガスの流れを冷却トラップを経てクロマトグ
ラフの2つの分析系のいずれかに分岐する役目をな丁目
(8)をもつ弁を経て通導した。各弁ともその分析系内
のクロマトグラフ塔の圧力低下を等しくするために調節
できるバイパス弁を備えている。
Intercept the helium supply line inside the chromatograph at a point immediately after the flow regulator and connect it to the port (8) and through the valve in the 2-position [Union, Carbide Co., Special Machinery Department, model C4-703]. Manual sample injection valve with opening (6) [Union, Carbide, Model 2112-5
The helium carrier feed flowing through the microreactor was collected from the chromatograph by directing it through 0-21' into the inlet leg of the U-tube reactor. The system is equipped with an injection port with a rubber septum at the reactor inlet. The flow of product gas from the reactor was conducted via a valve with an opening (8) which served to branch the flow of product gas through the cold trap to one of the two analysis systems of the chromatograph. Each valve is equipped with a bypass valve that can be adjusted to equalize the pressure drop across the chromatographic columns within that analytical system.

供給ガス(組成:酸素6.5容量%、エタン8.0容量
%、残り窒素)の2.0−ずつの鼓動流の注入は触媒の
直前の口を経て気密注入器によって行なった。ガスは始
終60d/分で反応器を通過しかつ分析用ガスクロマト
グラフを通過するヘリウムキャリア・ガスによって稀釈
して触媒3.Of上に運んだ。
Injection of the feed gas (composition: 6.5% by volume oxygen, 8.0% by volume ethane, remainder nitrogen) in 2.0-minute pulses was carried out by means of a gas-tight syringe through the port just before the catalyst. The gas is diluted by helium carrier gas which passes through the reactor at 60 d/min throughout and passes through an analytical gas chromatograph to remove the catalyst 3. I carried it onto Of.

生成した混合物の分析・をボロパック(Poropak
 )(T、M、)Rで包まれた10’X 1/8’径の
ステンレススチール塔で行なった。この塔を30℃で出
発し毎分lO℃の上昇で加熱した。これらの条件の下で
の保持時間は空気が2分、二酸化炭素が2.5分、エチ
レンが3.4分、エタンが4.0分であった。そして純
粋な既知試料のクロマトグラフィおよび区別された各ピ
ークの質量分光計試験によって該生成物の正体t−同定
確認した。ボロパックRはジビニルベンゼンで架橋され
た微粒子球状形のポリスチレン樹脂である。
Analysis of the generated mixture was performed using Poropak.
)(T,M,)R wrapped in a 10' x 1/8' diameter stainless steel column. The column was heated starting at 30° C. with an increase of 10° C. per minute. The retention times under these conditions were 2 minutes for air, 2.5 minutes for carbon dioxide, 3.4 minutes for ethylene, and 4.0 minutes for ethane. The identity of the product was then confirmed by chromatography of a pure known sample and mass spectrometer examination of each distinct peak. Boropack R is a polystyrene resin in the form of fine particles and spheres crosslinked with divinylbenzene.

触媒試験法B 次の条件の下での管状反応器中で触媒を試験した。Catalyst test method B The catalyst was tested in a tubular reactor under the following conditions.

エタンガス供給組成物(容量%)は9.0%C,Ha、
The ethane gas supply composition (volume %) was 9.0% C, Ha,
.

6.0%0□および85%N2、空間速度は34−Q 
)hr−’s全反応圧力は1気圧。そして温度上昇に伴
う触媒の活性を配録した。反応器は1/2′のステンレ
ススチール直立管から成り、約12’の深さの溶融浴〔
デュポン社ハイチック(闇標名)伝熱塩を使用〕によっ
て加熱されるものである。1/8′の熱電対套管を、反
応管の全長と触媒床との中心を貫通させた。触媒の温度
状況は該套管を経て熱電対をスライドさせることによっ
て知ることができた。
6.0%0□ and 85%N2, space velocity is 34-Q
) hr-'s total reaction pressure is 1 atm. We also recorded the activity of the catalyst as the temperature rose. The reactor consists of a 1/2' stainless steel standpipe with a melt bath approximately 12' deep.
It is heated using DuPont Hytic (dark name) heat transfer salt. A 1/8' thermocouple sleeve was passed through the entire length of the reaction tube and through the center of the catalyst bed. The temperature status of the catalyst could be determined by sliding a thermocouple through the sleeve.

