JPH10175885A - Production of ethylene - Google Patents

Production of ethylene

Info

Publication number
JPH10175885A
JPH10175885A JP9101450A JP10145097A JPH10175885A JP H10175885 A JPH10175885 A JP H10175885A JP 9101450 A JP9101450 A JP 9101450A JP 10145097 A JP10145097 A JP 10145097A JP H10175885 A JPH10175885 A JP H10175885A
Authority
JP
Japan
Prior art keywords
catalyst
metal oxide
composite metal
ethane
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9101450A
Other languages
Japanese (ja)
Inventor
Yukio Koyasu
幸夫 小安
Shin Wajiki
伸 和食
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9101450A priority Critical patent/JPH10175885A/en
Publication of JPH10175885A publication Critical patent/JPH10175885A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain ethylene in a high selectively and in a high yield without using an expensive element and without adding a halogen, etc., to the reaction system, by bringing ethane into contact with a molecular oxygen-containing gas in the presence of a catalyst containing a specific composite metal oxide at a high temperature. SOLUTION: This method for producing ethylene comprises bringing ethane into contact with a molecular oxygen-containing gas at a temperature of 250-500 deg.C in the presence of a catalyst containing a composite metal oxide containing Mo, V and Sb as essential components and having a powder X-ray diffraction mainly having a characteristic pattern of the table. The composite metal oxide is obtained by adding a Mo-containing compound and a compound containing an element such as Ti or Zr to an aqueous solution containing a V-containing component and a Sb-containing component, drying the aqueous solution and subsequently calcining the obtained catalyst precursor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はエチレンの製造方法
に関する。詳しくは本発明は、エタンから酸化脱水素反
応によりエチレンを製造する方法に関する。エチレンは
各種石油化学製品、高分子製品の基幹原料として工業的
に重要である。
[0001] The present invention relates to a method for producing ethylene. More specifically, the present invention relates to a method for producing ethylene from ethane by an oxidative dehydrogenation reaction. Ethylene is industrially important as a key raw material for various petrochemical and polymer products.

【0002】[0002]

【従来の技術】エタンからエチレンを製造するための低
温酸化脱水素反応は、「The OxidativeDehydrogenation
of Ethane over Catalysts Containing Mixed Oxide
s ofMolybdenum and Vanadium」(Journal of Catalys
is 、52巻 、116-132頁(1978年))の刊行以来よく知ら
れている。この論文は、Mo及びVと共に他の遷移金属
酸化物(Ti,Cr,Mn,Fe,Co,Ni,Nb,TaおよびCe)を含有す
る混合酸化物触媒を開示している。該触媒はエタンのエ
チレンへの酸化脱水素反応に対し200℃の様な低い温
度で活性である。
2. Description of the Related Art Low-temperature oxidative dehydrogenation for producing ethylene from ethane is described in "The Oxidative Dehydrogenation".
of Ethane over Catalysts Containing Mixed Oxide
s ofMolybdenum and Vanadium "(Journal of Catalys
is, 52, 116-132 (1978)). This article discloses mixed oxide catalysts containing Mo and V as well as other transition metal oxides (Ti, Cr, Mn, Fe, Co, Ni, Nb, Ta and Ce). The catalyst is active at temperatures as low as 200 ° C. for the oxidative dehydrogenation of ethane to ethylene.

【0003】米国特許第4250346号およびドイツ特許DE2
644107号および特願昭51-116705号とその分割申請され
た特許出願群の明細書は450℃以下の温度におけるエ
タンのエチレンへの酸化脱水素反応について開示し、こ
の場合、触媒はその元素組成が次式:
US Pat. No. 4,250,346 and German Patent DE2
No. 644107 and Japanese Patent Application No. 51-116705 and the specification of the patent application filed in a divisional application disclose the oxidative dehydrogenation of ethane to ethylene at a temperature of 450 ° C. or less, in which case the catalyst has the elemental composition Is:

【0004】[0004]

【化1】MoaXbYc (式中:X=Cr,Mn,Nb,Ta,Ti,V及び/またはW Y=Bi,Ce,Co,Cu,Fe,K,Mg,Ni,P,Pb,Sb,Si,Sn,Tl及び/
またはU a=1 b=0〜2 c=0〜2である)
## STR1 ## MoaXbYc (where X = Cr, Mn, Nb, Ta, Ti, V and / or W Y = Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and / or
Or U a = 1 b = 0-2 c = 0-2)

【0005】で表される元素Mo,X及びYよりなる、
か焼組成物である。式中のa,bおよびcの数値はそれ
ぞれ触媒組成物中に存在する元素Mo,X及びYの相対
モル比を表す。元素Mo,X及びYは触媒組成物中に酸
素と共に存在する。
Consisting of the elements Mo, X and Y represented by
It is a calcined composition. The numerical values of a, b and c in the formula represent the relative molar ratios of the elements Mo, X and Y present in the catalyst composition, respectively. The elements Mo, X and Y are present together with oxygen in the catalyst composition.

【0006】上記特許出願群の明細書は多様な組成物を
開示している。しかしながら、エタンの転化率、エチレ
ンの収率ともに十分な結果は得られていない。たとえ
ば、これらの中で最も高いエチレン収率を示している実
施例の一つとして特開昭52-42806の実施例57および5
8では、Mo16V8Nb2U1触媒では400℃でエタン転化率
53%、エチレン収率34%を、Mo16V4W1.6Mn4触媒で
は400℃でエタン転化率58%、エチレン収率34%
を示している。
[0006] The specifications of the above patent applications disclose a variety of compositions. However, both ethane conversion and ethylene yield have not been satisfactory. For example, Examples 57 and 5 of JP-A-52-42806 are one of the examples showing the highest ethylene yield among these.
No. 8, the Mo 16 V 8 Nb 2 U 1 catalyst had an ethane conversion of 53% and an ethylene yield of 34% at 400 ° C., and the Mo 16 V 4 W 1.6 Mn 4 catalyst had an ethane conversion of 58% at 400 ° C. 34%
Is shown.

【0007】米国特許第4524236号に関連する特公平3-5
4927号明細書は450℃以下の温度におけるエタンのエ
チレンへの酸化脱水素反応について開示し、この場合、
触媒はその元素組成が次式:
Japanese Patent Publication No. 3-5 related to US Pat. No. 4,524,236
No. 4927 discloses the oxidative dehydrogenation of ethane to ethylene at temperatures below 450 ° C., wherein
The catalyst has the following elemental composition:

【0008】[0008]

【化2】MoaVbNbcSbdXe (式中:X=Li,Na,K,Rb,Be,Mg,Ca,Sr,Ba,Ta,Cr,Fe,Co,
Ni,Ce,La,Zn,Cd,Hg,Al,Tl,Pb,As,Bi,U,Wの少なくとも1
つを含む。 a=0.5-0.9, b=0.1-0.4, c=0.001-0.2, d=0.001-0.1, e=0.001-1.0である)
## STR2 ## MoaVbNbcSbdXe (where X = Li, Na, K, Rb, Be, Mg, Ca, Sr, Ba, Ta, Cr, Fe, Co,
Ni, Ce, La, Zn, Cd, Hg, Al, Tl, Pb, As, Bi, U, W
Including one. a = 0.5-0.9, b = 0.1-0.4, c = 0.001-0.2, d = 0.001-0.1, e = 0.001-1.0)

【0009】で表される元素Mo,V,Nb、Sb及び
Xよりなる、か焼組成物である。式中のa,b,c,d
およびeの数値はそれぞれ触媒組成物中に存在する元素
Mo,V,Nb、Sb及びXの相対モル比を表す。元素
Mo,V,Nb、Sb及びXは触媒組成物中に酸素と共
に存在する。
A calcined composition comprising the elements Mo, V, Nb, Sb and X represented by the formula: A, b, c, d in the formula
And the numerical values of e represent the relative molar ratios of the elements Mo, V, Nb, Sb and X present in the catalyst composition, respectively. The elements Mo, V, Nb, Sb and X are present together with oxygen in the catalyst composition.

【0010】上記特許明細書も多様な組成物を開示して
いる。しかしながら、エタンの転化率、エチレンの収率
ともに十分な結果は得られていない。たとえば、最高エ
チレン収率を示す実施例の一つは、米国特許第4524236
号の実施例6であるが、Mo1V0 .43Nb0.11Sb0.07Bi0.03
媒では400℃でエタン転化率71%、エチレン収率5
1.1%を示している。
The above patent also discloses a variety of compositions. However, both ethane conversion and ethylene yield have not been satisfactory. For example, one of the examples showing the highest ethylene yield is described in U.S. Pat.
Is a sixth embodiment of No., Mo 1 V 0 .43 Nb 0.11 Sb 0.07 Bi 0.03 ethane conversion of 71% at 400 ° C. in the catalyst, ethylene yield 5
1.1% is shown.

【0011】特開昭64-85945号明細書はエタン、エチレ
ン及び酸素からの酢酸の製造に関して開示し、この場
合、触媒はその元素組成が次式:
JP-A-64-85945 discloses the production of acetic acid from ethane, ethylene and oxygen, wherein the catalyst has the elemental composition of the following formula:

【0012】[0012]

【化3】(A) MoxVyZz (式中:Z=なし、またはNb,Sb,Li,Sc,Na,Be,Mg,Ca,S
r,Ba,Ti,Zr,Hf,Y,Ta,Cr,Fe,Co,Ni,Ce,La,Zn,Cd,Hg,Al,T
l,Pb,As,Bi,Te,U,及びWの1種またはそれ以上 x=0.5〜0.9 y=0.1〜0.4 z=0.01〜1である x,yおよびzの数値はそれぞれ触媒組成物中に存在す
る元素Mo,V及びZの相対モル比を表す。元素Mo,
V及びZは触媒組成物中に酸素と共に存在する。)で表
される元素Mo,X及びYよりなる、か焼組成物と、
(A) MoxVyZz (where Z = none, or Nb, Sb, Li, Sc, Na, Be, Mg, Ca, S
r, Ba, Ti, Zr, Hf, Y, Ta, Cr, Fe, Co, Ni, Ce, La, Zn, Cd, Hg, Al, T
one or more of l, Pb, As, Bi, Te, U, and W x = 0.5-0.9 y = 0.1-0.4 z = 0.01-1 The numerical values of x, y and z are respectively in the catalyst composition. Represents the relative molar ratio of the elements Mo, V and Z present in Element Mo,
V and Z are present with oxygen in the catalyst composition. A) a calcination composition comprising the elements Mo, X and Y represented by

【0013】[0013]

【化4】(B) (x)エチレン水和触媒、或は (xx)エチレン酸化触媒 からなる群より選ばれる少なくとも1種類の触媒とを、
含有する触媒混合物である。
(B) at least one catalyst selected from the group consisting of (x) an ethylene hydration catalyst or (xx) an ethylene oxidation catalyst,
The catalyst mixture contained.

【0014】上記特許明細書の実施例は、触媒(A)組
成物としてMoVNbSbCaまたはMoVNb混合酸化物のみを開示
している。また、エタン単独の酸化反応も開示している
が、エタンの転化率は低く、生成したエチレンの選択率
も十分には高くない。たとえば、実施例7において、エ
タン87%、酸素6.5%、窒素6.5%の原料ガスを
Mo0.7V0.25Nb0.02Sb0.01Ca0.01Oxと粉末モレキュラ−シ
−ブLZ−105(UCC製)との組合せ触媒上で酸化
させたところ、エタンの転化率は3モル%、エチレンへ
の選択率は56モル%であった。
The examples in the above patent specification disclose only MoVNbSbCa or MoVNb mixed oxide as the catalyst (A) composition. It also discloses an oxidation reaction of ethane alone, but the conversion of ethane is low and the selectivity of generated ethylene is not sufficiently high. For example, in Example 7, the raw material gas of 87% of ethane, 6.5% of oxygen, and 6.5% of nitrogen was used.
When oxidized on a combined catalyst of Mo 0.7 V 0.25 Nb 0.02 Sb 0.01 Ca 0.01 Ox and powdered molecular sieve LZ-105 (manufactured by UCC), the conversion of ethane was 3 mol% and the selectivity to ethylene was 3 mol%. Was 56 mol%.

【0015】また、本発明者らは、特開平7-53414号に
てエタンの酸化脱水素反応によるエチレンの製造方法を
開示しているが、この場合、触媒組成物がMo、V及び
Teを必須成分として含むことを特徴としている。
The present inventors have disclosed a method for producing ethylene by oxidative dehydrogenation of ethane in JP-A-7-53414. In this case, the catalyst composition contains Mo, V and Te. It is characterized by containing it as an essential component.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、エタン
の酸化脱水素反応によりエチレンを得ようとする技術に
関するこれらの特許文献においては、MoあるいはMo
とVを含む複合酸化物触媒が該酸化脱水素反応に有効で
ある可能性を述べているものの、特開平7-53414号以外
にはいまだ実用に耐える触媒性能を示しているものはな
い。即ち、エタンからのエチレンの最高収率は実質上た
かだか50モル%程度である。
However, in these patent documents relating to a technique for obtaining ethylene by oxidative dehydrogenation of ethane, Mo or Mo is disclosed.
Although there is a possibility that a composite oxide catalyst containing V and V is effective for the oxidative dehydrogenation reaction, there is no catalyst other than Japanese Patent Application Laid-Open No. Hei 7-53414 that still shows practically usable catalyst performance. That is, the highest yield of ethylene from ethane is substantially at most about 50 mol%.

