JPS61269374A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61269374A
JPS61269374A JP11124985A JP11124985A JPS61269374A JP S61269374 A JPS61269374 A JP S61269374A JP 11124985 A JP11124985 A JP 11124985A JP 11124985 A JP11124985 A JP 11124985A JP S61269374 A JPS61269374 A JP S61269374A
Authority
JP
Japan
Prior art keywords
film
layer
semiconductor substrate
base
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11124985A
Other languages
Japanese (ja)
Inventor
Norikazu Ouchi
大内 紀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11124985A priority Critical patent/JPS61269374A/en
Priority to US06/865,295 priority patent/US4678537A/en
Priority to EP86106981A priority patent/EP0208877A3/en
Publication of JPS61269374A publication Critical patent/JPS61269374A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Abstract

PURPOSE:To reduce a parasitic capacity by leaving the non-oxidizable substance on the side wall of a step part of a base electrode end part by anisotropic etching and oxidizing other parts, with step followed by selective etching of that to form a minute window. CONSTITUTION:At the end part of a base electrode (polysilicon 9) formed through oxide 4 and 4' as insulating layers on a P-type semiconductor substrate 1, a step part is formed, on which an SiO2 film 17 and a polysilicon film 18a are formed by thermal oxidation and further a non-oxidizable substance layer Si3N4 film 18b is formed. Next, the film 18b is subjected to anisotropic etching to leave the non-oxidizable substance layer 18b of sidewall form on the side wall of the step part. By using that as a mask, the surface of the exposed part of the semiconductor layer 18a is subjected to thermal oxidation to form an SiO2 film 19. Then, the film 18b, the film 18a and the SiO2 film 17 are removed to form an opening which exposes a part of the semiconductor substrate. Furthermore, B ions are implanted for diffusing impurities into the semiconductor substrate to form a graft base region 7'. Then, an emitter region 8 is formed by using the insulating layer as a mask.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は素子の寄生容量の低減及び素子の微細化を実現
するために、ポリシリコン等の外部電極取出しと素子の
能動領域をセルファラインで1000A程度の微細な幅
により接続させる半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] In order to reduce the parasitic capacitance of the device and achieve miniaturization of the device, the present invention utilizes a self-line method for extracting external electrodes such as polysilicon and the active region of the device. The present invention relates to a method of manufacturing a semiconductor device that is connected by a fine width of about 1000A.

[概要] この発明は、多結晶Si等の外部電極とトランジスタ等
のベース、コレクタ等のアクティブ領域とのコンタクト
をセルファラインで、微細な幅で形成する半導体装置の
製造方法において、ベース電極端部段差部の側壁に耐酸
化物を異方性エツチングにより残し、他部を酸化した後
これを選択エツチングして微細な窓を形成することによ
り、寄生容量を大幅に減らし、高速化、高集積化したL
SIに向くトランジスタ等の製造方法を提供するもので
ある。
[Summary] The present invention provides a method for manufacturing a semiconductor device in which a contact between an external electrode made of polycrystalline Si or the like and an active region such as a base or collector of a transistor is formed with a self-aligned line with a fine width. By anisotropically etching an oxide-resistant material on the sidewalls of the step, oxidizing other parts, and then selectively etching it to form fine windows, parasitic capacitance is significantly reduced, speeding up, and high integration. L
The present invention provides a method for manufacturing transistors and the like suitable for SI.