触媒床の頂部が伝熱塩の表面よりも4′下になるように
26ゴの触媒を雪中に導入した。触媒床はそれが〉10
の深さ断面比率を持つように5〜5fの長さとした。触
媒床の上方帯域は予熱の役目をなすガラスと−ズにて充
実させた。反応器からのガス流出体は0℃でコンデンサ
およびトラップを通過させた。このようにして得られた
ガスおよび液体生成物は後記のようにして分析した。
Twenty six catalysts were introduced into the snow such that the top of the catalyst bed was 4' below the surface of the heat transfer salt. The catalyst bed is >10
The length was set to 5 to 5 f so as to have a depth-to-section ratio of . The upper zone of the catalyst bed was enriched with glass and glass which served as a preheater. The gas effluent from the reactor was passed through a condenser and trap at 0°C. The gas and liquid products thus obtained were analyzed as described below.

触媒試験法に の高圧研究に用いた反応器は中心に位置する触媒バスケ
ットおよび側面生成流出物路線を持った底部攪拌式のマ
グネドライブ(Magnedrive )式オートクレ
ーブであった。変速可能で磁気的に駆動するファンが触
媒床上の反応混合物を連続的に再循環させた。この反応
器は、1969年3月16日から20日にわたってアメ
リカ合衆国、ルイジアナ州、ニューオルリン、ズで開催
されたザ、アメリカン、インステイテユート、オプ、ケ
ミカル、エンジニアーズの第64回国際会議での「高圧
技術における進歩」についてのシンポジウム第2部にお
いて予稿42Eとして提出され、かつアメリカ合衆国、
ニューヨーク州、10017、ニューヨーク、イースト
、47ストリート、345番のAIChEから入手でき
る「リアクタ、フォア、ペーパーフェイズ、キャタリテ
イツク、スタデイズ」と題するパーティ、ハンプリック
、マロンおよびウロツク氏等の論文の第1図に描かれた
型のものである。
The reactor used for the high pressure studies of catalyst testing methods was a bottom-stirred Magnedrive autoclave with a centrally located catalyst basket and side product effluent lines. A variable speed, magnetically driven fan continuously recirculated the reaction mixture over the catalyst bed. This reactor was presented at the 64th International Conference of the American Institute of Op, Chemical, and Engineers held in New Orleans, Louisiana, USA from March 16 to 20, 1969. Submitted as Proceedings 42E to the Second Part of the Symposium on ``Advances in High Pressure Technology'' by the United States of America,
As depicted in Figure 1 of the paper by Partey, Hamprick, Maron, and Wlotzuk et al. entitled "Reactor, Four, Paper Phase, Catalytic, Studies," available from AIChE, 345 47th Street, East, New York, 10017, New York. It is of the same type.

逆混合オートクレーブは攪拌用ファンの羽根の上部に位
置したステンレススチール製触媒容器を持っている。こ
のファンは慣用の方法によってガスを触媒床を通し上向
きおよび内部方向に吹込む。
The backmix autoclave has a stainless steel catalyst vessel located above the stirring fan blades. The fan blows gas upward and inward through the catalyst bed in a conventional manner.