【0017】また、特開平7-53414号においては、比較
的高価な元素であるNb及びTeを使用しているため触
媒価格が比較的高いという課題がある。
Further, in Japanese Patent Application Laid-Open No. Hei 7-53414, there is a problem that the catalyst price is relatively high because relatively expensive elements Nb and Te are used.

【0018】[0018]

【課題を解決するための手段】本発明者らは、かかる問
題点を解決すべく鋭意検討を重ね、触媒組成物がMo、
V及びSbを必須成分として含み、実質上Teを構成元
素として含まない触媒の粉末X線回折を種々検討した結
果、特定の特徴的パターンを主に有する複合金属酸化物
を含有する触媒が、エタンの酸化脱水素によるエチレン
の製造において、反応系にハロゲン化物等を存在させる
ことなく、しかも300〜450℃程度の比較的低い温
度において、従来法よりも非常に高い活性、かつ高い選
択性で目的とするエチレンを製造し得ることを見出して
本発明に到達した。
Means for Solving the Problems The present inventors have intensively studied to solve such problems and found that the catalyst composition was Mo,
As a result of various examinations on the powder X-ray diffraction of a catalyst containing V and Sb as essential components and containing substantially no Te as a constituent element, it was found that a catalyst containing a composite metal oxide mainly having a specific characteristic pattern was ethane. In the production of ethylene by the oxidative dehydrogenation of benzene, it is possible to achieve a higher activity and higher selectivity than the conventional method at a relatively low temperature of about 300 to 450 ° C. without the presence of a halide or the like in the reaction system. The present invention has been found that ethylene can be produced.

【0019】即ち、本発明の要旨は、触媒の存在下、高
い温度で、エタンを分子状酸素含有ガスと接触させるこ
とによってエチレンを製造するに当たり、該触媒として
Mo、V及びSbを必須成分として含み、その粉末X線
回折が主として下記表−1及び/又は表−2に示す特徴
的パターンを有する複合金属酸化物を含有する触媒を使
用することを特徴とするエチレンの製造方法、に存す
る。
That is, the gist of the present invention is that when ethane is contacted with a molecular oxygen-containing gas at a high temperature in the presence of a catalyst to produce ethylene, the catalyst contains Mo, V and Sb as essential components. Wherein the powder X-ray diffraction mainly comprises using a catalyst containing a composite metal oxide having a characteristic pattern shown in Table 1 and / or Table 2 below.

【0020】[0020]

【表3】 表−1 −−−−−−−−−−−−−−−−−−−−−−−−− 回折角2θ(゜) 相対ピ−ク強度(%) −−−−−−−−−−−−−−−−−−−−−−−−− 22.2±0.4 (100) 28.3±0.4 (400〜10) 36.2±0.4 (80〜3) 45.1±0.4 (50〜3) 50.0±0.4 (50〜3) −−−−−−−−−−−−−−−−−−−−−−−−− (Cu−Kα線を使用)(かっこ内の数字は、22.2゜ のピ−クを100としたときの相対ピ−ク強度を示す。)Table 1 Table 1 ------------------------- Diffraction angle 2θ (゜) Relative peak intensity (%) ------ −−−−−−−−−−−−−−−−−−−−−−−− 22.2 ± 0.4 (100) 28.3 ± 0.4 (400 to 10) 36.2 ± 0.4 (80-3) 45.1 ± 0.4 (50-3) 50.0 ± 0.4 (50-3) -------------------------------------------------------------------------- −−−− (Using Cu-Kα ray) (The number in parentheses indicates the relative peak intensity when the peak at 22.2 ° is defined as 100.)

【0021】[0021]

【表4】 表−2 −−−−−−−−−−−−−−−−−−−−−−−−− 回折角2θ(゜) 相対ピ−ク強度(%) −−−−−−−−−−−−−−−−−−−−−−−−− 6.7±0.4 (15〜1) 7.9±0.4 (20〜1) 9.1±0.4 (20〜1) 22.2±0.4 (100) 27.3±0.4 (80〜8) 35.5±0.4 (15〜3) 45.2±0.4 (50〜3) −−−−−−−−−−−−−−−−−−−−−−−−− (Cu−Kα線を使用)(かっこ内の数字は、22.2゜ のピ−クを100としたときの相対ピ−ク強度を示す。)Table 4 Table 2---------------------Diffraction angle 2θ (゜) Relative peak intensity (%) ---- −−−−−−−−−−−−−−−−−−−−−−− 6.7 ± 0.4 (15 to 1) 7.9 ± 0.4 (20 to 1) 9.1 ± 0 0.4 (20-1) 22.2 ± 0.4 (100) 27.3 ± 0.4 (80-8) 35.5 ± 0.4 (15-3) 45.2 ± 0.4 (50 ~ 3) ------------------------------ (using Cu-Kα radiation) (The number in parentheses is the peak of 22.2%). The relative peak strength when the peak is 100 is shown.)

【0022】[0022]

【発明の実施の形態】以下、本発明につき詳細に説明す
る。本発明の骨子は、Mo、V、及びSbを必須成分と
する複合金属酸化物を含有する固体触媒を使用すること
にある。触媒の具体例としては、例えば、触媒を構成す
る複合金属酸化物がMo、V、SbおよびX(但し、X
は、Ti、Zr、Nb、Ta、Cr、W、Mn、Fe、
Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、A
g、Zn、Al、In、Sn、Pb、BiおよびCeの
中から選ばれた1種以上の元素)を含有し、金属元素M
の全含有金属元素中に占める割合をモル分率rMで表し
たとき、
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The gist of the present invention is to use a solid catalyst containing a composite metal oxide containing Mo, V, and Sb as essential components. As a specific example of the catalyst, for example, the composite metal oxide constituting the catalyst is Mo, V, Sb and X (however, X
Represents Ti, Zr, Nb, Ta, Cr, W, Mn, Fe,
Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, A
g, Zn, Al, In, Sn, Pb, Bi, and Ce).
Is represented by the molar fraction rM in the total metal elements contained,

【0023】[0023]

【数2】 0.25 < rMo < 0.98 0.003 < rV < 0.5 0.003 < rSb < 0.5 0.003 < rX < 0.5## EQU2 ## 0.25 <rMo <0.98 0.003 <rV <0.5 0.003 <rSb <0.5 0.003 <rX <0.5

【0024】の関係があるような複合金属酸化物を含有
する触媒が挙げられる。成分Xを含有していなくとも十
分高い性能が得られる。成分Xを使用する場合には、T
i、Zr、Nb、Ta、W、Cr、Mn、Ce等が好ま
しいが、特にTi、W、Nb、Zr、Ceの組合せが好
ましい。即ち、本発明の別の特徴は、実質上Teのよう
な高価な元素を使用することなく、比較的安価なSbの
ような元素を使用することで、高い触媒性能を達成可能
とすることにある。さらに、高価な元素であるNbすら
使用せずに、安価な元素の組合せ、たとえばTiとSb
の組合せでも高い触媒性能が発揮可能であることは驚く
べきことである。
A catalyst containing a composite metal oxide having the above relationship may be mentioned. Even if component X is not contained, sufficiently high performance can be obtained. When component X is used, T
i, Zr, Nb, Ta, W, Cr, Mn, Ce and the like are preferable, and a combination of Ti, W, Nb, Zr and Ce is particularly preferable. That is, another feature of the present invention is that high catalytic performance can be achieved by using a relatively inexpensive element such as Sb without using an expensive element such as Te substantially. is there. Furthermore, a combination of inexpensive elements, such as Ti and Sb, is used without using even expensive element Nb.
It is surprising that high catalyst performance can be exhibited even with the combination of.

【0025】これらの触媒の調合方法に関して特に制限
はないが、例えば次のようにして調製される。即ち、ま
ず、V含有化合物を含む水性溶液に所定量比のSb含有
化合物を添加し、水性溶液を調合する。(本明細書にお
いて、「水性溶液」とは、溶質が完全に溶解している場
合だけでなく、一部溶質が溶解せずに存在しているスラ
リー状態、及び、事実上均質だが溶液ではなく、金属酸
化物のコロイド状態または懸濁状態で存在する場合、を
も含む。)しかる後に、所定量のMo含有化合物の水性
溶液、および成分Xの水性溶液または粉体状固体を金属
元素のモル比が所定の割合となるような量比で添加し、
攪拌混合し、ついで、蒸発乾固、噴霧乾燥、真空乾燥法
等で乾燥させて、触媒前駆体を得る。
There are no particular restrictions on the method of preparing these catalysts, but for example, they are prepared as follows. That is, first, a predetermined amount ratio of the Sb-containing compound is added to the aqueous solution containing the V-containing compound to prepare the aqueous solution. (As used herein, the term "aqueous solution" refers to not only the case where the solute is completely dissolved, but also a slurry state in which a part of the solute is present without being dissolved, and a substantially homogeneous but not a solution. , When it is present in a colloidal state or a suspended state of a metal oxide.) Thereafter, a predetermined amount of the aqueous solution of the Mo-containing compound and the aqueous solution or the powdery solid of the component X are converted to a molar amount of the metal element. Add in a quantitative ratio such that the ratio becomes a predetermined ratio,
The mixture is stirred and mixed, and then dried by evaporation to dryness, spray drying, vacuum drying, or the like to obtain a catalyst precursor.

【0026】なお、上記V含有化合物としては、メタバ
ナジン酸アンモニウム、V25、VO(OR)3(ここ
でRは、炭素数1から10のアルキル基)、あるいはV
OCl3などの中から選ばれた1種類以上の原料の組合
せが使用できる。また、V2 5の使用時には可溶化のた
めにH22を共存させることもできる。Sb含有化合物
としては、Sb23、Sb24、Sb25、SbOC
l、SbCl3などの中から選ばれた1種類以上の原料
の組合せが使用できる。また、Mo含有化合物として
は、パラモリブデン酸アンモニウム、MoO3、Mo
2、MoCl5、リンモリブデン酸、ケイモリブデン
酸、Mo(OR)5(ここでRは、炭素数1から10の
アルキル基)、あるいはモリブデニルアセチルアセトナ
−ト(MoO2(acac)2)などの中から選ばれた1
種類以上の原料の組合せが使用できる。また、金属元素
Xの原料としては、その酸化物、水酸化物、ハロゲン化
物、カルボン酸塩、アルコキシド、アセチルアセトナ−
ト、ハロゲン化アンモニウム塩、あるいはカルボン酸ア
ンモニウム塩などを使用することが出来る。更に、モリ
ブドバナドリン酸のようなMoとVとの混合配位のヘテ
ロポリ酸を使用してもよい。
The above-mentioned V-containing compound includes
Ammonium nadate, VTwoOFive, VO (OR)Three(here
And R is an alkyl group having 1 to 10 carbon atoms) or V
OCIThreeA union of one or more raw materials selected from among
Can be used. Also, VTwoO FiveSolubilization when using
HTwoOTwoCan coexist. Sb-containing compound
As SbTwoOThree, SbTwoOFour, SbTwoOFive, SbOC
1, SbClThreeOne or more raw materials selected from
Can be used. In addition, as a Mo-containing compound
Is ammonium paramolybdate, MoOThree, Mo
OTwo, MoClFive, Phosphomolybdic acid, silico molybdenum
Acid, Mo (OR)Five(Where R is 1 to 10 carbon atoms)
Alkyl group) or molybdenyl acetylacetona
-(MoOTwo(Acac)Two1)
Combinations of more than one type of raw material can be used. Also metal elements
X raw materials include oxides, hydroxides, halogenated
Substance, carboxylate, alkoxide, acetylacetona
Ammonium halides or carboxylic acids
A ammonium salt or the like can be used. Furthermore, Mori
Hete of mixed coordination of Mo and V such as budvanadolinic acid
Ropoly acids may be used.

【0027】このような触媒前駆体の製造方法におい
て、5価のVを含む水性溶液中にて3価のSbを共存さ
せることによって、Vの少なくとも一部が5価よりも還
元され、他方、Sbの少なくとも一部が5価の原子価へ
酸化されたようなVおよびSbを含む触媒前駆体を製造
する方法が好ましい。該水性溶液を50〜200℃に加
温して反応を促進させるのが好ましい。加温方法として
は、解放容器中での加温、冷却装置を装備しての還流条
件、及び、高圧容器中での水熱合成条件等が挙げられ
る。
In such a method for producing a catalyst precursor, by coexisting trivalent Sb in an aqueous solution containing pentavalent V, at least a part of V is reduced more than pentavalent, while A method for producing a catalyst precursor containing V and Sb in which at least a part of Sb is oxidized to a pentavalent valence is preferred. It is preferable to heat the aqueous solution to 50 to 200 ° C. to accelerate the reaction. Examples of the heating method include heating in an open vessel, reflux conditions provided with a cooling device, and hydrothermal synthesis conditions in a high-pressure vessel.