[従来の技術] 近年パターンの微細化と接合のシャロー化が進んで、バ
イポーラLSIが高速化している。バイポーラトランジ
スタのベース幅を薄くするために、浅いベース拡散とエ
ミッタ拡散が必要であるが、そのためにベース拡散には
ボロンのイオン注入が、エミッタにはAsドープの多結
晶StからのAs拡散等が用いられている。浮遊容量の
低減等の理由から素子間分離には酸化膜分離が採用され
ている。これらの技術を用いて作られたトランジスタの
一例が、第6図Aに示されたLOGO9)ランジスタで
ある。これはLOGO9(Local 0xidati
on ofSilicon)を用いて作られたトランジ
スタであるが、イントリンシックなベースとグラフトベ
ースがマスク合わせの余裕度を持って別々に形成されて
いる。第6図Bの改良トランジスタにおいては、多結晶
Si9がベース領域等の引き出し電極として用いられ、
寄生容量を減少させている。
[Prior Art] In recent years, patterns have become finer and junctions have become shallower, and bipolar LSIs have become faster. In order to reduce the base width of bipolar transistors, shallow base diffusion and emitter diffusion are necessary. To achieve this, boron ion implantation is used for the base diffusion, and As diffusion from As-doped polycrystalline St is used for the emitter. It is used. Oxide film isolation is used for isolation between elements for reasons such as reducing stray capacitance. An example of a transistor made using these techniques is the LOGO9) transistor shown in FIG. 6A. This is LOGO9 (Local Oxidati
Although the transistor is manufactured using an on-of-Silicon method, the intrinsic base and the graft base are formed separately with sufficient margin for mask alignment. In the improved transistor shown in FIG. 6B, polycrystalline Si9 is used as an extraction electrode for the base region, etc.
Reduces parasitic capacitance.

[発明が解決しようとする問題点] 第6図Aのトランジスタの断面図においては、トランジ
スタのアクティブ領域に比較してそれ以外の領域が大幅
に大きくなっている。そのためその寄生成分(容量、抵
抗)によって、トランジスタの高速化が制限されてしま
うという欠点があった。
[Problems to be Solved by the Invention] In the cross-sectional view of the transistor in FIG. 6A, the other regions are significantly larger than the active region of the transistor. Therefore, the parasitic components (capacitance, resistance) have the disadvantage of limiting the speed-up of the transistor.

一方、第6図Bのトランジスタは、ベース電極に多結晶
Siを用いて第6図Aのトランジスタ構造の欠点を改良
したもので、寄生成分は減少しているがこの構造のトラ
ンジスタにおいても、エミッタ・ストライプ幅が微細化
するに連れて、ベースコンタクト部(P 部、第6図B
に於けるa)の幅がイントリンシックなベース(第6図
Bに於けるb)に比較して相対的に大きくなって来る。
On the other hand, the transistor shown in FIG. 6B uses polycrystalline Si for the base electrode to improve the drawbacks of the transistor structure shown in FIG.・As the stripe width becomes finer, the base contact part (P part, Fig. 6B)
The width of a) in FIG. 6B becomes relatively large compared to the intrinsic base (b in FIG. 6B).

このグラフトベース領域(第6図Bに於げるa)は通常
多結晶Stからの拡散で形成され、イントリンシック部
と接続されているが、コンタクト部の幅量外に、マスク
合わせのための余裕度が必要となることから、充分に狭
くすることができなかった。特に、今後エミッタストラ
イプ幅が縮小して行く状況においては、このグラフトベ
ースによる寄生容量は大きな問題となって来る。
This graft base region (a in Figure 6B) is usually formed by diffusion from polycrystalline St and is connected to the intrinsic part, but in addition to the width of the contact part, there is a Since a margin was required, it was not possible to make it sufficiently narrow. In particular, as the emitter stripe width continues to shrink in the future, this parasitic capacitance due to the graft base will become a major problem.

本発明は、このグラフトベース部を1000λ程度でセ
ルフ・アラインに形成する製造方法により上記問題点を
解決するものである。
The present invention solves the above problems by using a manufacturing method in which the graft base portion is formed in a self-aligned manner with a thickness of about 1000λ.