2つの熱電対によって入口と出口との温度を測定する♂
約150 psigの圧力でロータメーターを経て1/
4路線を通して反応器中に酸素を送給した・ガス状のエ
タン−COX混合物をロータメーターを経て供給し、次
いでこれを反応器内に導入する直前で該供給叡素と合流
させた。次いで液体をガスと同じ供給路線を経て反応器
中に直接ポンプ送流した。しかしガスが混合された後で
は液体入口を該路線に連結させた。流出ガスは反応器側
にある口を経て除去した。凝縮性液状生成物は二つの浴
中の一連の冷却トラップによって除去した。第一の浴は
0℃の湿った氷を含有し、その中に浸された二つの冷却
トラップを持っていた。ドライアイスと一78℃のアセ
トンとの第二の浴は二つの冷却トラップを有していた。
Measure the temperature at the inlet and outlet with two thermocouples ♂
1/2 through the rotameter at a pressure of approximately 150 psig.
A gaseous ethane-COX mixture, with oxygen fed into the reactor through four lines, was fed via a rotameter and was then combined with the silicon feed just before introduction into the reactor. The liquid was then pumped directly into the reactor via the same feed line as the gas. However, after the gases were mixed, a liquid inlet was connected to the line. Effluent gas was removed via a port on the reactor side. Condensable liquid products were removed by a series of cold traps in two baths. The first bath contained moist ice at 0° C. and had two cold traps immersed therein. A second bath of dry ice and acetone at -78°C had two cold traps.

排出流の非凝縮性成分はそれらの全容量を決定するため
に大気圧下に乾燥ガス−試験メーターを経て排出した。
The non-condensable components of the discharge stream were discharged via a dry gas-test meter at atmospheric pressure to determine their total volume.

口(8)をもつサンプリング弁により、反応器供給原料
および生成物の流れに直接連結された路線を経て、生成
物と原料ガスとの両方を直接サンプリングできるように
した。外部再循環は使用しなかった。
A sampling valve with a port (8) allowed direct sampling of both product and feed gas via lines directly connected to the reactor feed and product streams. No external recirculation was used.

秤量した触媒サンプルの嵩容積を定め(約150CC)
、このサンプルを触媒バスケットの中に入れた。各々の
場合、その仕込んだ触媒量は約1311fであった。触
媒の損耗および触媒微粒子が循環するのを最小にするた
めに、触媒床の上下にステンレススチールのスクリーン
を置いた。反応器に触媒バスケラトラ入れて反応器を封
じた後に、工程路線を予期される最高使用圧以上である
約100〜200 psigの圧力まで周辺の温度で圧
力の試験を行った。この試験には窒素全使用した。
Determine the bulk volume of the weighed catalyst sample (approximately 150 cc)
, this sample was placed into the catalyst basket. In each case, the amount of catalyst charged was approximately 1311f. Stainless steel screens were placed above and below the catalyst bed to minimize catalyst wastage and circulation of catalyst fines. After loading the reactor with the catalyst basket and sealing the reactor, the process line was pressure tested at ambient temperature to a pressure of about 100-200 psig, which is above the highest expected working pressure. All nitrogen was used in this test.

反応器の漏れがないことがわかった時に純粋なN、を反
応器に通し、温度を275℃と325℃との間に上昇さ
せた。ガス供給原料組成は容量%にて76〜97%C,
H6,3〜6%02.0〜10%H,0、そして0〜1
0%COXの範囲内であった。所望の温度が得られた後
に所望する全体の流速下で所望の変動のない状態の割合
を与えるように酸素とエタン−〇oxとの混合物の調整
を行った。流出ガス中の各成分の濃度は下記ガスクロマ
トグラフィー分析によって測定した。所望の温度で変動
のない状態に反応器全到達させるために約0.5〜1時
間を与えた。次いで液体生成物用トラップをドレインさ
せ、乾燥ガス試験メータの読みを行ない運転開始時間を
控えた。運転過程中の流出ガスサンプルはCtHe、C
2H4,02、CO,Co、および他の揮発性炭化水素
について分析した。稼動の終りに液体生成物を集め、か
つ流出ガスの容量を控えた。
When the reactor was found to be leak-free, pure N was passed through the reactor and the temperature was raised to between 275°C and 325°C. Gas feed composition is 76-97% C by volume,
H6, 3-6% 02.0-10% H, 0, and 0-1
It was within the range of 0% COX. After the desired temperature was obtained, the mixture of oxygen and ethane-Ox was adjusted to give the desired steady state proportions under the desired overall flow rate. The concentration of each component in the effluent gas was measured by the gas chromatography analysis described below. Approximately 0.5 to 1 hour was allowed to reach the desired temperature and steady state throughout the reactor. The liquid product trap was then drained and the dry gas test meter reading was taken to note the start time. The effluent gas samples during the operation process were CtHe, C
Analyzed for 2H4,02, CO, Co, and other volatile hydrocarbons. At the end of the run, the liquid product was collected and the volume of effluent gas was recorded.

