JPS61270293A - Production of semiconductor single crystal film - Google Patents

Production of semiconductor single crystal film

Info

Publication number
JPS61270293A
JPS61270293A JP11162885A JP11162885A JPS61270293A JP S61270293 A JPS61270293 A JP S61270293A JP 11162885 A JP11162885 A JP 11162885A JP 11162885 A JP11162885 A JP 11162885A JP S61270293 A JPS61270293 A JP S61270293A
Authority
JP
Japan
Prior art keywords
film
substrate
single crystal
crystal
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11162885A
Other languages
Japanese (ja)
Inventor
Koji Egami
江上 浩二
Atsushi Ogura
厚志 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11162885A priority Critical patent/JPS61270293A/en
Publication of JPS61270293A publication Critical patent/JPS61270293A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of graphoepitaxial growth, by depositing a polycrystal Ge film preferentially oriented in a specific direction on a grooved amorphous insulator substrate, and heat-treating the deposited polycrystal Ge film. CONSTITUTION:Grooves having a depth (h) and width (l) are formed at an interval (m) on the surface of an amorphous insulator film 2 formed on a substrate 1, and a polycrystal Ge film 3 preferentially oriented in <100> direction as the direction (Z) perpendicular to the substrate 1 is deposited thereon. The resultant Ge film 3 is then heat-treated below the melting point of Ge to promote the reorientation of the Ge crystal grains in the substrate surface and coalescence between the grains and form the aimed single crystal Ge film 3 so that the direction (Z) perpendicular to the substrate 1 and longitudinal direction (Y) of the grooves may be <100> direction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子デバイス工業に用いられる半導体膜の製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor film used in the electronic device industry.

(従来技術とその問題点) 非晶質絶縁体基板上に単結晶Ge膜を形成する従来技術
は、単結晶Si基板表面にSin、等の絶縁体膜を形成
した後、該5ios膜に開口部を設け、単結晶Si表面
を露出させ、さらに多結晶GeINを該基板上に堆積さ
せた後、いわゆるゾーンメルティング法により、該Si
飢膜の開口部からシーディングを行い結晶方位を制御す
る方法が知られているにシオカ他、ジャーナル オブ 
アプライド フィジイクス(J、Appl、Phys、
) 56巻。
(Prior art and its problems) The conventional technology for forming a single-crystal Ge film on an amorphous insulator substrate is to form an insulator film such as Sin on the surface of a single-crystal Si substrate, and then open an opening in the 5ios film. After exposing the single crystal Si surface and depositing polycrystalline GeIN on the substrate, the Si
A method of controlling crystal orientation by seeding from the opening of a starvation film is known, as reported by Shioka et al., Journal of
Applied Physics (J, Appl, Phys,
) Volume 56.

336ページ、1984年)。この方法は、いわゆる種
結晶を用いた方法であるが、半導体膜の多層化装置を形
成するためには、種結晶を用いない方法が望ましい。種
結晶を用いない従来技術として。
336 pages, 1984). This method uses a so-called seed crystal, but in order to form a multilayer semiconductor film device, a method that does not use a seed crystal is desirable. As a conventional technology that does not use seed crystals.

グラフオエピタキシャル成長法による例か知られている
(ヨネハラ他、アプライド フイジクスレターズ(Ap
pl 、Phys、 Lett、)’ 45巻、631
ヘージ、  1984年)。この方法では出発多結晶G
e膜として、基板垂直方向が<iio>または<112
>方位であるものが用いられ、いわゆるグラフオエピタ
キシャル成長法の特徴である基板表面に加工された溝の
効果により、結晶方位を制御し、単結晶化を促進させる
ことを目的としたものである。
A known example is the grapho-epitaxial growth method (Yonehara et al., Applied Physics Letters (Ap.
pl, Phys, Lett, )' Volume 45, 631
Hage, 1984). In this method, the starting polycrystalline G
e film, the vertical direction of the substrate is <iio> or <112
> orientation is used, and the purpose is to control the crystal orientation and promote single crystallization by the effect of grooves processed on the substrate surface, which is a feature of the so-called grapho-epitaxial growth method.