【0028】該触媒前駆体を通常350〜750℃、好
ましくは450〜680℃程度の温度で焼成することに
よって複合金属酸化物が得られる。焼成時間は1分〜3
0時間の任意の時間であるが、特に1分〜4時間程度が
実用的である。このようにして調製された複合金属酸化
物は主として表−1及び/または表−2に示した粉末X
線回折パターンを示す(ここで「表−1及び表−2に示
した粉末X線回折パターン」とは、表−1に示した粉末
X線回折パターンと表−2に示した粉末X線回折パター
ンとが併せて出ることを意味する。)焼成時の雰囲気と
しては、空気でもよいが、むしろ空気より低い酸素濃度
で焼成を行うのが好ましく、特に窒素、アルゴン、ヘリ
ウム等の不活性ガス雰囲気下、あるいはこれらの流通
下、または真空中で焼成することが好ましい。
The catalyst precursor is calcined at a temperature of usually 350 to 750 ° C., preferably 450 to 680 ° C. to obtain a composite metal oxide. Baking time is 1 minute to 3
Although it is an arbitrary time of 0 hours, about 1 minute to 4 hours is particularly practical. The composite metal oxide thus prepared is mainly composed of the powder X shown in Table 1 and / or Table 2.
X-ray diffraction patterns (here, “X-ray powder diffraction patterns shown in Tables 1 and 2” refer to the X-ray powder diffraction patterns shown in Table 1 and the X-ray powder diffraction patterns shown in Table 2 This means that the pattern appears together.) The atmosphere at the time of firing may be air, but it is preferable to perform firing at an oxygen concentration lower than that of air, especially an atmosphere of an inert gas such as nitrogen, argon, or helium. It is preferable to calcinate under or under these circulations or in a vacuum.

【0029】該複合金属酸化物中の各金属元素の含有量
は、その全含有金属元素中のモル分率rで表して、rM
oは通常0.25〜0.98、好ましくは0.5〜0.
7であり、rVは通常0.003〜0.5、好ましくは
0.1〜0.3であり、rSbは通常0.003〜0.
5、好ましくは0.03〜0.3であり、rXは通常
0.003〜0.5、好ましくは0.01〜0.3であ
る。
The content of each metal element in the composite metal oxide is represented by a mole fraction r in the total content of the metal elements, and rM
o is usually 0.25 to 0.98, preferably 0.5 to 0.5.
7, rV is usually 0.003 to 0.5, preferably 0.1 to 0.3, and rSb is usually 0.003 to 0.5.
5, preferably 0.03 to 0.3, and rX is usually 0.003 to 0.5, preferably 0.01 to 0.3.

【0030】これらの複合金属酸化物は単独でも触媒と
して用いられるが、周知の担体、例えばシリカ、アルミ
ナ、アルミノシリケート、チタニア、ジルコニア、シリ
コンカーバイド等と共に使用することもできる。その場
合にはこれらの担体成分は、触媒前駆体調合時の任意の
工程で添加することが出来る。あるいは焼成工程前の触
媒前駆体と混合した後に焼成してもよい。さらに焼成後
の複合金属酸化物と担体とを混練、成型してもよい。触
媒は、反応の規模、方式等により適宜の粒径及び形状に
成型され、整粒される。
Although these composite metal oxides can be used alone as a catalyst, they can also be used together with known carriers such as silica, alumina, aluminosilicate, titania, zirconia, and silicon carbide. In that case, these carrier components can be added at any step during the preparation of the catalyst precursor. Alternatively, calcination may be performed after mixing with the catalyst precursor before the calcination step. Further, the sintered composite metal oxide and the carrier may be kneaded and molded. The catalyst is formed into an appropriate particle size and shape according to the scale and system of the reaction, and is sized.

【0031】また複合金属酸化物、または複合金属酸化
物と担体とを含有する触媒を既知の乾式または湿式粉砕
機にて物理的に粉砕することにより、これまで不可能と
思われていた400℃以下の温度で高選択率を保ったま
まエタンを十分に効率よく転化させることも可能な高活
性な触媒を得ることができる。これらの粉砕操作は触媒
に含まれる複合金属酸化物の1次粒子の平均径を5μm
以下にすることによりその効果を発揮させることが可能
となるが、さらに1次粒子の平均径を1μm以下にして
使用することが好ましい。粉砕処理された複合金属酸化
物または複合金属酸化物と担体を含有する触媒は、その
まま、あるいはさらに担体成分と混合された後に、用途
に適した方法で、適宜の粒径及び形状に成型され整粒さ
れて、必要ならば再び焼成されて、触媒としての使用に
供される。
Further, by physically pulverizing a composite metal oxide or a catalyst containing a composite metal oxide and a carrier with a known dry or wet pulverizer, 400 ° C. which has been considered impossible until now is considered. It is possible to obtain a highly active catalyst capable of converting ethane sufficiently efficiently while maintaining high selectivity at the following temperatures. In these pulverization operations, the average diameter of the primary particles of the composite metal oxide contained in the catalyst was 5 μm.
The effect can be exerted by setting the average particle size to be below, but it is preferable to use the primary particles with an average diameter of 1 μm or less. The pulverized composite metal oxide or the catalyst containing the composite metal oxide and the carrier is molded into an appropriate particle size and shape by a method suitable for the application as it is or after being mixed with a carrier component, and then adjusted. Granulated and, if necessary, calcined again, are ready for use as a catalyst.

【0032】本発明の方法は、上述の触媒を使用して、
エタンを気相接触酸化反応させることによりエチレンを
製造するものである。反応器の方式は、特に限定されな
いが、固定床、流動床、移動床等の反応方式が好適に使
用可能である。本反応は通常大気圧下で実施されるが、
低度の加圧下または減圧下で行うこともできる。
The process of the present invention uses the catalyst described above to
This is to produce ethylene by subjecting ethane to a gas phase catalytic oxidation reaction. The system of the reactor is not particularly limited, but a reaction system such as a fixed bed, a fluidized bed and a moving bed can be suitably used. This reaction is usually carried out under atmospheric pressure,
It can also be performed under low pressure or reduced pressure.

【0033】本発明方法における反応温度は、通常20
0〜550℃で実施することができ、特に好ましいのは
250〜500℃程度である。また、気相反応における
ガス空間速度SV[hr-1]は、10〜5000hr-1
の広い範囲において好適な結果が得られ、、好ましくは
100〜2000hr-1の範囲である。なお、空間速度
と酸素分圧を調整するための希釈ガスとして、窒素、ア
ルゴン、ヘリウム等の不活性ガスまたは、二酸化炭素、
水蒸気等の希釈ガスを用いることが出来る。
The reaction temperature in the process of the present invention is usually 20
It can be carried out at 0 to 550 ° C, and particularly preferably at about 250 to 500 ° C. Further, the gas space in the gas phase reaction rate SV [hr -1] is, 10~5000Hr -1
Suitable results are obtained in a wide range, preferably in the range of 100 to 2000 hr -1 . In addition, as a diluent gas for adjusting the space velocity and the oxygen partial pressure, nitrogen, argon, an inert gas such as helium or carbon dioxide,
A diluent gas such as steam can be used.

【0034】本発明の方法によりエタンの酸化反応を行
った場合、エチレンの他に、一酸化炭素、二酸化炭素、
酢酸等が副生するが、その生成量は通常極めて少ない。
原料のエタンは、特に純度が限定されるものではなく、
例えば、メタン、エチレン、水、一酸化炭素、二酸化炭
素、プロパン、ブタン等が不純物として混合していても
よい。また、本発明での酸化反応は、供給ガス中に存在
させる酸素によって行われる。供給ガス中に酸素を存在
させる場合、酸素は純酸素ガスでもよいが、特に純度は
要求されないので、一般には空気のような酸素含有ガス
を使用するのが経済的である。
When the ethane oxidation reaction is carried out according to the method of the present invention, carbon monoxide, carbon dioxide,
Acetic acid and the like are by-produced, but the amount produced is usually extremely small.
The raw material ethane is not particularly limited in purity,
For example, methane, ethylene, water, carbon monoxide, carbon dioxide, propane, butane and the like may be mixed as impurities. Further, the oxidation reaction in the present invention is carried out by using oxygen present in the supply gas. When oxygen is present in the supply gas, the oxygen may be pure oxygen gas, but since purity is not particularly required, it is generally economical to use an oxygen-containing gas such as air.

【0035】より具体的な反応条件につき本発明を更に
詳細に説明する。反応に供給する酸素の割合は、化学反
応式から要請される化学量論量はエタンに対して0.5
モル倍量であるが、通常エタンに対して0.001〜5
0モル倍量の広い範囲において好適なエチレン選択率が
得られ、特に0.02〜4モル倍量の場合に高いエチレ
ン選択率を示す。
The present invention will be described in more detail with reference to more specific reaction conditions. The ratio of oxygen supplied to the reaction is such that the stoichiometric amount required from the chemical reaction equation is 0.5 to ethane.
The molar amount is usually 0.001 to 5 with respect to ethane.
Suitable ethylene selectivity is obtained in a wide range of 0 mole times, and particularly high ethylene selectivity is shown in the case of 0.02 to 4 times mole.

【0036】当該分野において知られている通り、一般
にエタンの転化率が低いほど生成エチレンの選択率は高
くなる。従って、高いエチレン選択率を得ようとする場
合には、供給酸素量を化学反応式から要請される化学量
論量(エタンに対して0.5モル倍量)よりも低くして
反応させる方が有利である。当該条件で反応を行う場合
および通常の、エタンに対する酸素過剰量比条件下にお
いてさえ、供給したエタンの一部が未反応エタンとして
生成物中に存在する。このような未反応エタンを回収し
て、再び原料として供給することは経済的にも、資源環
境的にも意義深いことである。
As is known in the art, generally the lower the conversion of ethane, the higher the selectivity of the produced ethylene. Therefore, in order to obtain a high ethylene selectivity, it is preferable to carry out the reaction with the supplied oxygen amount being lower than the stoichiometric amount (0.5 mole times the amount of ethane) required from the chemical reaction formula. Is advantageous. When the reaction is carried out under these conditions and even under the usual oxygen excess to ethane ratio conditions, part of the supplied ethane is present in the product as unreacted ethane. Recovering such unreacted ethane and supplying it again as a raw material is significant both economically and in terms of resource environment.

【0037】このような未反応エタンの回収方法は、特
に限定されるものではないが、例えばフラッシュドラ
ム、蒸留塔、吸着分離器、プレッシャースイング装置等
の公知の技術、あるいはそれらの組合せ、が好適に使用
可能である。このような方法を用いる場合には酸素供給
源として空気も使用可能であるが、場合によっては酸素
富化空気、あるいは純酸素の使用が好ましい場合もあ
る。
The method for recovering such unreacted ethane is not particularly limited, but known techniques such as a flash drum, a distillation column, an adsorption separator, and a pressure swing device, or a combination thereof are preferred. It can be used for When such a method is used, air can be used as the oxygen supply source, but in some cases, the use of oxygen-enriched air or pure oxygen may be preferable.

【0038】具体的に例を示すと、反応器出口の生成物
中、水及び酢酸の大部分は冷却後、凝集除去される。残
りのエタン、エチレン、CO、CO2、窒素及び酸素の
中からエタンを回収し、エチレンを製品として得る為に
は、様々な方法がある。一例を挙げれば、これら生成物
を昇圧し、エタン、エチレン及びCO2を液化し、C
O、窒素及び酸素と分離する。しかる後に、エタン、エ
チレン及びCO2を加圧蒸留分離し、エタン留分を原料
タンクへ移送し、再び反応に供する方法が挙げられる。
また、別の例を挙げれば、生成水と酢酸とを除去した後
に、CO2除去装置でCO2を除去し、吸着分離器により
エタン及びエチレンを分離し、しかる後に両者を蒸留分
離して、エタン留分を原料タンクへ移送し、再び反応に
供する方法が挙げられる。さらに、上記の各方法に加え
て、COを選択的に酸化して全量CO2へ転化してから
分離操作を実施する方法もある。いずれの方法が好まし
いかは、酸素源を含む原料コストと、プロセス全体の効
率により決定されるものである。
As a specific example, in the product at the outlet of the reactor, most of water and acetic acid are coagulated and removed after cooling. There are various methods for recovering ethane from the remaining ethane, ethylene, CO, CO 2 , nitrogen and oxygen to obtain ethylene as a product. In one example, these products are pressurized to liquefy ethane, ethylene and CO 2 ,
Separates from O, nitrogen and oxygen. Thereafter, ethane, ethylene and CO 2 are separated by distillation under pressure, the ethane fraction is transferred to a raw material tank, and the reaction is performed again.
Further, by way of another example, after removal of the product water and acetic acid, the CO 2 is removed in a CO 2 remover, separate the ethane and ethylene by adsorption separator, by distillation separate them thereafter, A method in which the ethane fraction is transferred to a raw material tank and then used again for the reaction. Further, in addition to the above methods, there is also a method of selectively oxidizing CO to convert the total amount to CO 2 and then performing a separation operation. Which method is preferred is determined by the cost of the raw material, including the oxygen source, and the efficiency of the overall process.

【0039】[0039]

【実施例】次に、本発明の具体的態様を実施例および比
較例を挙げて更に詳細に説明するが、本発明はその要旨
を超えない限りこれらの実施例によって限定されるもの
ではない。なお、以下の実施例および比較例におけるエ
タンの気相接触酸化反応におけるエタン転化率(%)及
びエチレン収率(%)は、各々次式で示される。
EXAMPLES Next, specific embodiments of the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples unless it exceeds the gist thereof. The ethane conversion (%) and the ethylene yield (%) in the gas phase catalytic oxidation reaction of ethane in the following Examples and Comparative Examples are represented by the following equations, respectively.