これらの液体生成物は質量分光器によって分析した。These liquid products were analyzed by mass spectrometry.

試験法BおよびCで行なったすべての試験での反応器の
入口および出口のガスはOx、1% およびCOに対し
ては10’ X 1/8’塔の5Aモレキユラーシーブ
(14/30メツシユ)で95℃にて、また(03、N
3、COは一緒)、CO,、エチレン、エタンオヨびH
,0に対しては14’X 1/8’塔のボロパックQ 
(80/100メツシユ)で95℃にて分析した。
The reactor inlet and outlet gases for all tests conducted with Test Methods B and C were Ox, 1% and 5A molecular sieves (14/30 (03, N
3. CO is the same), CO,, ethylene, ethane, H
, 14'X 1/8' tower Boropack Q for 0
(80/100 mesh) at 95°C.

液体生成物はそれが充分に得られた時に質量分光器によ
りN20、アセトアルデヒド、酢酸およびその他の成分
について分析した。ボロバックQ(T、Miはジビニル
ベンゼンで架橋された微粒子球状ポリスチレン樹脂であ
る。
The liquid product, when fully obtained, was analyzed by mass spectrometry for N20, acetaldehyde, acetic acid, and other components. Borovac Q (T, Mi is a fine particle spherical polystyrene resin crosslinked with divinylbenzene.

これらすべての場合の転化率(至)および選択率□はク
ロマトグラムの溶離したピーク域に対する個々の応答因
子を適用せず、に、次の式による化学量論に基づいた。
The conversion and selectivity in all these cases were based on stoichiometry according to the following equation, without applying individual response factors to the eluted peak areas of the chromatograms.

CzHe + 1/20宜→CtH4+ HtOCeH
e + 7/201 →2COt + 3N20上記3
種の試験法の反応条件は次のとおりであった。
CzHe + 1/20 → CtH4+ HtOCeH
e + 7/201 →2COt + 3N20 3 above
The reaction conditions for the seed test method were as follows.

A 3.3 200〜650 −− B 1 300〜400 10.6 340触媒を試験
するに際して、接触活性が触媒によって最初に与えられ
る最低温度を先ず第一に試験し、これを最初の活性の温
度(To)とした。次いてこのようにToでエタンをエ
チレンにオキシ脱水素化する触媒の選択率を測定した。
A 3.3 200-650 -- B 1 300-400 10.6 340 In testing a catalyst, the lowest temperature at which catalytic activity is initially imparted by the catalyst is first tested and this is compared to the temperature of initial activity. (To). The selectivity of the catalyst for oxydehydrogenating ethane to ethylene using To was then measured.

次にエタンのエチレンへの10%転化が達成されるT。T. Then 10% conversion of ethane to ethylene is achieved.

以上の最低温度を決めるために、更に高い温度で各触媒
の活性を評価し、この温度eT1oとして第1表に示す
。T、oKおけるエタンをエチレンにオキシ脱水素化す
るための触媒の選択率もまた測定して第1表に示す。
In order to determine the above minimum temperature, the activity of each catalyst was evaluated at a higher temperature, and this temperature is shown in Table 1 as eT1o. The selectivity of the catalyst for the oxydehydrogenation of ethane to ethylene at T,oK was also determined and shown in Table 1.

実施例1 457fのパラ−モリブデン酸アンモニウム(2,6グ
ラム原子のMo )t−ステンレススチールm発器中に
て60〜80℃で攪拌しつつ0.71の水に溶解した。
Example 1 457f ammonium para-molybdate (2.6 g atom Mo) was dissolved in 0.71g water with stirring at 60-80°C in a t-stainless steel oven.