しかしながら、グラフオエピタキシャル成長法において
は、出発多結晶材料はtexture g造(−軸方向
だけが特定な結晶方位となりている)となっていること
が望ましく、形成しようとする単結晶膜の基板垂直方向
とこの一軸方向が一致している程、単結晶化が促進され
る。前記、ヨネハ2らの報告においては、基板垂直方向
が< 110 >、または<112 >方位になりやす
い出発多結晶材料を用いて、膜厚1000A以下の極薄
膜に特有な5olid−state surface−
energy効果によって、基板垂直方向を<100〉
方位に変化させて、単結晶化を行っている。そのために
、未だ単結晶化が不十分である問題点や、通常の薄M(
膜厚が5000A程度)では、上記効果が働かず、グラ
フオエピタキシャル成長を試みても単結晶Ge1lが得
られKくいという問題点を有している。
However, in the grapho-epitaxial growth method, it is desirable that the starting polycrystalline material has a texture structure (only the -axis direction is a specific crystal orientation), and the direction perpendicular to the substrate of the single crystal film to be formed is The more this uniaxial direction matches, the more the single crystallization is promoted. In the above-mentioned report by Yoneha et al., using a starting polycrystalline material that tends to have a <110> or <112> orientation in the vertical direction of the substrate, a 5-solid-state surface-
Due to the energy effect, the vertical direction of the substrate is <100>
Single crystallization is performed by changing the orientation. For this reason, there are still problems such as insufficient single crystallization and the problem of ordinary thin M (
When the film thickness is about 5000 Å), the above effect does not work, and even if graphite epitaxial growth is attempted, single crystal Ge11 is obtained, which is problematic.

(発明の目的) 本発明は、このような従来例の欠点、特に極酵膜を用い
なければならないことを改善し、出発多結晶材料として
新らたに<IQQ> texture ls造を有する
ものを用いることにより、グラフオエピタキシャル成長
の高精度化を目的とした半導体単結晶膜の製造法を提供
することにある。
(Object of the Invention) The present invention improves the drawbacks of the conventional examples, especially the necessity of using a hyperfermentation membrane, and uses a new <IQQ> texture structure as a starting polycrystalline material. By using the present invention, it is an object of the present invention to provide a method for manufacturing a semiconductor single crystal film, which aims to improve the precision of grapho-epitaxial growth.

(発明の構成) 本発明によれば、いわゆるグラフオエピタキシャル成長
に用いられる溝加工が施された非晶質絶縁体表面上に1
基板垂直方向が〈100〉方位に優先配向した多結晶質
Ge膜を堆積した後s ’tl’−Ge膜をGeの融点
以下の温度で熱処理して、結晶粒子の粒径の増大を図る
とともに、結晶方位配列制御を行わしめ、基板垂直方向
及び該溝の長手方向が<ioo>方位である単結晶Ge
膜を形成すること特徴とする半導体単結晶膜の製造法が
得られる。
(Structure of the Invention) According to the present invention, a single layer is formed on the surface of an amorphous insulator that is grooved for use in so-called grapho-epitaxial growth.
After depositing a polycrystalline Ge film in which the direction perpendicular to the substrate is preferentially oriented in the <100> orientation, the s'tl'-Ge film is heat-treated at a temperature below the melting point of Ge to increase the grain size of the crystal grains. , the crystal orientation alignment is controlled, and the vertical direction of the substrate and the longitudinal direction of the groove are in the <ioo> orientation.
A method for manufacturing a semiconductor single crystal film is obtained, which is characterized by forming a film.

(構成の詳細な説明) 本発明は上述の構成をとることくよ夕、従来技術4Cま
さる単結晶G e J[d[の形成をグラフオエピタキ
シャル成長により可能とした。以下、第1図を参照して
説明する。
(Detailed Description of the Structure) The present invention, having the above-described structure, has made it possible to form a single crystal G e J[d[ by grapho-epitaxial growth, which is superior to the conventional technique 4C. This will be explained below with reference to FIG.

第1図は本発明の基本概念を説明するために用−た基板
構造の斜視函である。
FIG. 1 is a perspective view of a substrate structure used to explain the basic concept of the present invention.

先す、基板l上に非晶質絶縁体膜2を形放し、次いで、
溝の深さり、溝の4@l、溝と溝との間隔mから成る溝
を該絶縁体jI!、2表面上に形成した。
First, the amorphous insulator film 2 is released on the substrate l, and then,
A groove consisting of the depth of the groove, 4@l of the groove, and the distance m between the grooves is formed by the insulator jI! , 2 was formed on the surface.