[問題点を解決するための手段] 半導体基板上に絶縁層を介して形成されたベース電極の
端部に段差部を形成し、この上に半導体層と耐酸化物層
を一面に形成し、異方性エツチングを行なって上記段差
部側壁部に上記耐酸化物層を残す、このサイドウオール
状に残された耐酸化物層をマスクとして、半導体層の露
出部の表面を酸化した後、上記耐酸化物層と半導体層を
除去して半導体基板が一部露出する開孔部を形成し、さ
らにその開孔部に不純物含有半導体層を形成して、不純
物を半導体基板に拡散させてグラフトベース領域を形成
させる。さらに絶縁層をマスク1、明細書第6頁を下記
掩塙り全文浄書する。
[Means for solving the problem] A stepped portion is formed at the end of a base electrode formed on a semiconductor substrate with an insulating layer interposed therebetween, and a semiconductor layer and an oxide-resistant layer are formed over the stepped portion, and a different Directional etching is performed to leave the oxidation-resistant layer on the sidewall of the stepped portion. Using this oxidation-resistant layer left in the form of a sidewall as a mask, the surface of the exposed portion of the semiconductor layer is oxidized, and then the oxidation-resistant layer is etched. and removing the semiconductor layer to form an opening through which a portion of the semiconductor substrate is exposed, further forming an impurity-containing semiconductor layer in the opening, and diffusing the impurity into the semiconductor substrate to form a graft base region. . Furthermore, using Mask 1 for the insulating layer, the entire text of page 6 of the specification is printed using the following cover-up.

とじてエミッタ領域を形成する0本願発明はこのような
製造方法によって上記問題点を解決している。
The present invention solves the above problems by using such a manufacturing method.

[作用] 本発明は、ベース電極端部段差部の側壁に耐酸化物を異
方性エツチングにより残し、この耐酸化物をマスクとし
て半導体層の露出部分を酸化する(第3図E)、この耐
酸化物と酸化されていない半導体層を選択エツチングし
て100OAという微細な窓を形成している。この窓は
耐酸化膜の厚みで決まるので、確実に微細な幅が得られ
る。この半導体基板の露出部と前記ベース電極を不純物
含有半導体層で接続し、この不純物を基板に拡散させて
グラフトベースを形成する(第4図F)、さらに不純吻
合半導体層を異方性エツチングしたサイドウオールをマ
スクとして、イントリンシックなベース部を形成してい
る(第5図H)、これらの製造工程から明らかなように
、各領域はセルフ・アラインで形成される。半導体基板
上に露出する窓の幅が耐酸化物の膜厚(t、oooX程
度)であり、かつこれがセルファラインで形成できるこ
とは、従来マスクによりこの領域を形成した時に要した
マスク合わせの余裕度が必要なくなったことからみて、
非常に大きなメリットとなる。
[Function] The present invention leaves an oxide resistant material on the side wall of the stepped portion at the end of the base electrode by anisotropic etching, and uses this oxide resistant material as a mask to oxidize the exposed portion of the semiconductor layer (FIG. 3E). A fine window of 100 OA is formed by selectively etching the unoxidized semiconductor layer. Since this window is determined by the thickness of the oxidation-resistant film, it is possible to reliably obtain a fine width. The exposed portion of this semiconductor substrate and the base electrode were connected with an impurity-containing semiconductor layer, and the impurity was diffused into the substrate to form a graft base (FIG. 4F). Furthermore, the impurity anastomotic semiconductor layer was anisotropically etched. The intrinsic base portion is formed using the sidewall as a mask (FIG. 5H). As is clear from these manufacturing steps, each region is formed in a self-aligned manner. The width of the window exposed on the semiconductor substrate is the thickness of the oxide resistant film (about t, ooo Considering that it is no longer necessary,
This is a huge benefit.

[実施例] 実施例(i) 本発明の基本的プロセスをNPN )ランジスタについ
て各工程毎に説明する。
[Example] Example (i) The basic process of the present invention will be explained for each step of an NPN transistor.

工程AP型基板1にN 埋込層3とP チャンネルスト
ッパー2を形成した後、N型エピタキシャル層6を成長
させる。この後醸化膜4.4′による絶縁分離を行ない
Step After forming the N 2 buried layer 3 and the P 2 channel stopper 2 on the AP type substrate 1, the N type epitaxial layer 6 is grown. After this, insulating separation is performed using the fermented film 4.4'.