【0040】[0040]

【数3】エタンの転化率(%)=(消費エタンのモル数/
供給エタンのモル数)×100 エチレンの収率(%)=(生成エチレンのモル数/供給エタン
のモル数)×100
## EQU3 ## Conversion of ethane (%) = (moles of ethane consumed /
Mole number of supplied ethane) × 100 Ethylene yield (%) = (mol number of produced ethylene / mol number of supplied ethane) × 100

【0041】実施例1 温水600mlにメタバナジン酸アンモニウム(NH4
VO3)35.1gを溶解し、これに三酸化アンチモン
(Sb23)粉末19.1gを添加し、スラリーを6時
間加熱攪拌した後、パラモリブデン酸アンモニウム
((NH46Mo72 4・4H2O)176.6gを含有
する水溶液600mlを添加し、さらにシュウ酸チタン
アンモニウム((NH42[TiO(C242]・2
2O)15.6gを含有する水溶液20mlを添加し
て均一なスラリーを得た。このスラリーを加熱処理して
水分を除去し、触媒前駆体を得た。触媒前駆体を空気
下、380℃で処理した後、窒素気流下、600℃で2
時間焼成して複合金属酸化物を得た。
Example 1 In 600 ml of warm water, ammonium metavanadate (NH 4
After dissolving 35.1 g of VO 3 ), 19.1 g of antimony trioxide (Sb 2 O 3 ) powder was added thereto, and the slurry was heated and stirred for 6 hours, and then ammonium paramolybdate ((NH 4 ) 6 Mo 7 ) O 2 4 · 4H 2 O) was added an aqueous solution 600ml containing 176.6 g, further titanium oxalate ammonium ((NH 4) 2 [TiO (C 2 O 4) 2] · 2
20 ml of an aqueous solution containing 15.6 g of (H 2 O) was added to obtain a uniform slurry. This slurry was subjected to a heat treatment to remove water, thereby obtaining a catalyst precursor. After treating the catalyst precursor at 380 ° C. in air, the catalyst precursor was treated at 600 ° C. in a nitrogen stream at 2 ° C.
After calcination for a time, a composite metal oxide was obtained.

【0042】得られた複合金属酸化物の粉末X線回折測
定(Cu−Kα線を使用)を行ったところ、回折角2θ
(゜)として、7.1、8.2、9.1、22.2、2
7.2、28.2、35.5、36.2、45.1、5
0.0に主要回折ピ−クが観察された。該複合金属酸化
物を触媒として0.5gを反応器に充填し、反応温度4
40℃、空間速度SVを500h-1として、エタン:空
気=1:5のモル比でガスを供給し、気相接触反応を行
った。結果を表−3に示す。
When the obtained composite metal oxide was subjected to powder X-ray diffraction measurement (using Cu-Kα ray), the diffraction angle was 2θ.
As (゜), 7.1, 8.2, 9.1, 22.2, 2
7.2, 28.2, 35.5, 36.2, 45.1, 5
A major diffraction peak was observed at 0.0. Using the composite metal oxide as a catalyst, 0.5 g was charged into a reactor, and a reaction temperature of 4 g was used.
At 40 ° C. and a space velocity SV of 500 h −1 , gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0043】実施例2 三酸化アンチモン(Sb23)粉末を24.8gとした
以外は実施例1と同様の操作をして、複合金属酸化物焼
成物を得た。得られた複合金属酸化物の粉末X線回折測
定を行ったところ、実施例1と同様の主要回折ピ−クが
観察された。
Example 2 A fired composite metal oxide was obtained in the same manner as in Example 1, except that the amount of antimony trioxide (Sb 2 O 3 ) powder was changed to 24.8 g. When the powder X-ray diffraction measurement of the obtained composite metal oxide was performed, the same main diffraction peak as in Example 1 was observed.

【0044】該複合金属酸化物を触媒として0.5gを
反応器に充填し、反応温度440℃、空間速度SVを4
60h-1として、エタン:空気=1:5のモル比でガス
を供給し、気相接触反応を行った。結果を表−3に示
す。
A reactor was charged with 0.5 g of the composite metal oxide as a catalyst, and the reaction temperature was 440 ° C. and the space velocity SV was 4
At 60 h −1 , gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0045】実施例3 三酸化アンチモン(Sb23)粉末を29.2g使用
し、シュウ酸チタンアンモニウムを使用せず、代わりに
シュウ酸をMoに対して0.27モル倍添加した以外は
実施例1と同様の操作をして、触媒前駆体を得た。触媒
前駆体を空気下、400℃で処理した後、窒素気流下、
600℃で2時間焼成して複合金属酸化物を得た。
Example 3 Except that 29.2 g of antimony trioxide (Sb 2 O 3 ) powder was used, titanium ammonium oxalate was not used, and instead, oxalic acid was added 0.27 mol times of Mo. The same operation as in Example 1 was performed to obtain a catalyst precursor. After treating the catalyst precursor at 400 ° C. under air, under a nitrogen stream,
Calcination was performed at 600 ° C. for 2 hours to obtain a composite metal oxide.

【0046】得られた複合金属酸化物の粉末X線回折測
定を行ったところ、実施例1と同様の主要回折ピ−クを
有する化合物の存在が確認された。該複合金属酸化物を
触媒として0.5gを反応器に充填し、反応温度440
℃、空間速度SVを690h-1として、エタン:空気=
1:5のモル比でガスを供給し、気相接触反応を行っ
た。結果を表−3に示す。
The obtained composite metal oxide was subjected to powder X-ray diffraction measurement, and it was confirmed that a compound having the same major diffraction peak as in Example 1 was present. A reactor was charged with 0.5 g of the composite metal oxide as a catalyst, and the reaction temperature was 440.
℃, space velocity SV is 690 h -1 , ethane: air =
Gas was supplied at a molar ratio of 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0047】実施例4 シュウ酸チタンアンモニウムの代わりにメタタングステ
ン酸アンモニウムをWがMoに対して0.27モル倍と
なるように添加した以外は実施例1と同様の操作をし
て、複合金属酸化物焼成物を得た。
Example 4 A composite metal was prepared in the same manner as in Example 1 except that ammonium metatungstate was added in place of titanium ammonium oxalate so that W became 0.27 mole times of Mo. An oxide fired product was obtained.

【0048】得られた複合金属酸化物の粉末X線回折測
定を行ったところ、実施例1と同様の主要回折ピ−クが
観察された。該複合金属酸化物を触媒として0.5gを
反応器に充填し、反応温度460℃、空間速度SVを5
10h-1として、エタン:空気=1:5のモル比でガス
を供給し、気相接触反応を行った。結果を表−3に示
す。
The obtained composite metal oxide was subjected to powder X-ray diffraction measurement. As a result, the same main diffraction peak as in Example 1 was observed. Using the composite metal oxide as a catalyst, 0.5 g was charged into a reactor, the reaction temperature was 460 ° C., and the space velocity SV was 5
At 10 h −1 , gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0049】実施例5 温水600mlにメタバナジン酸アンモニウム(NH4
VO3)35.1gを溶解し、これに三酸化アンチモン
(Sb23)粉末29.2gを添加し、6時間スラリー
を加熱攪拌した後、パラモリブデン酸アンモニウム
((NH46Mo72 4・4H2O)176.6gを含有
する水溶液600mlを添加し、さらにNbの濃度が
2.23mol/kgのシュウ酸ニオブアンモニウム水
溶液22.4gを添加して均一なスラリーを得た。この
スラリーを加熱処理して水分を除去し、触媒前駆体を得
た。触媒前駆体を空気下、380℃で処理した後、窒素
気流下、600℃で2時間焼成して複合金属酸化物を得
た。
Example 5 In 600 ml of warm water, ammonium metavanadate (NH 4
After dissolving 35.1 g of VO 3 ), 29.2 g of antimony trioxide (Sb 2 O 3 ) powder was added thereto, and the slurry was heated and stirred for 6 hours, and then ammonium paramolybdate ((NH 4 ) 6 Mo 7 ) O 2 4 · 4H 2 O) was added an aqueous solution 600ml containing 176.6 g, to obtain a uniform slurry further the concentration of Nb was added ammonium niobium oxalate solution 22.4g of 2.23 mol / kg. This slurry was subjected to a heat treatment to remove water, thereby obtaining a catalyst precursor. After treating the catalyst precursor in air at 380 ° C., it was calcined at 600 ° C. for 2 hours in a nitrogen stream to obtain a composite metal oxide.

【0050】得られた複合金属酸化物の粉末X線回折測
定を行ったところ、実施例1と同様の主要回折ピ−クが
観察された。該複合金属酸化物を触媒として0.5gを
反応器に充填し、反応温度440℃、空間速度SVを1
200h-1として、エタン:空気=1:5のモル比でガ
スを供給し、気相接触反応を行った。結果を表−3に示
す。
When the obtained composite metal oxide was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 0.5 g of the composite metal oxide as a catalyst, and the reaction temperature was 440 ° C. and the space velocity SV was 1
At 200 h −1 , gas was supplied at a molar ratio of ethane: air = 1: 5, and a gas phase contact reaction was performed. The results are shown in Table-3.

【0051】実施例6 実施例5で調製した複合金属酸化物を触媒として1.0
gを反応器に充填し、反応温度420℃、空間速度SV
を600h-1として、エタン:空気=1:5のモル比で
ガスを供給し、気相接触反応を行った。結果を表−3に
示す。
Example 6 Using the composite metal oxide prepared in Example 5 as a catalyst, 1.0
g into a reactor, the reaction temperature is 420 ° C., and the space velocity is SV.
As 600h -1, ethane: air = 1: gas is supplied at a molar ratio of 5 was subjected to gas-phase catalytic reaction. The results are shown in Table-3.

【0052】実施例7 実施例5で調製した複合金属酸化物を触媒として0.5
gを反応器に充填し、反応温度420℃、空間速度SV
を690h-1として、エタン:空気=1:3のモル比で
ガスを供給し、気相接触反応を行った。結果を表−3に
示す。
Example 7 Using the composite metal oxide prepared in Example 5 as a catalyst, 0.5
g into a reactor, the reaction temperature is 420 ° C., and the space velocity is SV.
Was set to 690 h −1 , and a gas was supplied at a molar ratio of ethane: air = 1: 3 to perform a gas phase contact reaction. The results are shown in Table-3.

【0053】実施例8 実施例5で調製した複合金属酸化物を触媒として0.5
gを反応器に充填し、反応温度430℃、空間速度SV
を1200h-1として、エタン:空気=1:20のモル
比でガスを供給し、気相接触反応を行った。結果を表−
3に示す。
Example 8 Using the composite metal oxide prepared in Example 5 as a catalyst, 0.5
g in a reactor, a reaction temperature of 430 ° C., and a space velocity SV.
Was set to 1200 h -1 , and a gas was supplied at a molar ratio of ethane: air = 1: 20 to perform a gas phase contact reaction. Table-Results
3 is shown.

【0054】実施例9 実施例5で調製した複合金属酸化物を触媒として1.0
gを反応器に充填し、反応温度340℃、空間速度SV
を520h-1として、エタン:空気=3:1のモル比で
ガスを供給し、気相接触反応を行った。結果を表−3に
示す。
Example 9 Using the composite metal oxide prepared in Example 5 as a catalyst, 1.0
g in a reactor, the reaction temperature is 340 ° C., and the space velocity is SV.
Was set to 520 h −1 , and a gas was supplied at a molar ratio of ethane: air = 3: 1 to perform a gas phase contact reaction. The results are shown in Table-3.

【0055】実施例10 Nb成分添加の後に乾燥重量換算でSiO2が10wt
%となるようにシリカゾル(20wt%水性ゾル)を添
加した以外は、実施例5と同様の操作をして、複合金属
酸化物及び担体を含有する触媒組成物を得た。得られた
触媒組成物の粉末X線回折測定を行ったところ、実施例
1と同様の主要回折ピ−クが観察された。
Example 10 After adding the Nb component, 10 wt% of SiO 2 was calculated in terms of dry weight.
% In the same manner as in Example 5, except that silica sol (20 wt% aqueous sol) was added to obtain a catalyst composition containing a composite metal oxide and a carrier. When the obtained catalyst composition was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed.

【0056】該触媒組成物0.7gを反応器に充填し、
反応温度450℃、空間速度SVを750h-1として、
エタン:空気=1:5のモル比でガスを供給し、気相接
触反応を行った。結果を表−3に示す。
0.7 g of the catalyst composition was charged into a reactor,
Assuming a reaction temperature of 450 ° C. and a space velocity SV of 750 h −1 ,
Gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0057】実施例11 三酸化アンチモン(Sb23)粉末を19.1g使用
し、シュウ酸ニオブアンモニウムを使用せず、代わりに
酸化ニオブゾルをNbがMoに対して0.05モル倍に
なるように添加した以外は実施例5と同様の操作をし
て、触媒前駆体を得た。触媒前駆体を空気下、380℃
で処理した後、窒素気流下、650℃で5分間焼成して
複合金属酸化物を得た。
Example 11 19.1 g of antimony trioxide (Sb 2 O 3 ) powder was used, and niobium ammonium oxalate was not used. Instead of niobium oxide sol, the molar ratio of Nb to Mo was 0.05 mol times. A catalyst precursor was obtained by performing the same operation as in Example 5 except that the catalyst precursor was added as described above. 380 ° C under air
And then calcined at 650 ° C. for 5 minutes under a nitrogen stream to obtain a composite metal oxide.