得られた溶液に、249tの乳酸チタン溶液1タイザー
(TY加R)LA”(0,21グラム原子のTi)、2
5−の濃厚硝酸を含有した110dの水に8Mせる10
4tの硝酸ビスマス・5水和物(0,21グラム原子の
Bi )および153tの硝wl第二マンガン50.3
%溶液(0,43グラム原子の胤)ヲ加え、次に86f
のコロイド状シリカ溶液であるルドツクス(LLJDO
X ) LSを加えた。
To the resulting solution was added 249 t of titanium lactate solution, 1 Tyser LA'' (0.21 gram atoms of Ti), 2
5- Add 8 M to 110 d of water containing concentrated nitric acid 10
4t bismuth nitrate pentahydrate (0.21 g atom Bi) and 153t nitrate wl manganese 50.3
% solution (0,43 g atom seed), then 86f
Ludotsux (LLJDO) is a colloidal silica solution of
X) LS was added.

生成した混合物を攪拌しつつ加熱し、7702(100
0d)のツートンシリカ−アルミナ5A52051/4
’球体を加え、次いで蒸気浴上で攪拌しつつ蒸発乾燥し
、さらに120℃の温度で16時間乾燥した。
The resulting mixture was heated with stirring to give 7702 (100
0d) two-tone silica-alumina 5A52051/4
'The spheres were added and then evaporated to dryness with stirring on a steam bath and further dried for 16 hours at a temperature of 120°C.

こうして乾燥した物質は次に10メツシユのステンレス
スチール金網篩からつくられたかけごに移し、外囲大気
雰囲気下400℃のマツフル炉の中で5時間焼成した。
The thus dried material was then transferred to a cage made from a 10-mesh stainless steel wire mesh sieve and calcined for 5 hours in a Matsufuru furnace at 400° C. under an ambient atmospheric atmosphere.

得られた触媒の里量増加力)ら計算した担体上に沈積し
た触媒の量は32.5%であった。
The amount of catalyst deposited on the carrier calculated from the amount increasing power of the obtained catalyst was 32.5%.

上記(Dタイザー(TYZOR)I、A (PJA標名
)はづ−、アイ、デュポン、デ、ネモアス、アンド、コ
ーポレーション社製のコロイド状乳酸チタンである。
The above (D TYZOR) I, A (PJA trademark) is a colloidal titanium lactate manufactured by DuPont, De, Nemoas, & Corporation.

またルドツクス(LUDOX )LS (商標名)もま
た同社製のコロイド状シリカ溶液である。
LUDOX LS (trade name) is also a colloidal silica solution manufactured by the same company.

この実施例の触媒の評価試験における流出ガスは、この
工程中に生成した水素、メタンまたは高級アルカン類を
含有せず、そして生成された生成物はエチレン、酢酸、
水、■及びCO2であった。
The effluent gas in the evaluation test of the catalyst of this example does not contain hydrogen, methane or higher alkanes produced during this process, and the products produced are ethylene, acetic acid,
They were water, ■ and CO2.

Claims (1)

【特許請求の範囲】 一般式 Moh−(T4 、 Mn )j−(Bi、 
St )k(この式でhは1、jは0.05〜1、セし
てkは0.03〜約2である) で表わされる焼成組成物から成る、エタンのエチレンへ
の脱水素化用のモリブデン含有触媒組成物。
[Claims] General formula Moh-(T4, Mn)j-(Bi,
Dehydrogenation of ethane to ethylene, consisting of a calcination composition of St Molybdenum-containing catalyst compositions for use.
JP59104916A 1975-10-01 1984-05-25 Molybdenum-containing catalyst composition Granted JPS6034736A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61883675A 1975-10-01 1975-10-01
US618836 1975-10-01

Publications (2)

Publication Number Publication Date
JPS6034736A true JPS6034736A (en) 1985-02-22
JPS6127097B2 JPS6127097B2 (en) 1986-06-24

Family

ID=24479327

Family Applications (4)

Application Number Title Priority Date Filing Date
JP51116705A Granted JPS5242806A (en) 1975-10-01 1976-09-30 Process for preparing ethylfne by low temperature oxy dehydrogenation of ethane
JP57058999A Expired JPS6059012B2 (en) 1975-10-01 1982-04-10 Molybdenum-containing catalyst
JP59104915A Granted JPS6034734A (en) 1975-10-01 1984-05-25 Molybdenum-containing catalyst
JP59104916A Granted JPS6034736A (en) 1975-10-01 1984-05-25 Molybdenum-containing catalyst composition