N コレクタ取出し部5を形成する0次にCvD法ニヨ
リ3000λf) S i 02膜15を成長させて、
さらに多結晶Si9をCVD法により 1500λ形成
する。この多結晶Si9は、素子の完成後にはベース等
の取り出し電極に使用されるので、P型不純物をドープ
させて低抵抗にしておく。
Grow the S i 02 film 15 (0-order CvD method (3000λf) to form the N collector extraction part 5,
Furthermore, polycrystalline Si9 having a thickness of 1500λ is formed by CVD. Since this polycrystalline Si9 will be used for an extraction electrode such as a base after the element is completed, it is doped with P-type impurities to make it low in resistance.

工程B 多結晶Si9をフォトエツチングして不要部分
を除去してから、5102膜16をCVD法により成長
させる。
Step B: Polycrystalline Si 9 is photoetched to remove unnecessary portions, and then 5102 film 16 is grown by CVD.

RI E (Reactive fan Eching
)法により、ベース・エミッタ部分となる能動領域とコ
レクタ取り出しの窓25.26を形成する。
RI E (Reactive fan Eching)
) method to form the active region that will become the base emitter portion and the windows 25 and 26 for extracting the collector.

工程C熱酸化により50大の5I021117を形成し
た後、2000Xの多結晶5ill18aをcvD法に
より形成し、その上に耐酸化膜となるSi3N、III
E 18 bをtooof成長させた。
Step C After forming 5I021117 with a size of 50 by thermal oxidation, a polycrystalline 5ill18a with a size of 2000X is formed by the CVD method, and Si3N, III, which becomes an oxidation-resistant film, is formed on it by the CVD method.
E 18 b was grown too much.

工程D  RI E (Reactive Ion E
tching)法により上層のSi3N、INl l 
8 bをエツチングして第3図D′に示されるように窓
の側壁のみにサイドウオール状にSi3N、II l 
8 bを残す。
Process DRI E (Reactive Ion E
The upper layer of Si3N, INl
8b and etched Si3N, IIl in the form of a sidewall only on the side wall of the window as shown in Figure 3D'.
8 Leave b.

工程E サイドウオール状のSi3N、Ill 18 
bをマスクとして、多結晶5i18aを熱酸化させてS
 io 2膜19を形成する。
Process E Sidewall-shaped Si3N, Ill 18
Using b as a mask, polycrystalline 5i18a is thermally oxidized to form S
io2 film 19 is formed.

工程E’  5t3N4膜18bと多結晶5i18aと
5102膜17を選択エツチングして、酸化膜15と酸
化膜19の間に543N、IIIE 18 bの厚さに
対応する1000にの狭い幅の窓を形成する。
Step E' Selectively etching the 5t3N4 film 18b, the polycrystalline 5i 18a, and the 5102 film 17 to form a narrow window of 1000 mm between the oxide film 15 and the oxide film 19, corresponding to the thickness of 543N, IIIE 18b. do.

工程F  20GOAの多結晶Si膜20をCVD法に
より形成して、その上にフォトレジストをかけて、ベー
ス領域側に窓を開けて、Bをイオン注入する。同様にし
てコレクタ取り出し側にはAsをイオン注入する。これ
らの不純物の多結晶Si中のの拡散定数は大きいので、
800″Cの低温加熱処理により、これらの不純物は多
結晶Si中を拡散して、ベース取り出し結晶Siとのコ
ンタクトがとられる。
Step F A polycrystalline Si film 20 of 20 GOA is formed by the CVD method, a photoresist is applied thereon, a window is opened on the base region side, and B ions are implanted. Similarly, As ions are implanted into the collector extraction side. Since the diffusion constant of these impurities in polycrystalline Si is large,
By low-temperature heat treatment at 800''C, these impurities diffuse into the polycrystalline Si and come into contact with the base-extracting crystalline Si.

工程G 塩素系のガスを用いたRIE法により多結晶S
i膜20をエツチングし第5図G’ 【=示すようにサ
イドウオール状に多結晶Si膜20を残す、ここで酸化
膜19をRIE法で除去し、さらに、必要に応じてイオ
ン注入用安定化膜を形成してもよい。
Step G Polycrystalline S is formed by RIE method using chlorine gas.
The i film 20 is etched to leave the polycrystalline Si film 20 in the form of a sidewall as shown in FIG. A chemical film may be formed.