【0058】得られた複合金属酸化物の粉末X線回折測
定を行ったところ、実施例1と同様の主要回折ピ−クが
観察された。該複合金属酸化物を触媒として0.5gを
反応器に充填し、反応温度460℃、空間速度SVを6
40h-1として、エタン:空気=1:5のモル比でガス
を供給し、気相接触反応を行った。結果を表−3に示
す。
The obtained composite metal oxide was subjected to powder X-ray diffraction measurement. As a result, the same major diffraction peak as in Example 1 was observed. 0.5 g of the composite metal oxide as a catalyst was charged into a reactor, and the reaction temperature was 460 ° C. and the space velocity SV was 6
At 40 h −1 , gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0059】実施例12 三酸化アンチモン(Sb23)粉末を23.5g使用
し、パラモリブデン酸アンモニウムを211.9g使用
し、Nb成分添加の後にオキシ水酸化ジルコニウムをZ
rがMoに対して0.08モル倍になるように添加した
以外は実施例5と同様の操作をして、複合金属酸化物焼
成物を得た。
Example 12 23.5 g of antimony trioxide (Sb 2 O 3 ) powder, 211.9 g of ammonium paramolybdate were used, and after adding the Nb component, zirconium oxyhydroxide was added to Z.
The same operation as in Example 5 was carried out except that r was added so as to be 0.08 mol times of Mo, to obtain a fired composite metal oxide.

【0060】得られた複合金属酸化物の粉末X線回折測
定を行ったところ、実施例1と同様の主要回折ピ−クが
観察された。該複合金属酸化物を触媒として0.5gを
反応器に充填し、反応温度440℃、空間速度SVを5
20h-1として、エタン:空気=1:5のモル比でガス
を供給し、気相接触反応を行った。結果を表−3に示
す。
When the obtained composite metal oxide was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 0.5 g of the composite metal oxide as a catalyst at a reaction temperature of 440 ° C., and a space velocity SV of 5 g.
At 20 h −1 , gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0061】実施例13 三酸化アンチモン(Sb23)粉末を22.0g使用
し、Nb成分添加の後に水酸化セリウムをCeがMoに
対して0.02モル倍になるように添加した以外は実施
例5と同様の操作をして、触媒前駆体を得た。触媒前駆
体を空気下、380℃で処理した後、窒素気流下、62
0℃で2時間焼成して複合金属酸化物を得た。
Example 13 Except that 22.0 g of antimony trioxide (Sb 2 O 3 ) powder was used, and cerium hydroxide was added after the Nb component was added so that Ce became 0.02 mole times of Mo. Was operated in the same manner as in Example 5 to obtain a catalyst precursor. After treating the catalyst precursor in air at 380 ° C.,
Calcination was performed at 0 ° C. for 2 hours to obtain a composite metal oxide.

【0062】得られた複合金属酸化物の粉末X線回折測
定を行ったところ、実施例1と同様の主要回折ピ−クが
観察された。該複合金属酸化物を触媒として0.5gを
反応器に充填し、反応温度450℃、空間速度SVを6
90h-1として、エタン:空気=1:5のモル比でガス
を供給し、気相接触反応を行った。結果を表−3に示
す。
When the obtained composite metal oxide was subjected to powder X-ray diffraction measurement, the same major diffraction peak as in Example 1 was observed. A reactor was charged with 0.5 g of the composite metal oxide as a catalyst, and the reaction temperature was 450 ° C. and the space velocity SV was 6
At 90 h −1 , gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0063】実施例14 Ce成分添加の後に乾燥重量換算でSiO2が10wt
%となるようにシリカゾル(20wt%水性ゾル)を添
加した以外は実施例13と同様の操作をして、複合金属
酸化物及び担体を含有する触媒組成物を得た。
Example 14 After adding the Ce component, 10 wt% of SiO 2 was calculated in terms of dry weight.
%, And the same operation as in Example 13 was carried out except that silica sol (20 wt% aqueous sol) was added to obtain a catalyst composition containing the composite metal oxide and the carrier.

【0064】得られた触媒組成物の粉末X線回折測定を
行ったところ、実施例1と同様の主要回折ピ−クが観察
された。該触媒組成物0.7gを反応器に充填し、反応
温度450℃、空間速度SVを670h-1として、エタ
ン:空気=1:5のモル比でガスを供給し、気相接触反
応を行った。結果を表−3に示す。
The obtained catalyst composition was subjected to powder X-ray diffraction measurement. As a result, the same main diffraction peak as in Example 1 was observed. 0.7 g of the catalyst composition was charged into a reactor, and a gas was supplied at a reaction temperature of 450 ° C. and a space velocity SV of 670 h −1 at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. Was. The results are shown in Table-3.

【0065】実施例15 実施例5で得た複合金属酸化物触媒10gを60mlの
水に分散させ、平均粒径2mmの球状ジルコニアビーズ
230gとともにステンレス製ポットに充填した。ポッ
ト中に装着されたステンレス製攪拌羽根で充填物を23
00rpmで2時間攪拌粉砕し、内容物をビーズと濾別
した後、乾燥し、複合金属酸化物固体を得た。
Example 15 10 g of the composite metal oxide catalyst obtained in Example 5 was dispersed in 60 ml of water and charged into a stainless steel pot together with 230 g of spherical zirconia beads having an average particle size of 2 mm. Filled with a stainless steel stirring blade installed in the pot to 23
The mixture was pulverized with stirring at 00 rpm for 2 hours. The content was separated from the beads by filtration, and then dried to obtain a composite metal oxide solid.

【0066】得られた複合金属酸化物触媒の粉末X線回
折測定を行ったところ、実施例1と同様の主要回折ピ−
クが観察された。該複合金属酸化物を触媒として1.0
gを反応器に充填し、反応温度360℃、空間速度SV
を550h-1として、エタン:空気=1:5のモル比で
ガスを供給し、気相接触反応を行った。結果を表−3に
示す。
When the obtained composite metal oxide catalyst was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was obtained.
Cracks were observed. Using the composite metal oxide as a catalyst, 1.0
g in a reactor, a reaction temperature of 360 ° C., and a space velocity of SV.
Was set to 550 h −1 , a gas was supplied at a molar ratio of ethane: air = 1: 5, and a gas phase contact reaction was performed. The results are shown in Table-3.

【0067】実施例16 三酸化アンチモン(Sb23)粉末を22.0g使用
し、パラモリブデン酸アンモニウムを194.2g使用
し、シュウ酸チタンアンモニウムを使用せず、代わりに
シュウ酸をMoに対して0.1モル倍添加し、その後オ
キシ水酸化ジルコニウムをZrがMoに対して0.05
モル倍になるようにシュウ酸の後に添加した以外は実施
例1と同様の操作をして、触媒前駆体を得た。触媒前駆
体を空気下、380℃で処理し、その後窒素気流下、6
00℃で処理した後、550℃で2時間焼成して複合金
属酸化物を得た。
Example 16 22.0 g of antimony trioxide (Sb 2 O 3 ) powder was used, 194.2 g of ammonium paramolybdate was used, no titanium ammonium oxalate was used, and oxalic acid was replaced by Mo. 0.1 mol times the amount of zirconium oxyhydroxide, and then 0.05% of Zr was added to Mo.
A catalyst precursor was obtained by performing the same operation as in Example 1 except that oxalic acid was added after the oxalic acid was added in a molar ratio. The catalyst precursor is treated at 380 ° C. in air and then in a stream of nitrogen for 6 hours.
After the treatment at 00 ° C., the mixture was calcined at 550 ° C. for 2 hours to obtain a composite metal oxide.

【0068】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度410℃、空間速
度SVを270h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, and a gas was supplied at a reaction temperature of 410 ° C. and a space velocity SV of 270 h −1 at a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0069】実施例17 実施例16で調製した複合金属酸化物を触媒として1.
0gを反応器に充填し、反応温度380℃、空間速度S
Vを270h-1として、エタン:空気=1:2のモル比
でガスを供給し、気相接触反応を行った。結果を表−3
に示す。
Example 17 Using the composite metal oxide prepared in Example 16 as a catalyst,
0 g was charged into the reactor, the reaction temperature was 380 ° C., and the space velocity was S.
The gas was supplied at a molar ratio of ethane: air = 1: 2 with V set to 270 h −1 to perform a gas phase contact reaction. Table 3 shows the results.
Shown in

【0070】実施例18 三酸化アンチモン(Sb23)粉末を22.0g使用
し、シュウ酸チタンアンモニウムを使用せず、代わりに
タンタルを0.67mol/L含有するシュウ酸タンタ
ル水溶液を3.8ml添加した以外は実施例1と同様の
操作をして、触媒前駆体を得た。触媒前駆体を空気下、
380℃で処理し、その後、窒素気流下、600℃で処
理した後、550℃で2時間焼成して複合金属酸化物を
得た。
Example 18 An aqueous solution of tantalum oxalate containing 22.0 g of antimony trioxide (Sb 2 O 3 ) powder without using titanium ammonium oxalate and instead containing 0.67 mol / L of tantalum was used. A catalyst precursor was obtained by performing the same operation as in Example 1 except that 8 ml was added. Catalyst precursor under air,
The treatment was carried out at 380 ° C., then at 600 ° C. in a nitrogen stream, and then calcined at 550 ° C. for 2 hours to obtain a composite metal oxide.

【0071】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度420℃、空間速
度SVを340h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 420 ° C., a space velocity SV of 340 h −1 , and a ethane: air = 1: 5 molar ratio. A catalytic reaction was performed. The results are shown in Table-3.

【0072】実施例19 実施例18で調製した複合金属酸化物を触媒として1.
0gを反応器に充填し、反応温度395℃、空間速度S
Vを340h-1として、エタン:空気=1:2のモル比
でガスを供給し、気相接触反応を行った。結果を表−3
に示す。
Example 19 Using the composite metal oxide prepared in Example 18 as a catalyst,
0 g in a reactor, a reaction temperature of 395 ° C., and a space velocity S
The gas was supplied at a molar ratio of ethane: air = 1: 2 with V set to 340 h −1 to perform a gas phase contact reaction. Table 3 shows the results.
Shown in

【0073】実施例20 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.18モル倍添加し、その後、硝酸ク
ロム(Cr(NO33・9H2O)をCrがMoに対し
て0.05モル倍になるように添加した以外は実施例1
8と同様の操作をして、複合金属酸化物を得た。
[0073] without the use of Example 20 tantalum oxalate solution, instead added 0.18 mol per mol of oxalic acid with respect to Mo, the then chromium nitrate (Cr (NO 3) 3 · 9H 2 O) Cr Example 1 was added except that was added so as to be 0.05 mol times with respect to Mo.
By performing the same operation as in Step 8, a composite metal oxide was obtained.

【0074】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed.

【0075】該複合金属酸化物を触媒として1.0gを
反応器に充填し、反応温度440℃、空間速度SVを2
60h-1として、エタン:空気=1:5のモル比でガス
を供給し、気相接触反応を行った。結果を表−3に示
す。
A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, the reaction temperature was 440 ° C., and the space velocity SV was 2
At 60 h −1 , gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-3.

【0076】実施例21 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.15モル倍添加し、その後、硝酸マ
ンガン(Mn(NO32・6H2O)をMnがMoに対
して0.05モル倍になるように添加した以外は実施例
18と同様の操作をして、複合金属酸化物を得た。
Example 21 Instead of using a tantalum oxalate aqueous solution, oxalic acid was added in an amount of 0.15 mol times with respect to Mo, and then manganese nitrate (Mn (NO 3 ) 2 .6H 2 O) was added to Mn. Was performed in the same manner as in Example 18, except that was added in an amount of 0.05 mol times with respect to Mo to obtain a composite metal oxide.

【0077】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度460℃、空間速
度SVを400h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 460 ° C., a space velocity SV of 400 h −1 , and a gaseous ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0078】実施例22 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
鉄アンモニウム(Fe(NH43(C243・3H
2O)をFeがMoに対して0.05モル倍になるよう
に添加した以外は実施例18と同様の操作をして、複合
金属酸化物を得た。
Example 22 A tantalum oxalate aqueous solution was not used, and instead, ammonium iron oxalate (Fe (NH 4 ) 3 (C 2 O 4 ) 3 .3H
A composite metal oxide was obtained by performing the same operation as in Example 18 except that 2O) was added so that Fe was 0.05 mol times the amount of Mo.

【0079】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度440℃、空間速
度SVを370h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 440 ° C., a space velocity SV of 370 h −1 and a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0080】実施例23 実施例22で調製した複合金属酸化物を触媒として1.
0gを反応器に充填し、反応温度400℃、空間速度S
Vを370h-1として、エタン:空気=1:2のモル比
でガスを供給し、気相接触反応を行った。結果を表−3
に示す。
Example 23 Using the composite metal oxide prepared in Example 22 as a catalyst,
0 g in a reactor, a reaction temperature of 400 ° C., a space velocity S
The gas was supplied at a molar ratio of ethane: air = 1: 2 with V set to 370 h −1 to perform a gas phase contact reaction. Table 3 shows the results.
Shown in

【0081】実施例24 シュウ酸タンタル水溶液を使用せず、代わりに硝酸コバ
ルト(Co(NO32・6H2O)をCoがMoに対し
て0.05モル倍になるように添加した以外は実施例1
8と同様の操作をして、複合金属酸化物を得た。
Example 24 Except that the tantalum oxalate aqueous solution was not used, but instead cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) was added so that Co was 0.05 mol times with respect to Mo. Is Example 1
By performing the same operation as in Step 8, a composite metal oxide was obtained.