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP51116705A Granted JPS5242806A (en) 1975-10-01 1976-09-30 Process for preparing ethylfne by low temperature oxy dehydrogenation of ethane
JP57058999A Expired JPS6059012B2 (en) 1975-10-01 1982-04-10 Molybdenum-containing catalyst
JP59104915A Granted JPS6034734A (en) 1975-10-01 1984-05-25 Molybdenum-containing catalyst

Country Status (9)

Country Link
JP (4) JPS5242806A (en)
BE (1) BE846778A (en)
CA (1) CA1096891A (en)
DE (1) DE2644107C2 (en)
FR (1) FR2326393A1 (en)
GB (4) GB1538107A (en)
IT (2) IT1070811B (en)
NL (1) NL188404C (en)
SE (1) SE425481B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849637A1 (en) * 1978-11-16 1980-05-29 Hoechst Ag CARRIER CATALYST AND METHOD FOR THE PRODUCTION THEREOF
JPS56109282A (en) * 1980-02-01 1981-08-29 Chugai Ro Kogyo Kaisha Ltd Thermal decomposition apparatus for wastes such as waste vinyl chloride
FR2511671A1 (en) * 1981-08-18 1983-02-25 Davy Mckee Ag DEHYDROGENATION PROCESS
DE3208571A1 (en) * 1982-03-10 1983-09-22 Basf Ag, 6700 Ludwigshafen OXIDATION CATALYST, ESPECIALLY FOR THE PRODUCTION OF METHACRYLIC ACID BY GAS PHASE OXIDATION OF METHACROLEIN
JPS5995144U (en) * 1983-11-24 1984-06-28 中外炉工業株式会社 Combustion device for waste pyrolysis furnace
US4524236A (en) * 1984-06-28 1985-06-18 Union Carbide Corporation Process for oxydehydrogenation of ethane to ethylene
US4596787A (en) * 1985-04-11 1986-06-24 Union Carbide Corporation Process for preparing a supported catalyst for the oxydehydrogenation of ethane to ethylene
JPS62202925A (en) * 1986-03-03 1987-09-07 Kawasaki Heavy Ind Ltd Fluidized bed furnace
US5162578A (en) * 1987-06-12 1992-11-10 Union Carbide Chemicals & Plastics Technology Corporation Acetic acid from ethane, ethylene and oxygen
US5260250A (en) * 1989-07-05 1993-11-09 Bp Chemicals Limited Catalyst for the production of ethylene and acetic acid
US5210293A (en) * 1989-07-05 1993-05-11 Bp Chemicals Limited Process and catalyst for the production of ethylene and acetic acid
WO2001005913A1 (en) 1999-07-16 2001-01-25 Reatech Phosphor addition in gasification
JP2001330774A (en) 2000-03-14 2001-11-30 Nikon Corp Zoom lens
US7402719B2 (en) * 2002-06-13 2008-07-22 Velocys Catalytic oxidative dehydrogenation, and microchannel reactors for catalytic oxidative dehydrogenation
DE102006018885A1 (en) * 2006-04-18 2007-10-25 Leibnitz-Institut für Katalyse e.V. an der Universität Rostock Process for the preparation of olefins, aldehydes and carboxylic acids by oxidation of alkanes
DE102008017308B4 (en) * 2008-04-04 2014-09-25 Süd-Chemie Ip Gmbh & Co. Kg Process for the preparation of nanocrystalline bismuth-molybdenum mixed oxide catalysts
DE102008017311A1 (en) * 2008-04-04 2009-10-08 Süd-Chemie AG Process for producing a nanocrystalline molybdenum mixed oxide catalyst
EP3339275A1 (en) * 2016-12-22 2018-06-27 Linde Aktiengesellschaft Method and installation for the production of ethylene and acetic acid
US11998897B2 (en) 2019-09-04 2024-06-04 Nova Chemicals (International) S.A. Molybdenum-vanadium-iron- and/or molybdenum-vanadium-aluminium-based oxidative dehydrogenation catalyst materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119883A (en) * 1960-08-08 1964-01-28 Du Pont Dehydrogenation of ethane
BE622441A (en) * 1961-09-14
US3320331A (en) * 1966-01-27 1967-05-16 Exxon Research Engineering Co Oxidative dehydrogenation of aliphatic hydrocarbons over aluminum phosphate supported molybdenum and vanadium
FR1590081A (en) * 1968-01-10 1970-04-13
DE1800063B2 (en) * 1968-10-01 1976-11-11 Nautschno-Issledowatelskij Institut Monomerow Dlja Sintetitscheskowo Kautschuka, Jaroslawl (Sowjetunion) METHOD OF MANUFACTURING MONOPOLFINS AND DIOLEFINS
BE787078A (en) * 1971-08-02 1973-02-02 Tsailingold Anatoly L PROCESS FOR OBTAINING ALCENES AND ALCADIENES
US3933933A (en) * 1972-04-19 1976-01-20 Phillips Petroleum Company Oxidative dehydrogenation processes
JPS5331121B2 (en) * 1972-08-16 1978-08-31