工程G ベース及びコレクタ形成領域上の、SiO□膜
、Si3N4膜をRIE法等により除去し、必要に応じ
てイオン注入用安定化膜を形成する。
Step G: The SiO□ film and Si3N4 film on the base and collector forming regions are removed by RIE method or the like, and a stabilizing film for ion implantation is formed if necessary.

工程Hフォトレジスト21をマスクにしてBF2を80
 Keマに加速してイオン注入を行ない、サイドウオー
ル状多結晶Si膜とセルファラインでベースイントリン
シック部を形成する。
Step H Using photoresist 21 as a mask, apply BF2 to 80%
Ion implantation is performed at high acceleration speed to form a base intrinsic portion with the sidewall-like polycrystalline Si film and the self-alignment line.

工程I  3000λ(1) 5102膜22をCVD
法ニヨり形成する。
Step I 3000λ (1) CVD 5102 film 22
Forming a law.

工程J  RIE法により、上面のS io 2膜を除
去してサイドウオールのS + 02膜22のみをを残
す。
Step J The S io 2 film on the top surface is removed by RIE method, leaving only the S + 02 film 22 on the sidewall.

工程K フォトレジストでコレクタ部分以外をマスクし
て、コレクタ部分にあるサイド ウオール状のS i O2膜をエツチング除去する。
Step K Mask the area other than the collector part with photoresist, and remove the sidewall-shaped SiO2 film in the collector part by etching.

工程L フォトエツチングを使用して、ベースコンタク
ト用の窓24を形成する。多結晶Si膜を抵抗等に使用
している場合には、そのコンタクト用の窓となる。
Step L: Use photoetching to form windows 24 for base contacts. If a polycrystalline Si film is used for a resistor or the like, this serves as a contact window.

工程M  IGOOA多結晶5iloをCVD法ニヨり
形成する。
Step M IGOOA polycrystal 5ilo is formed by CVD method.

工程N フォトレジスト11をマスクにして、Asをイ
オン注入して、その後の拡散によってエミッタ8を形成
する。
Step N: Using the photoresist 11 as a mask, As ions are implanted, and the emitter 8 is formed by subsequent diffusion.

工程0 従来法と同様にしてベース、エミッタ、コレク
タの各々の電極12.13.14を形成する。
Step 0 The base, emitter, and collector electrodes 12, 13, and 14 are formed in the same manner as in the conventional method.

実施例(ii) 本実施例に於ては、 5iO7膜17上に513N−一
多結晶Si膜−9i3N4膜の3層の膜を設ける点が実
施例(i)と異なる。実施例(i)と異なる工程を次に
示す。
Example (ii) This example differs from Example (i) in that three layers of 513N--polycrystalline Si film and 9i3N4 film are provided on the 5iO7 film 17. The steps different from Example (i) are shown below.

工程CS i 02膜17と多結晶Si膜18aの間に
Si3N、膜を設け、熱酸化膜17の上に5t3N、膜
−多結晶gi膜づ13N4膜からなる3層の膜を形成す
る。
Process: A Si3N film is provided between the CS i02 film 17 and the polycrystalline Si film 18a, and a three-layer film consisting of a 5t3N film and a polycrystalline gi film and a 13N4 film is formed on the thermal oxide film 17.

工程DD  RIE法により最上のSi3N4膜を除去
して多結晶Si膜を露出させ、同時に、サイドウオール
状にSi3N4膜を残す。
Step DD RIE method is used to remove the uppermost Si3N4 film to expose the polycrystalline Si film, and at the same time leave the Si3N4 film in the form of a sidewall.

工程E  S r 02膜19をマスクとしてSi3N
、膜18b、多結晶Si膜、Si3N、膜を除去して、
開孔部を形成する。
Process E Sr02 film 19 is used as a mask to form Si3N
, film 18b, polycrystalline Si film, Si3N film are removed,
Form an opening.