次いで、基板垂直方向体)が<100>方位に優先配向
した多結晶Ge膜3を堆積し、しかる後、Qeの融点以
下の温度で熱処理し、溝の効果により、基板垂直方向(
Z)及び%溝の長手方向−)が<100 >方位となる
ようにGe結晶粒子の基板面内での再配列命粒子間の合
体を促進させ単結晶Ge膜3を形成した。この時、結晶
軸の自由度・相関関係よ工 り、酵の長手方向(力と直又する方向(増も<100>
方位となることは明らかである。
Next, a polycrystalline Ge film 3 with preferential orientation in the <100> direction (vertical to the substrate) is deposited, and then heat-treated at a temperature below the melting point of Qe.
The single-crystal Ge film 3 was formed by promoting the coalescence of rearranged particles of Ge crystal grains within the substrate plane so that the longitudinal direction of the Ge crystal grains (Z) and the longitudinal direction -) of the grooves were in the <100> orientation. At this time, based on the degree of freedom and correlation of the crystal axes, the longitudinal direction of the yeast (direction perpendicular to the force (increase <100>
It is clear that it is the direction.

(央′JIffA例) 以下、不発明の!M例について、第1図を参照して詳細
に説明する。
(Central 'JIffA example) Below is the uninvented! The M example will be explained in detail with reference to FIG.

lで示した基板としてSi基板、サファイア基板。The substrates indicated by l are a Si substrate and a sapphire substrate.

アルミナ基板、窒化アルミ基板を用いた。2で示した非
晶質絶縁体膜としてS t O1膜&  si口Na 
IKを用いた。該Jle縁体膜2の膜厚として、Siへ
膜の場合には1 ttm、 8isN、 @の場合には
Q、2μmとした。
An alumina substrate and an aluminum nitride substrate were used. As the amorphous insulator film shown in 2, S t O1 film & Si-Na
IK was used. The film thickness of the Jle edge film 2 was set to 1 ttm in the case of a Si film, Q and 2 μm in the case of @.

次いで、該絶縁体膜2の表面上に溝の深さく旬が0.1
〜0.15μm1溝幅(a及び溝の間隔(ホ)がそれぞ
れ1Affiである溝の断面が長方形状の溝を通常の紫
外光リソグラフィ技術とドライエツチング技術を用いて
加工した。
Next, grooves are formed on the surface of the insulating film 2 so that the depth thereof is 0.1.
Grooves with a rectangular cross section each having a groove width (a) of 1 Affi and a groove interval (e) of 0.15 .mu.m were processed using conventional ultraviolet lithography technology and dry etching technology.

以上のように形成した基板上に高周波スパッタリング法
でGe膜3を堆積させた。スパッタリング条件として、
パワー: soW、堆積速度=400〜輌、基板加熱温
度:室温〜600℃、スパッタリングガス圧カニArガ
スで3m’l’orrの範囲を選んだ。
A Ge film 3 was deposited on the substrate formed as described above by high frequency sputtering. As sputtering conditions,
Power: soW, deposition rate = 400 to 400°C, substrate heating temperature: room temperature to 600°C, and sputtering gas pressure in the range of 3 ml'orr using Ar gas.

前記スパッタリング条件の範囲において、堆積するGe
膜3の膜質は基板温度300℃以下で非晶質状態である
ことが紫外光反射・X線回折を用いた評価により見い出
された。これらの非晶質Ge1lを絶対温度スケールで
融点の0.75倍の温度、約650℃で結晶化させると
ランダム配向した多結晶質Ge膜となった。基板温度3
00℃以上では、多結晶質Ge膜が得られ、基板温度4
00℃付近では基板垂直方向が<110>方位に優先配
向した膜となり、基板温度500℃付近では基板垂直方
向が<IQQ>方位と<110>方位が混在した膜とな
り基板温度600℃付近では基板垂直方向が<100>
方位が優先配向した膜が得られた。
Within the above sputtering condition range, the deposited Ge
It was found by evaluation using ultraviolet light reflection and X-ray diffraction that the film quality of film 3 is in an amorphous state at a substrate temperature of 300° C. or lower. When these amorphous Ge11 were crystallized at a temperature of about 650° C., which is 0.75 times the melting point on the absolute temperature scale, a randomly oriented polycrystalline Ge film was obtained. Substrate temperature 3
At temperatures above 00°C, a polycrystalline Ge film is obtained, and the substrate temperature is 4.
At around 00°C, the film is preferentially oriented in the <110> direction perpendicular to the substrate, and when the substrate temperature is around 500°C, the film is a mixture of <IQQ> and <110> directions perpendicular to the substrate, and when the substrate temperature is around 600°C, the film is oriented in the <110> orientation. Vertical direction is <100>
A film with preferential orientation was obtained.