Also Published As

Publication number Publication date
NL188404C (en) 1992-06-16
FR2326393A1 (en) 1977-04-29
JPS6034734A (en) 1985-02-22
NL188404B (en) 1992-01-16
IT1206587B (en) 1989-04-27
FR2326393B1 (en) 1980-07-04
GB1563646A (en) 1980-03-26
IT7820249A0 (en) 1978-02-13
JPS6127096B2 (en) 1986-06-24
GB1538107A (en) 1979-01-10
SE425481B (en) 1982-10-04
CA1096891A (en) 1981-03-03
JPS5814947A (en) 1983-01-28
JPS6127097B2 (en) 1986-06-24
DE2644107C2 (en) 1985-11-14
GB1563644A (en) 1980-03-26
JPS5242806A (en) 1977-04-04
JPS6361291B2 (en) 1988-11-28
DE2644107A1 (en) 1977-04-07
GB1563645A (en) 1980-03-26
IT1070811B (en) 1985-04-02
SE7610886L (en) 1977-04-02
JPS6059012B2 (en) 1985-12-23
NL7610835A (en) 1977-04-05
BE846778A (en) 1977-03-30

Similar Documents

Publication Publication Date Title
JPS6034736A (en) Molybdenum-containing catalyst composition
US4250346A (en) Low temperature oxydehydrogenation of ethane to ethylene
JPS6118729A (en) Oxydehydrogenation of ethane to ethylene
JP2005510553A (en) Process for producing acrylic acid from propane in the absence of oxygen molecules
BR112019007810B1 (en) PRE-CATALYST AND OXIDATIVE DEHYDROGENATION CATALYST, PROCESS FOR THE SYNTHESIS OF SUCH CATALYST AND METHOD FOR OXIDATIVE DEHYDROGENATION
US3987063A (en) Process for the production of maleic anhydride from butane
SU538652A3 (en) Catalyst for vapor phase oxidation of aldehydes
JPS5826329B2 (en) Seizouhou
RU2233832C2 (en) Method for preparing acetic acid
KR20170015900A (en) Improved selective ammoxidation catalysts
JP2005320331A (en) Method for producing acrolein and/or acrylic acid
US20040249204A1 (en) Ethane oxidation catalyst and process utilising the catalyst
JP4049363B2 (en) Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound
JPS588894B2 (en) Oxidation catalyst produced by NH↓3 and oxidation method
KR100978775B1 (en) Mixed metal oxide catalyst and process for production of acetic acid
JP2001500427A (en) Method for producing catalytically active composite metal oxide composition
JPS61114739A (en) Preparation of catalyst for preparing unsaturated carboxylic acid
US3038942A (en) Preparation of aldehydes by catalytic oxidation
JPS5892630A (en) Preparation of methanol and formaldehyde by partial oxidation of methane
JP2614089B2 (en) Acrolein production method
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPS5910332B2 (en) Method for producing methacrolein and methacrylic acid
JP4278035B2 (en) Composite metal oxide catalyst
JPH03167152A (en) Production of methacrylic acid
Mann et al. Kinetics of the catalytic oxidation of isobutene