工程! 実施例(i)のようにS + 02膜22を一
様に形成するのではなく、工程Cで設けた最下層のSi
3N4膜をマスクとして、サイドウオール状の多結晶S
iの表面のみを熱酸化して第6図Jに示される酸化膜2
2と同様なものを形成する。
Process! Instead of forming the S + 02 film 22 uniformly as in Example (i), the lowermost Si layer provided in step C
Using the 3N4 film as a mask, sidewall-shaped polycrystalline S
The oxide film 2 shown in FIG. 6J is obtained by thermally oxidizing only the surface of i.
Form something similar to 2.

[効果] 多結晶Si (或いはポリサイド)等の外部電極取出し
とトランジスタのアクティブ領域(ベース)とのコンタ
クトを、サイドウオール技術を用いて1000A程度の
微細な幅でセルファラインに形成することができた。こ
れによって、トランジスタのコレクター・ベース接合容
量のうちイントリンシック部以外のグラフトベースによ
る容量を大幅に減らすことができた。さらに本発明の製
造方法によるトランジスタの微細化(例、従来のトラン
ジスタにあったコレクターベース間のLOGO9酸化膜
が存在しない構造)も加えて、寄生容量が格段に減少し
た。このため本発明によりLSIの高速化、高集積化が
達成できる。
[Effects] Contact between the external electrode of polycrystalline Si (or polycide) and the active region (base) of the transistor could be formed in a self-aligned line with a fine width of about 1000A using sidewall technology. . As a result, it was possible to significantly reduce the capacitance due to the graft base other than the intrinsic portion of the collector-base junction capacitance of the transistor. Furthermore, in addition to miniaturization of the transistor by the manufacturing method of the present invention (for example, a structure in which the LOGO9 oxide film between the collector base and the base of the conventional transistor does not exist), the parasitic capacitance has been significantly reduced. Therefore, according to the present invention, higher speed and higher integration of LSI can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法の最終段階の工程M、N、O
を示す図である。 第2図は本発明の製造方法の最初の工程A、B、Cを示
す図である。 第3図は本発明の製造方法の途中の工程り、D、Eを示
す図である。 第4図は本発明の製造方法の途中の工程E、F、Gを示
す図である。 第5図は本発明の製造方法の途中の工程G、H1■を示
す図である。 第6図は本発明の製造方法の途中の工程J、K、Lを示
す図である。 第7図は従来のLOGOSトランジスタとその改良トラ
ンジスタを示す図である。 1、・・・・P型基板 2、・・・・P+チャンネルスト−/パー+ 3、・・・・N 埋込層   4,4′・・・・酸化膜
5、・・・・N+コレクタ取出し部 6、・・・・N型エピタキシャル層 7、・・・・ベース領域   8.・・・・エミッタ領
域7゛・・・・グラフトベース領域 8、・・・・多結晶Si     10.・・・・多結
晶5iI1.・・・・フォトレジスト 12.・・・・
ベース電極+3.・・・・エミッタ電極  14.・・
・・コレクタ電極21、・・・・フォトレジスト 22
.・・・・S+02JIi23、・・・・フォトレジス
Figure 1 shows steps M, N, and O in the final stage of the manufacturing method of the present invention.
FIG. FIG. 2 is a diagram showing the first steps A, B, and C of the manufacturing method of the present invention. FIG. 3 is a diagram showing intermediate steps D and E of the manufacturing method of the present invention. FIG. 4 is a diagram showing steps E, F, and G in the middle of the manufacturing method of the present invention. FIG. 5 is a diagram showing steps G and H1 in the middle of the manufacturing method of the present invention. FIG. 6 is a diagram showing steps J, K, and L during the manufacturing method of the present invention. FIG. 7 is a diagram showing a conventional LOGOS transistor and its improved transistor. 1,...P-type substrate 2,...P+ channel strike-/par+ 3,...N buried layer 4,4'...oxide film 5,...N+ collector Extracting portion 6, N-type epitaxial layer 7, base region 8. ...Emitter region 7゛...Graft base region 8, ...Polycrystalline Si 10. ...Polycrystalline 5iI1. ...Photoresist 12.・・・・・・
Base electrode +3. ...Emitter electrode 14.・・・
...Collector electrode 21, ...Photoresist 22
.. ...S+02JIi23, ...Photoresist