【0082】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度450℃、空間速
度SVを250h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, and a gas was supplied at a reaction temperature of 450 ° C. and a space velocity SV of 250 h −1 at a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0083】実施例25 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.15モル倍添加し、その後、硝酸ニ
ッケル(Ni(NO32・6H2O)をNiがMoに対
して0.05モル倍になるように添加した以外は実施例
18と同様の操作をして、複合金属酸化物を得た。
Example 25 Instead of using an aqueous tantalum oxalate solution, oxalic acid was added in an amount of 0.15 mol times with respect to Mo, and then nickel nitrate (Ni (NO 3 ) 2 .6H 2 O) was added to Ni. Was performed in the same manner as in Example 18, except that was added in an amount of 0.05 mol times with respect to Mo to obtain a composite metal oxide.

【0084】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度400℃、空間速
度SVを280h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 400 ° C. and a space velocity SV of 280 h −1 at a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0085】実施例26 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.15モル倍添加し、その後、硝酸銅
(Cu(NO32・3H2O)をCuがMoに対して
0.05モル倍になるように添加した以外は実施例18
と同様の操作をして、複合金属酸化物を得た。
Example 26 Instead of using an aqueous tantalum oxalate solution, oxalic acid was added in an amount of 0.15 mol times with respect to Mo, and then copper nitrate (Cu (NO 3 ) 2 .3H 2 O) was added to Cu. Example 18 except that was added so as to be 0.05 mole times the Mo.
By performing the same operation as described above, a composite metal oxide was obtained.

【0086】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度430℃、空間速
度SVを300h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 430 ° C., a space velocity SV of 300 h −1 and a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0087】実施例27 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.15モル倍添加し、その後、硝酸亜
鉛(Zn(NO32・6H2O)をZnがMoに対して
0.05モル倍になるように添加した以外は実施例18
と同様の操作をして、複合金属酸化物を得た。
Example 27 Instead of using an aqueous tantalum oxalate solution, oxalic acid was added in an amount of 0.15 mol times with respect to Mo, and then zinc nitrate (Zn (NO 3 ) 2 .6H 2 O) was added to Zn. Example 18 except that was added so as to be 0.05 mole times the Mo.
By performing the same operation as described above, a composite metal oxide was obtained.

【0088】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度410℃、空間速
度SVを280h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 410 ° C. and a space velocity SV of 280 h −1 at a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0089】実施例28 実施例27で調製した複合金属酸化物を触媒として1.
0gを反応器に充填し、反応温度380℃、空間速度S
Vを280h-1として、エタン:空気=1:2のモル比
でガスを供給し、気相接触反応を行った。結果を表−3
に示す。
Example 28 Using the composite metal oxide prepared in Example 27 as a catalyst,
0 g was charged into the reactor, the reaction temperature was 380 ° C., and the space velocity was S.
A gas was supplied at a molar ratio of ethane: air = 1: 2 with V set to 280 h −1 to perform a gas phase contact reaction. Table 3 shows the results.
Shown in

【0090】実施例29 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.19モル倍添加し、その後、硝酸ア
ルミニウム(Al(NO33・6H2O)をAlがMo
に対して0.05モル倍になるように添加した以外は実
施例18と同様の操作をして、複合金属酸化物を得た。
Example 29 Instead of using an aqueous solution of tantalum oxalate, oxalic acid was added in an amount of 0.19 mol times with respect to Mo, and then aluminum nitrate (Al (NO 3 ) 3 .6H 2 O) was added to Al. Is Mo
A composite metal oxide was obtained by performing the same operation as in Example 18 except that the addition was performed in a molar amount of 0.05 mol.

【0091】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合酸化物を触媒として1.
0gを反応器に充填し、反応温度420℃、空間速度S
Vを260h-1として、エタン:空気=1:5のモル比
でガスを供給し、気相接触反応を行った。結果を表−3
に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. Using the composite oxide as a catalyst:
0 g was charged into the reactor, the reaction temperature was 420 ° C., and the space velocity S
A gas was supplied at a molar ratio of ethane: air = 1: 5 with V set to 260 h −1 to perform a gas phase contact reaction. Table 3 shows the results.
Shown in

【0092】実施例30 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.19モル倍添加し、その後、硝酸イ
ンジウム(In(NO33・3H2O)をInがMoに
対して0.05モル倍になるように添加した以外は実施
例18と同様の操作をして、複合金属酸化物を得た。
Example 30 Instead of using a tantalum oxalate aqueous solution, oxalic acid was added in an amount of 0.19 mol times with respect to Mo, and then indium nitrate (In (NO 3 ) 3 .3H 2 O) was added to In. Was performed in the same manner as in Example 18, except that was added in an amount of 0.05 mol times with respect to Mo to obtain a composite metal oxide.

【0093】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度450℃、空間速
度SVを270h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 450 ° C. and a space velocity SV of 270 h −1 at a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0094】実施例31 実施例30で調製した複合金属酸化物を触媒として1.
0gを反応器に充填し、反応温度390℃、空間速度S
Vを270h-1として、エタン:空気=1:2のモル比
でガスを供給し、気相接触反応を行った。結果を表−3
に示す。
Example 31 Using the composite metal oxide prepared in Example 30 as a catalyst,
0 g was charged into the reactor, the reaction temperature was 390 ° C., and the space velocity was S.
The gas was supplied at a molar ratio of ethane: air = 1: 2 with V set to 270 h −1 to perform a gas phase contact reaction. Table 3 shows the results.
Shown in

【0095】実施例32 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.1モル倍添加し、その後SnO2
10wt%含有する水性溶液をSnがMoに対して0.
05モル倍になるように添加した以外は実施例18と同
様の操作をして、複合金属酸化物を得た。
Example 32 Instead of using an aqueous solution of tantalum oxalate, oxalic acid was added in an amount of 0.1 mol times with respect to Mo, and then an aqueous solution containing 10 wt% of SnO 2 was added with an amount of Sn of 0 to Mo. .
A composite metal oxide was obtained in the same manner as in Example 18, except that the addition was performed in a molar amount of 05.

【0096】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度420℃、空間速
度SVを290h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 420 ° C. and a space velocity SV of 290 h −1 at a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0097】実施例33 実施例32で調製した複合金属酸化物を触媒として1.
0gを反応器に充填し、反応温度390℃、空間速度S
Vを290h-1として、エタン:空気=1:2のモル比
でガスを供給し、気相接触反応を行った。結果を表−3
に示す。
Example 33 Using the composite metal oxide prepared in Example 32 as a catalyst,
0 g was charged into the reactor, the reaction temperature was 390 ° C., and the space velocity was S.
A gas was supplied at a molar ratio of ethane: air = 1: 2 with V set to 290 h −1 to perform a gas phase contact reaction. Table 3 shows the results.
Shown in

【0098】実施例34 シュウ酸タンタル水溶液を使用せず、代わりにシュウ酸
をMoに対して0.15モル倍添加し、その後、硝酸鉛
(Pb(NO32)をPbがMoに対して0.05モル
倍になるように添加した以外は実施例18と同様の操作
をして、複合金属酸化物を得た。
Example 34 Without using an aqueous solution of tantalum oxalate, oxalic acid was added in an amount of 0.15 mol times with respect to Mo, and then lead nitrate (Pb (NO 3 ) 2 ) was added with respect to that of Mo. A composite metal oxide was obtained in the same manner as in Example 18, except that it was added so as to be 0.05 mol times.

【0099】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度470℃、空間速
度SVを360h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 470 ° C., a space velocity SV of 360 h −1 and a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0100】実施例35 三酸化アンチモン(Sb23)粉末を22.0g使用
し、Nb成分添加の後にシュウ酸鉄アンモニウム(Fe
(NH43(C243・3H2O)をFeがMoに対し
て0.05モル倍になるように添加した以外は実施例5
と同様の操作をして、触媒前駆体を得た。触媒前駆体を
空気下、380℃で処理した後、窒素気流下、600℃
で処理した後、550℃で2時間焼成して複合金属酸化
物を得た。
Example 35 22.0 g of antimony trioxide (Sb 2 O 3 ) powder was used, and after the Nb component was added, iron ammonium oxalate (Fe
Example 5 except that (NH 4 ) 3 (C 2 O 4 ) 3 .3H 2 O) was added so that Fe was 0.05 mol times with respect to Mo.
By the same operation as described above, a catalyst precursor was obtained. After treating the catalyst precursor in air at 380 ° C, the catalyst precursor was heated at 600 ° C in a nitrogen stream.
After baking at 550 ° C. for 2 hours, a composite metal oxide was obtained.

【0101】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度470℃、空間速
度SVを500h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 470 ° C., a space velocity SV of 500 h −1 , and a gaseous ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0102】実施例36 シュウ酸鉄アンモニウムを使用せず、代わりに硝酸コバ
ルト(Co(NO32・6H2O)をCoがMoに対し
て0.05モル倍になるように添加した以外は実施例3
5と同様の操作をして、複合金属酸化物を得た。
Example 36 Except that ammonium iron oxalate was not used and instead cobalt nitrate (Co (NO 3 ) 2 .6H 2 O) was added so that Co was 0.05 mol times as much as Mo. Is Example 3
By performing the same operation as in Step 5, a composite metal oxide was obtained.

【0103】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度460℃、空間速
度SVを470h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
The composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement. As a result, the same major diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 460 ° C., a space velocity SV of 470 h −1 , and a gas ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0104】実施例37 シュウ酸鉄アンモニウムを使用せず、代わりに硝酸ニッ
ケル(Ni(NO32・6H2O)をNiがMoに対し
て0.05モル倍になるように添加した以外は実施例3
5と同様の操作をして、複合金属酸化物を得た。
Example 37 Except that ammonium iron oxalate was not used and nickel nitrate (Ni (NO 3 ) 2 .6H 2 O) was added instead so that Ni became 0.05 mole times of Mo. Is Example 3
By performing the same operation as in Step 5, a composite metal oxide was obtained.

【0105】このようにして得た複合金属酸化物の粉末
X線回折測定を行ったところ、実施例1と同様の主要回
折ピ−クが観察された。該複合金属酸化物を触媒として
1.0gを反応器に充填し、反応温度420℃、空間速
度SVを360h-1として、エタン:空気=1:5のモ
ル比でガスを供給し、気相接触反応を行った。結果を表
−3に示す。
When the composite metal oxide thus obtained was subjected to powder X-ray diffraction measurement, the same main diffraction peak as in Example 1 was observed. A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, a gas was supplied at a reaction temperature of 420 ° C., a space velocity SV of 360 h −1 and a molar ratio of ethane: air = 1: 5. A catalytic reaction was performed. The results are shown in Table-3.

【0106】実施例38 三酸化アンチモン(Sb23)粉末17.6gを使用
し、酸化ニオブゾルをNbがMoに対して0.10モル
倍になるように添加した以外は実施例11と同様の操作
をして、触媒前駆体を得た。触媒前駆体を空気下、38
0℃で処理した後、窒素気流下、600℃で5分間焼成
して複合金属酸化物を得た。得られた複合金属酸化物の
粉末X線回折測定を行ったところ、実施例1と同様の主
要回折ピ−クが観察された。
Example 38 Same as Example 11 except that 17.6 g of antimony trioxide (Sb 2 O 3 ) powder was used, and niobium oxide sol was added so that Nb was 0.10 mol times of Mo. By performing the above operation, a catalyst precursor was obtained. Catalyst precursor under air, 38
After treatment at 0 ° C., the mixture was calcined at 600 ° C. for 5 minutes under a nitrogen stream to obtain a composite metal oxide. When the powder X-ray diffraction measurement of the obtained composite metal oxide was performed, the same main diffraction peak as in Example 1 was observed.

【0107】この複合金属酸化物10gを70℃に加温
した5wt%のシュウ酸水溶液100mlに6時間浸
し、濾過、水洗後乾燥し、さらに70℃に加温した2w
t%の過酸化水素水に6時間浸して、濾過、水洗後乾燥
した。得られた複合金属酸化物の粉末X線回折測定を行
った(Cu−Kα線を使用)ところ、実施例1のお回折
パターンとは異なり、表−1に示した回折の組は現れ
ず、表−2に示した回折の組のみが現れた。すなわち、
回折角2θ(゜)として、6.8、8.0、9.1、2
2.3、27.3、35.5、、45.3、に主要回折
ピ−クが観察された。
10 g of this composite metal oxide was immersed in 100 ml of a 5 wt% oxalic acid aqueous solution heated to 70 ° C. for 6 hours, filtered, washed with water, dried, and further heated to 70 ° C.
It was immersed in t% hydrogen peroxide for 6 hours, filtered, washed with water and dried. The obtained composite metal oxide was subjected to powder X-ray diffraction measurement (using Cu-Kα rays). Unlike the diffraction pattern of Example 1, the set of diffractions shown in Table 1 did not appear. Only the set of diffractions shown in Table 2 appeared. That is,
As diffraction angles 2θ (゜), 6.8, 8.0, 9.1, 2
Major diffraction peaks were observed at 2.3, 27.3, 35.5, 45.3.