溝加工が施された絶縁体膜2上に堆積させた。It was deposited on an insulator film 2 that had been grooved.

膜厚0.6μmの前記Ge膜3に、絶対温度スケールで
融点の0.95倍の温度、約900℃で不活性ガス中1
〜4時間の熱処理を施して、結晶粒子の再配列化、合体
化を促進させて、いわゆるグラ7オエビタキシヤルGe
膜を形成した。なお、表面保護膜として0.5μm厚の
S iO自腹を用いた。
The Ge film 3 having a film thickness of 0.6 μm was coated with 1.1 μm in an inert gas at a temperature of about 900° C., which is 0.95 times the melting point on the absolute temperature scale.
A heat treatment for ~4 hours is applied to promote the rearrangement and coalescence of crystal grains, resulting in so-called gravitational Ge.
A film was formed. Note that a 0.5 μm thick SiO film was used as the surface protective film.

以上の如く形成したGeHXをX@回折法、電子線回折
法、異方性エツチング法で評価したところ出発材料(堆
積した後のGaM)の結晶学的構造が基板垂直方向に<
100>方位が優先配向した膜を用いた時、いわゆるグ
ラフオエピタキシャル成長していることを見い出し、基
板垂直方向(z)及び溝の長手方向(支)がいづれも<
l Q Q>方位の単結晶Ge膜が得られた。
When the GeHX formed as described above was evaluated by X@ diffraction method, electron beam diffraction method, and anisotropic etching method, the crystallographic structure of the starting material (GaM after depositing) was found to be vertical to the substrate.
When using a film preferentially oriented in the <100> direction, we found that so-called grapho-epitaxial growth occurs, and both the vertical direction (z) of the substrate and the longitudinal direction (support) of the groove are <
A single crystal Ge film with l Q Q> orientation was obtained.

本実施例で述べた。いづれの基板1、Si、サファイア
、アルミナ、窒化アルミ基板を用いても同様な結果が得
られ、また、絶縁体a2として。
This was described in this embodiment. Similar results were obtained using any of the substrates 1, Si, sapphire, alumina, and aluminum nitride substrates, and as the insulator a2.

Sin、膜% 8isNa Mを用いても同様な結果が
得られた。ただし、基板として石英ガラス基板を用いた
場合にはGe膜との熱膨張率のミスマツチングが非常に
太き(、G’e膜のはがれが生じ、連続単結晶膜は得ら
れなかった。
Similar results were obtained using Sin, film% 8 is Na M. However, when a quartz glass substrate was used as the substrate, there was a very large mismatch in thermal expansion coefficient with the Ge film (the G'e film peeled off, and a continuous single crystal film could not be obtained).

下地絶縁体膜依存性については5ill膜を用いた方が
良好な結果が得られた。
Regarding the dependence on the underlying insulating film, better results were obtained when the 5ill film was used.

本実施例の他KGe膜として、室温で形成した真空蒸着
Gegを用いた場合は、堆積した状態で非晶質状態で、
その後の熱処理により多結晶化した膜はランダム配向し
た状態となシ、Ge膜厚0.5〜0.6μmではグラフ
オエピタキシャル成長には不向きであった。
In addition to this example, when vacuum-deposited Geg formed at room temperature is used as the KGe film, it is in an amorphous state in the deposited state.
As a result of subsequent heat treatment, the polycrystalline film was in a randomly oriented state, and a Ge film thickness of 0.5 to 0.6 μm was unsuitable for graphite epitaxial growth.

(発明の効果) 従来、融点以下で熱処理を行う同相再成長法でGe膜の
グラフオエピタキシャル成長を試みる場合%膜厚を10
0OA以下にした極薄mを用い、いわゆる30目d−s
tate surface−energy効果によりて
単結晶化がなされていたが1本発明のような出発材料と
して基板垂直方向が<100)方位に優先配向したGe
膜を用いることによ51通常の膜厚0.5μm程度の薄
膜においても結晶粒子の再配列、合体化がすみやかく起
こる現象に基づ込た特徴を有するグラフオエピタキシャ
ル成長によるGe単結晶膜の製造法が得られる。
(Effect of the invention) Conventionally, when trying to graphite epitaxially grow a Ge film using an in-phase regrowth method that performs heat treatment below the melting point, the film thickness has been reduced by 10%.
Using ultra-thin m with 0OA or less, so-called 30 stitches d-s
Single crystallization has been achieved by the surface-energy effect; however, as a starting material as in the present invention, Ge is preferentially oriented in the <100) direction perpendicular to the substrate.
Production of Ge single-crystal films by grapho-epitaxial growth, which has characteristics based on the phenomenon that crystal grains rearrange and coalesce quickly even in thin films with a normal film thickness of about 0.5 μm. Law is obtained.