【0108】該複合金属酸化物を触媒として0.5gを
反応器に充てんし、反応温度420℃、空間速度SVを
550h-1として、エタン:空気=1:5のモル比でガ
スを供給し、気相接触反応を行った。結果を表−3に示
す。
Using the composite metal oxide as a catalyst, 0.5 g was charged into a reactor, and a gas was supplied at a reaction temperature of 420 ° C., a space velocity SV of 550 h −1 and a ethane: air = 1: 5 molar ratio. A gas phase contact reaction was performed. The results are shown in Table-3.

【0109】実施例39 実施例38でシュウ酸洗浄、濾過、水洗乾燥した複合金
属酸化物10gを70℃に加温したエチレングリコール
100mlに6時間浸し、濾過、水洗後乾燥した。得ら
れた複合金属酸化物の粉末X線回折測定を行った(Cu
−Kα線を使用)ところ、実施例1のお回折パターンと
は異なり、表−1に示した回折の組は現れず、表−2に
示した回折の組のみが現れた。すなわち、回折角2θ
(゜)として、6.8、8.0、9.1、22.3、2
7.3、35.5、、45.3、に主要回折ピ−クが観
察された。
Example 39 10 g of the composite metal oxide washed with oxalic acid, filtered, washed with water and dried in Example 38 was immersed in 100 ml of ethylene glycol heated to 70 ° C. for 6 hours, filtered, washed with water and dried. The obtained composite metal oxide was subjected to powder X-ray diffraction measurement (Cu
However, unlike the diffraction pattern of Example 1, the diffraction set shown in Table 1 did not appear, and only the diffraction set shown in Table 2 appeared. That is, the diffraction angle 2θ
As (゜), 6.8, 8.0, 9.1, 22.3, 2
Main diffraction peaks were observed at 7.3, 35.5, and 45.3.

【0110】該複合金属酸化物を触媒として0.5gを
反応器に充てんし、反応温度420℃、空間速度SVを
550h-1として、エタン:空気=1:5のモル比でガ
スを供給し、気相接触反応を行った。結果を表−3に示
す。
Using the composite metal oxide as a catalyst, 0.5 g was charged into a reactor, and a gas was supplied at a reaction temperature of 420 ° C., a space velocity SV of 550 h −1 and a molar ratio of ethane: air = 1: 5. A gas phase contact reaction was performed. The results are shown in Table-3.

【0111】比較例1 温水300mlに20.6wt%のNbを含有するシュ
ウ酸ニオブ31.5gと、三酸化アンチモン(Sb
23)粉末4.5gを添加し、攪拌しながら75℃で1
5分間加熱し、Nb・Sb含有水性溶液を調製した。
Comparative Example 1 31.5 g of niobium oxalate containing 20.6 wt% of Nb in 300 ml of hot water and antimony trioxide (Sb
2 O 3 ) 4.5 g of powder were added and stirred at 75 ° C. for 1 hour.
The mixture was heated for 5 minutes to prepare an Nb / Sb-containing aqueous solution.

【0112】75℃の温水300mlに24.1gのメ
タバナジン酸アンモニウムを添加し、15分間加熱攪拌
した水性溶液に、先に調製したNb・Sb含有水性溶液
を添加混合した。混合された水性溶液を攪拌しながら7
5℃で20分間加熱し、V・Nb・Sb含有水性溶液を
得た。117.7gのパラモリブデン酸アンモニウムを
水600mlに添加し攪拌しながら75℃で15分間加
熱したのち、先に調製した、V・Nb・Sb含有水性溶
液へ加え、75℃で15分間加熱攪拌した。
24.1 g of ammonium metavanadate was added to 300 ml of hot water at 75 ° C., and the aqueous solution containing Nb and Sb prepared above was added and mixed with the aqueous solution heated and stirred for 15 minutes. While stirring the mixed aqueous solution, 7
The mixture was heated at 5 ° C. for 20 minutes to obtain an aqueous solution containing V · Nb · Sb. 117.7 g of ammonium paramolybdate was added to 600 ml of water, heated at 75 ° C. for 15 minutes with stirring, added to the previously prepared aqueous solution containing V · Nb · Sb, and heated and stirred at 75 ° C. for 15 minutes. .

【0113】得られた水性溶液を加熱処理して水分を除
去し、固体を得た。この固体をさらに120℃で12時
間乾燥したのちに16〜28メッシュに成型し、触媒前
駆体とした。触媒前駆体を空気気流下、350℃で5時
間焼成して複合金属酸化物を得た。得られた複合金属酸
化物の粉末X線回折測定を行ったところ、回折角2θ
(゜)として、22.2の主要回折ピ−ク1本のみが観
察された。
The obtained aqueous solution was subjected to a heat treatment to remove water, and a solid was obtained. The solid was further dried at 120 ° C. for 12 hours, and then molded into a mesh of 16 to 28 to obtain a catalyst precursor. The catalyst precursor was calcined at 350 ° C. for 5 hours in an air stream to obtain a composite metal oxide. When a powder X-ray diffraction measurement of the obtained composite metal oxide was performed, the diffraction angle was 2θ.
As (゜), only one main diffraction peak of 22.2 was observed.

【0114】該複合金属酸化物を触媒として1.0gを
反応器に充填し、反応温度430℃、空間速度SVを4
70h-1として、エタン:空気=1:5のモル比でガス
を供給し、気相接触反応を行った。結果を表−4に示
す。
A reactor was charged with 1.0 g of the composite metal oxide as a catalyst, and the reaction temperature was 430 ° C., and the space velocity SV was 4 g.
At 70 h −1 , a gas was supplied at a molar ratio of ethane: air = 1: 5 to perform a gas phase contact reaction. The results are shown in Table-4.

【0115】[0115]

【表5】 表−3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例 触媒組成 反応温度 空間速度 エタン転化 エチレン (℃) (h-1) 率(%) 収率(%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 Mo1V0.3Sb0.13Ti0.05On 440 450 89.1 67.0 2 Mo1V0.3Sb0.17Ti0.05On 440 460 88.0 66.6 3 Mo1V0.3Sb0.20On 440 690 78.8 61.7 4 Mo1V0.3Sb0.13W 0.05On 460 510 84.1 62.3 5 Mo1V0.3Sb0.20Nb0.05On 440 1200 87.9 66.6 6 Mo1V0.3Sb0.20Nb0.05On 420 600 91.5 68.0 7 Mo1V0.3Sb0.20Nb0.05On 420 690 76.8 63.3 8 Mo1V0.3Sb0.20Nb0.05On 430 1200 87.7 65.4 9 Mo1V0.3Sb0.20Nb0.05On 340 520 11.5 11.0 10 Mo1V0.3Sb0.20Nb0.05On* 450 750 90.6 69.5 11 Mo1V0.3Sb0.13Nb0.05On 460 640 85.6 64.2 12 Mo1V0.25Sb0.13Zr0.08 440 520 89.9 71.1 Nb0.04On 13 Mo1V0.3Sb0.15Nb0.05 450 690 90.3 70.2 Ce0.02On 14 Mo1V0.3Sb0.15Nb0.05 450 670 90.7 70.4 Ce0.02On* 15 Mo1V0.3Sb0.20Nb0.05On 360 550 83.5 62.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (*はSiO2を10wt%含有)Table 5 Table 3---------------------------Examples Examples Catalyst composition Reaction temperature Space Rate Ethane conversion Ethylene (° C.) (h -1 ) Rate (%) Yield (%) ---------------------------------------- −−−−−−− 1 Mo 1 V 0.3 Sb 0.13 Ti 0.05 On 440 450 89.1 67.0 2 Mo 1 V 0.3 Sb 0.17 Ti 0.05 On 440 460 88.0 66.6 3 Mo 1 V 0.3 Sb 0.20 On 440 690 78.8 61.7 4 Mo 1 V 0.3 Sb 0.13 W 0.05 On 460 510 84.1 62.3 5 Mo 1 V 0.3 Sb 0.20 Nb 0.05 On 440 1200 87.9 66.6 6 Mo 1 V 0.3 Sb 0.20 Nb 0.05 On 420 600 91.5 68.0 7 Mo 1 V 0.3 Sb 0.20 Nb 0.05 On 420 690 76.8 63.38 Mo 1 V 0.3 Sb 0.20 Nb 0.05 On 430 1200 87.7 65.4 9 Mo 1 V 0.3 Sb 0.20 Nb 0.05 On 340 520 11.5 11.0 10 Mo 1 V 0.3 Sb 0.20 Nb 0.05 On * 450 750 90.6 69.5 11 Mo 1 V 0.3 Sb 0.13 Nb 0.05 On 460 640 85 0.6 64.2 12 Mo 1 V 0.25 Sb 0.13 Zr 0.08 440 520 89.9 71.1 Nb 0.04 On 13 Mo 1 V 0.3 Sb 0.15 Nb 0.05 450 690 90.3 70.2 Ce 0.02 On 14 Mo 1 V 0.3 Sb 0.15 Nb 0.05 450 670 90.7 70.4 Ce 0.02 On * 15 Mo 1 V 0.3 Sb 0.20 Nb 0.05 On 360 550 83.5 62.1 −−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−− (* indicates 10 wt% of SiO 2 )

【0116】[0116]

【表6】 表−3(続き) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例 触媒組成 反応温度 空間速度 エタン転化 エチレン (℃) (h-1) 率(%) 収率(%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 16 Mo1V0.27Sb0.14Zr0.05On 410 270 87.9 71.2 17 Mo1V0.27Sb0.14Zr0.05On 380 270 59.9 54.8 18 Mo1V0.3Sb0.15Ta0.05On 420 340 88.4 68.2 19 Mo1V0.3Sb0.15Ta0.05On 395 340 57.0 51.1 20 Mo1V0.3Sb0.15Cr0.05On 440 260 84.4 59.2 21 Mo1V0.3Sb0.15Mn0.05On 460 400 86.8 64.8 22 Mo1V0.3Sb0.15Fe0.05On 440 370 89.8 63.1 23 Mo1V0.3Sb0.15Fe0.05On 400 370 59.0 52.7 24 Mo1V0.3Sb0.15Co0.05On 450 250 84.9 58.6 25 Mo1V0.3Sb0.15Ni0.05On 400 280 84.1 64.1 26 Mo1V0.3Sb0.15Cu0.05On 430 300 81.0 58.2 27 Mo1V0.3Sb0.15Zn0.05On 410 280 89.3 70.7 28 Mo1V0.3Sb0.15Zn0.05On 380 280 60.6 55.4 29 Mo1V0.3Sb0.15Al0.05On 420 260 85.2 63.0 30 Mo1V0.3Sb0.15In0.05On 450 270 82.7 65.6 31 Mo1V0.3Sb0.15In0.05On 390 270 58.1 52.4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 6 (Continued)---------------------------Examples Examples Catalyst composition Reaction temperature Space velocity Ethane conversion Ethylene (° C) (h -1 ) Rate (%) Yield (%) ------------------------------------------ −−−−−−−−−−− 16 Mo 1 V 0.27 Sb 0.14 Zr 0.05 On 410 270 87.9 71.2 17 Mo 1 V 0.27 Sb 0.14 Zr 0.05 On 380 270 59.9 54.8 18 Mo 1 V 0.3 Sb 0.15 Ta 0.05 On 420 340 88.4 68.2 19 Mo 1 V 0.3 Sb 0.15 Ta 0.05 On 395 340 57.0 51.1 20 Mo 1 V 0.3 Sb 0.15 Cr 0.05 On 440 260 84.4 59.2 21 Mo 1 V 0.3 Sb 0.15 Mn 0.05 On 460 400 86.8 64.8 22 Mo 1 V 0.3 Sb 0.15 Fe 0.05 On 440 370 89.8 63.1 23 Mo 1 V 0.3 Sb 0.15 Fe 0.05 On 4 0 370 59.0 52.7 24 Mo 1 V 0.3 Sb 0.15 Co 0.05 On 450 250 84.9 58.6 25 Mo 1 V 0.3 Sb 0.15 Ni 0.05 On 400 280 84.1 64.1 26 Mo 1 V 0.3 Sb 0.15 Cu 0.05 On 430 300 81.0 58.2 27 Mo 1 V 0.3 Sb 0.15 Zn 0.05 On 410 280 89.3 70.7 28 Mo 1 V 0.3 Sb 0.15 Zn 0.05 On 380 280 60.6 55.4 29 Mo 1 V 0.3 Sb 0.15 Al 0.05 On 420 260 85.2 63.0 30 Mo 1 V 0.3 Sb 0.15 In 0.05 On 450 270 82.7 65.6 31 Mo 1 V 0.3 Sb 0.15 In 0.05 On 390 270 58.1 52 .4 ---------------------------------------------------------------------------

【0117】[0117]