以上、詳細に述べたように、本発明によれば、従来方法
より容易に単結晶ゲルマニウム半導体膜の形成が可能と
なりゲルマニウム単結晶薄膜を積層用基板とした半導体
装置製造に当り、多大の経済効果をもたらす。
As described in detail above, according to the present invention, it is possible to form a single crystal germanium semiconductor film more easily than the conventional method, and it has great economical effects when manufacturing semiconductor devices using a germanium single crystal thin film as a lamination substrate. bring about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための基板構造の斜視図。 l・・・・・・基板、  2・・・・・・絶縁体膜、 
 3・・・・・・ゲルマオ   1   図
FIG. 1 is a perspective view of a substrate structure for explaining the present invention. l...Substrate, 2...Insulator film,
3... Germao 1 Figure

Claims (1)

【特許請求の範囲】[Claims] ゲルマニウム(Ge)半導体膜のグラフォエピタキシヤ
ル成長において、溝加工が施された非晶質絶縁体基板上
に基板垂直方向が<100>方位に優先配向した多結晶
質Ge膜を堆積した後、該Ge膜をGeの融点以下の温
度で熱処理して、基板垂直方向及び該溝の長手方向が<
100>方位である単結晶Ge膜を形成することを特徴
とする半導体単結晶膜の製造法。
In graphoepitaxial growth of a germanium (Ge) semiconductor film, after depositing a polycrystalline Ge film preferentially oriented in the <100> direction in the direction perpendicular to the substrate on a grooved amorphous insulator substrate, The Ge film is heat-treated at a temperature below the melting point of Ge, so that the direction perpendicular to the substrate and the longitudinal direction of the groove are <
A method for manufacturing a semiconductor single crystal film, comprising forming a single crystal Ge film having a 100> orientation.
JP11162885A 1985-05-24 1985-05-24 Production of semiconductor single crystal film Pending JPS61270293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11162885A JPS61270293A (en) 1985-05-24 1985-05-24 Production of semiconductor single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11162885A JPS61270293A (en) 1985-05-24 1985-05-24 Production of semiconductor single crystal film

Publications (1)

Publication Number Publication Date
JPS61270293A true JPS61270293A (en) 1986-11-29

Family

ID=14566137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11162885A Pending JPS61270293A (en) 1985-05-24 1985-05-24 Production of semiconductor single crystal film

Country Status (1)

Country Link
JP (1) JPS61270293A (en)

Similar Documents

Publication Publication Date Title
US4046618A (en) Method for preparing large single crystal thin films
US5363799A (en) Method for growth of crystal
US4042447A (en) Crystallizing a layer of silicon on a sodium thallium type crystalline alloy substrate
JPH03290924A (en) Manufacture of crystalline silicon film, crystalline silicon semiconductor utilizing the same and its manufacture
JPH0351289B2 (en)
JPS61270293A (en) Production of semiconductor single crystal film
JPH01132116A (en) Crystal product, preparation thereof, and semiconductor device prepared thereby
JPH0370123A (en) Formation of crystalline semiconductor film
JPS59128292A (en) Method for crystallizing thin film
JPH0324719A (en) Forming method of single crystal film and crystal products
JPS61270294A (en) Method for forming si single crystal film
Scharff et al. Growth of monocrystalline silicon islands on insulating substrates
JPS61270295A (en) Method for forming compound semiconductor single crystal film
JP2737152B2 (en) SOI forming method
JP2532252B2 (en) Method for manufacturing SOI substrate
JPH01132117A (en) Crystal growth method
JPH01723A (en) 3-Group V compound crystal article and method for forming the same
JPH02143414A (en) Formation of single crystal film
JPS63239186A (en) Crystal article and its formation
JPH0228560B2 (en) TANKETSUSHOSHIRIKONMAKUKEISEIHO
JP2522618B2 (en) Phosphorus alloyed cubic boron nitride film
JPS5886716A (en) Forming of single crystal semiconductor film
JPS6025222A (en) Formation of soi crystal
JPH038798A (en) Production of polycrystal silicon film
JPH05136049A (en) Crystal growth method