【表7】 表−3(続き) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例 触媒組成 反応温度 空間速度 エタン転化 エチレン (℃) (h-1) 率(%) 収率(%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 32 Mo1V0.3Sb0.15Sn0.05On 420 290 89.6 66.2 33 Mo1V0.3Sb0.15Sn0.05On 390 290 57.9 51.8 34 Mo1V0.3Sb0.15Pb0.05On 470 360 84.6 62.3 35 Mo1V0.3Sb0.15Nb0.05 470 500 84.1 57.5 Fe0.05On 36 Mo1V0.3Sb0.15Nb0.05 460 470 82.2 52.1 Co0.05On 37 Mo1V0.3Sb0.15Nb0.05 420 360 87.6 63.8 Ni0.05On 38 Mo1V0.26Sb0.09Nb0.12On 420 550 86.5 60.8 39 Mo1V0.28Sb0.09Nb0.11On 420 550 85.1 61.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 7 Table 3 (continued)-----------------------------Examples Examples Catalyst composition Reaction temperature Space velocity Ethane conversion Ethylene (° C) (h -1 ) Rate (%) Yield (%) ------------------------------------------ −−−−−−−−−−− 32 Mo 1 V 0.3 Sb 0.15 Sn 0.05 On 420 290 89.6 66.2 33 Mo 1 V 0.3 Sb 0.15 Sn 0.05 On 390 290 57.9 51.8 34 Mo 1 V 0.3 Sb 0.15 Pb 0.05 On 470 360 84.6 62.3 35 Mo 1 V 0.3 Sb 0.15 Nb 0.05 470 500 84.1 57.5 Fe 0.05 On 36 Mo 1 V 0.3 Sb 0.15 Nb 0.05 460 470 82.2 52. 1 Co 0.05 On 37 Mo 1 V 0.3 Sb 0.15 Nb 0.05 420 360 87.6 63.8 Ni 0.05 On 38 Mo 1 V 0.26 Sb 0.09 Nb 0.12 O n 420 550 86.5 60.8 39 Mo 1 V 0.2 8 Sb 0.09 Nb 0.11 O n 420 550 85.1 61.1 ----------------------------------- −

【0118】[0118]

【表8】 表−4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 比較例 触媒組成 反応温度 空間速度 エタン転化 エチレン (℃) (h-1) 率(%) 収率(%) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 Mo1V0.3Sb0.040Nb0.10On 430 470 68.5 32.1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 8 Table 4 ----------------------------------------------------------- Comparative Example Catalyst Composition Reaction Temperature Space Rate Ethane conversion Ethylene (° C.) (h -1 ) Rate (%) Yield (%) ---------------------------------------- −−−−−−− 1 Mo 1 V 0.3 Sb 0.040 Nb 0.10 On 430 470 68.5 32.1 −−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−

【0119】[0119]

【発明の効果】本発明によれば、反応系にハロゲン等を
共存させることなく、また特に高価な元素を用いること
なく、比較的に低い温度において、高い収率でエタンか
らエチレンを製造することが出来る。
According to the present invention, it is possible to produce ethylene from ethane in a high yield at a relatively low temperature without the coexistence of halogen or the like in the reaction system and without using particularly expensive elements. Can be done.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】触媒の存在下、高い温度で、エタンを分子
状酸素含有ガスと接触させることによってエチレンを製
造するに当たり、該触媒としてMo、V及びSbを必須
成分として含み、その粉末X線回折が主として下記表−
1及び/又は表−2に示す特徴的パターンを有する複合
金属酸化物を含有する触媒を使用することを特徴とする
エチレンの製造方法。 【表1】 表−1 −−−−−−−−−−−−−−−−−−−−−−−−− 回折角2θ(゜) 相対ピ−ク強度(%) −−−−−−−−−−−−−−−−−−−−−−−−− 22.2±0.4 (100) 28.3±0.4 (400〜10) 36.2±0.4 (80〜3) 45.1±0.4 (50〜3) 50.0±0.4 (50〜3) −−−−−−−−−−−−−−−−−−−−−−−−− (Cu−Kα線を使用)(かっこ内の数字は、22.2゜ のピ−クを100としたときの相対ピ−ク強度を示す。) 【表2】 表−2 −−−−−−−−−−−−−−−−−−−−−−−−− 回折角2θ(゜) 相対ピ−ク強度(%) −−−−−−−−−−−−−−−−−−−−−−−−− 6.7±0.4 (15〜1) 7.9±0.4 (20〜1) 9.1±0.4 (20〜1) 22.2±0.4 (100) 27.3±0.4 (80〜8) 35.5±0.4 (15〜3) 45.2±0.4 (50〜3) −−−−−−−−−−−−−−−−−−−−−−−−− (Cu−Kα線を使用)(かっこ内の数字は、22.2゜ のピ−クを100としたときの相対ピ−ク強度を示す。)
In producing ethylene by contacting ethane with a molecular oxygen-containing gas at a high temperature in the presence of a catalyst, the catalyst contains Mo, V and Sb as essential components, and its powder X-ray. Diffraction is mainly in the following table-
A method for producing ethylene, comprising using a catalyst containing a composite metal oxide having a characteristic pattern shown in Table 1 and / or Table 2. Table 1 Table 1 ----------------------------------------------------------- Diffraction angle 2θ (゜) Relative peak intensity (%) ------ −−−−−−−−−−−−−−−−−−−−−−−− 22.2 ± 0.4 (100) 28.3 ± 0.4 (400 to 10) 36.2 ± 0.4 (80-3) 45.1 ± 0.4 (50-3) 50.0 ± 0.4 (50-3) -------------------------------------------------------------------------- −−−− (Using Cu-Kα ray) (The number in parentheses indicates the relative peak intensity when the peak of 22.2 ° is set to 100.) −−−−−−−−−−−−−−−−−−−−−−−−−− Diffraction angle 2θ (゜) Relative peak intensity (%) −−−−−−−−−−−−− −−−−−−−−−−−−− 6.7 ± 0.4 (15 to 1) 7.9 ± 0.4 (20 to 1) 9.1 ± 0.4 (20-1) 22.2 ± 0.4 (100) 27.3 ± 0.4 (80-8) 35.5 ± 0.4 (15-3) 45.2 ± 0.4 (50 to 3) (using Cu-Kα radiation) (the number in parentheses is 22.2%). The relative peak strength is shown when the peak is set to 100.)
【請求項2】触媒が、その粉末X線回折が主として表−
1及び/または表−2に示す特徴的パターンを有する複
合金属酸化物を物理的に粉砕処理して得られる複合金属
酸化物を含有する触媒である請求項1に記載のエチレン
の製造方法。
2. The catalyst according to claim 1, wherein the powder X-ray diffraction is mainly represented by the following formula:
The method for producing ethylene according to claim 1, wherein the catalyst is a catalyst containing a composite metal oxide obtained by physically pulverizing a composite metal oxide having the characteristic pattern shown in Table 1 and / or Table 2.
【請求項3】触媒が、Mo、V、Sb及びX(但し、X
は、Ti、Zr、Nb、Ta、Cr、W、Mn、Fe、
Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、A
g、Zn、Al、In、Sn、Pb、Bi及びCeの中
から選ばれた1種以上の金属元素)を必須成分とし、金
属元素Mの全含有金属元素中に占める割合をモル分率r
Mで表したとき、 【数1】 0.25 < rMo < 0.98 0.003 < rV < 0.5 0.003 < rSb < 0.5 0.003 < rX < 0.5 の関係があるような複合金属酸化物を含有する触媒であ
る請求項1又は2に記載のエチレンの製造方法。
3. A catalyst comprising Mo, V, Sb and X (where X is
Represents Ti, Zr, Nb, Ta, Cr, W, Mn, Fe,
Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, A
g, at least one metal element selected from Zn, Al, In, Sn, Pb, Bi and Ce) as an essential component, and the ratio of the metal element M to the total contained metal elements is represented by a mole fraction r
When represented by M, there is a relationship of 0.25 <rMo <0.980.003 <rV <0.50.003 <rSb <0.50.003 <rX <0.5 The method for producing ethylene according to claim 1 or 2, which is a catalyst containing such a composite metal oxide.
【請求項4】複合金属酸化物が、V含有成分とSb含有
成分とを含む水性溶液にMoを含む化合物と元素Xを含
む化合物とを添加混合した後に該水性溶液を乾燥して得
られた触媒前駆体を焼成する工程を経て調製された複合
金属酸化物である請求項3に記載のエチレンの製造方
法。
4. A mixed metal oxide is obtained by adding and mixing a compound containing Mo and a compound containing element X to an aqueous solution containing a V-containing component and an Sb-containing component and then drying the aqueous solution. The method for producing ethylene according to claim 3, which is a composite metal oxide prepared through a step of calcining a catalyst precursor.
【請求項5】反応生成物中に存在する未反応のエタンの
少なくとも一部を反応生成物から分離し、原料エタンと
混合して再び反応に供する請求項1〜4のいずれか一つ
に記載のエチレンの製造方法。
5. The method according to claim 1, wherein at least a part of the unreacted ethane present in the reaction product is separated from the reaction product, mixed with the starting ethane, and then subjected to the reaction again. For producing ethylene.
JP9101450A 1996-04-25 1997-04-18 Production of ethylene Withdrawn JPH10175885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9101450A JPH10175885A (en) 1996-04-25 1997-04-18 Production of ethylene

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10510496 1996-04-25
JP27219096 1996-10-15
JP8-272190 1996-10-15
JP8-105104 1996-10-15
JP9101450A JPH10175885A (en) 1996-04-25 1997-04-18 Production of ethylene

Publications (1)

Publication Number Publication Date
JPH10175885A true JPH10175885A (en) 1998-06-30

Family

ID=27309465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9101450A Withdrawn JPH10175885A (en) 1996-04-25 1997-04-18 Production of ethylene

Country Status (1)

Country Link
JP (1) JPH10175885A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137709A (en) * 1999-10-01 2001-05-22 Rohm & Haas Co Catalyst
US7319179B2 (en) 2002-01-31 2008-01-15 Consejo Superior De Investigaciones Cientificas Method for the oxidative dehydrogenation of ethane
JP2008545743A (en) * 2005-06-01 2008-12-18 セラニーズ・インターナショナル・コーポレーション Method for producing ethylene by selectively oxidizing ethane
JP2015533341A (en) * 2012-10-19 2015-11-24 インスティテュート メキシカーノ デル ペテロレオ Oxidative dehydrogenation of ethane to ethylene and preparation of multimetallic mixed oxides as catalysts for such processes
JP2016215187A (en) * 2012-09-27 2016-12-22 旭化成株式会社 Composite oxide catalyst, method for producing the same and method for producing unsaturated nitrile
WO2022249880A1 (en) 2021-05-25 2022-12-01 東芝マテリアル株式会社 Multicomponent system complex oxide powder, electrochemical device and catalyst using same, and multicomponent system complex oxide powder production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137709A (en) * 1999-10-01 2001-05-22 Rohm & Haas Co Catalyst
US7319179B2 (en) 2002-01-31 2008-01-15 Consejo Superior De Investigaciones Cientificas Method for the oxidative dehydrogenation of ethane
JP2008545743A (en) * 2005-06-01 2008-12-18 セラニーズ・インターナショナル・コーポレーション Method for producing ethylene by selectively oxidizing ethane
JP2016215187A (en) * 2012-09-27 2016-12-22 旭化成株式会社 Composite oxide catalyst, method for producing the same and method for producing unsaturated nitrile
JP2015533341A (en) * 2012-10-19 2015-11-24 インスティテュート メキシカーノ デル ペテロレオ Oxidative dehydrogenation of ethane to ethylene and preparation of multimetallic mixed oxides as catalysts for such processes
WO2022249880A1 (en) 2021-05-25 2022-12-01 東芝マテリアル株式会社 Multicomponent system complex oxide powder, electrochemical device and catalyst using same, and multicomponent system complex oxide powder production method

Similar Documents

Publication Publication Date Title
US5380933A (en) Method for producing an unsaturated carboxylic acid
RU2342991C2 (en) Catalytic composition for selectivity of transformation alkanes into unsaturated carbonic acids, method of obtaining composition and method of composition application
JP4758990B2 (en) Selective conversion of alkanes to unsaturated carboxylic acids.
US8242048B2 (en) Oxidation catalyst and its preparation
JP2003511344A (en) Catalytic oxidation of alkanes to the corresponding acids
JP4377051B2 (en) Method for selective production of acetic acid by catalytic oxidation of ethane
JP3500682B2 (en) Catalyst for the production of nitriles from alkanes
JP2003528706A (en) Molybdenum-vanadium based catalyst for low temperature selective oxidation of propylene, method of making and using the same
JP3484729B2 (en) Method for producing ethylene
JP2000037623A (en) Preparation of oxidizing catalyst
JP4116293B2 (en) Method for selectively producing acetic acid by catalytic oxidation of ethane and / or ethylene
JPH1017523A (en) Production of acetic acid
JPH0710801A (en) Production of alpha, beta-unsaturated carboxylic acid
JPH06279351A (en) Production of unsaturated carboxylic acid
US6034270A (en) Process for the selective preparation of acetic acid using a molybdenum, palladium, and rhenium catalyst
JP4081824B2 (en) Acrylic acid production method
US4184981A (en) Selective oxidation catalyst
US4195187A (en) Process for selectively oxidizing isobutylene to methacrolein and methacrylic acid
JPH10175885A (en) Production of ethylene
JPH11114418A (en) Catalyst for gas-phase catalytic oxidation reaction of isobutane and manufacturing of alkene and/or oxygen-containing compound using this catalyst
JP5052131B2 (en) Catalyst composition and process for selective oxidation of ethane and / or ethylene to acetic acid
JP4809532B2 (en) Catalyst for catalytic oxidation of propane to acrylic acid, its production and use
JP2004534650A (en) Catalysts for selective oxidation and ammoxidation of alkanes and / or alkenes, especially in the process of obtaining acrylic acid, acrylonitrile and their derivatives
JPS5835971B2 (en) Acrolein manufacturing method
JPH10195036A (en) Vapor phase catalytic oxidation reaction of hydrocarbon

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040315