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に絶縁層を介して形成されたベース
電極の端部によって該基板上に段差部を形成する工程と
、 上記段差部を含む上記半導体基板上に第1の半導体層と
耐酸化物層を形成した後、異方性エッチングを行なって
上記段差部側壁部に上記耐酸化物層を残す工程と、 上記第1の半導体層を酸化する工程と、 上記段差部の側壁部に残した上記耐酸化物を除去する工
程と、 上記耐酸化物層を除去した上記半導体基板の露出部を含
み、かつ、上記ベース電極に接続された不純物含有半導
体層を形成する工程と、 上記不純物含有半導体層により不純物を半導体基板に拡
散させる工程と、 上記不純物含有半導体層に接して、上記半導体基板にベ
ース領域を形成する工程と、 上記不純物含有半導体層とその表面に形成した絶縁層を
マスクとして、エミッタ領域を上記半導体基板に形成す
る工程 とを有する半導体装置の製造方法。
(1) A step of forming a step portion on a semiconductor substrate by an end of a base electrode formed on the substrate via an insulating layer, and forming a first semiconductor layer and an acid-resistant layer on the semiconductor substrate including the step portion. After forming the compound layer, performing anisotropic etching to leave the oxide resistant layer on the side wall of the step, oxidizing the first semiconductor layer, and leaving the oxide resistant layer on the side wall of the step. a step of removing the oxidation resistant material; a step of forming an impurity-containing semiconductor layer including an exposed portion of the semiconductor substrate from which the oxidation resistant layer has been removed and connected to the base electrode; a step of diffusing impurities into a semiconductor substrate; a step of forming a base region in the semiconductor substrate in contact with the impurity-containing semiconductor layer; and a step of forming an emitter region using the impurity-containing semiconductor layer and an insulating layer formed on its surface as a mask. forming a semiconductor device on the semiconductor substrate.
JP11124985A 1985-05-23 1985-05-23 Manufacture of semiconductor device Pending JPS61269374A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11124985A JPS61269374A (en) 1985-05-23 1985-05-23 Manufacture of semiconductor device
US06/865,295 US4678537A (en) 1985-05-23 1986-05-21 Method of manufacturing semiconductor devices
EP86106981A EP0208877A3 (en) 1985-05-23 1986-05-22 Method of manufacturing semiconductor devices having connecting areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11124985A JPS61269374A (en) 1985-05-23 1985-05-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61269374A true JPS61269374A (en) 1986-11-28

Family

ID=14556380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11124985A Pending JPS61269374A (en) 1985-05-23 1985-05-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61269374A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258233A (en) * 1988-08-23 1990-02-27 Oki Electric Ind Co Ltd Manufacture of bipolar transistor
US7611954B2 (en) 2003-07-01 2009-11-03 International Business Machines Corporation Bipolar transistor self-alignment with raised extrinsic base extension and methods of forming same
US8716096B2 (en) 2011-12-13 2014-05-06 International Business Machines Corporation Self-aligned emitter-base in advanced BiCMOS technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258233A (en) * 1988-08-23 1990-02-27 Oki Electric Ind Co Ltd Manufacture of bipolar transistor
US7611954B2 (en) 2003-07-01 2009-11-03 International Business Machines Corporation Bipolar transistor self-alignment with raised extrinsic base extension and methods of forming same
US8716096B2 (en) 2011-12-13 2014-05-06 International Business Machines Corporation Self-aligned emitter-base in advanced BiCMOS technology
US8916952B2 (en) 2011-12-13 2014-12-23 International Business Machines Corporation Self-aligned emitter-base in advanced BiCMOS technology

Similar Documents

Publication Publication Date Title
JPH06101473B2 (en) Semiconductor device
JPH05206451A (en) Mosfet and its manufacture
JP2672199B2 (en) Method for manufacturing semiconductor device
JPH0529329A (en) Manufacture of semiconductor device
JPS61269374A (en) Manufacture of semiconductor device
JPS6315744B2 (en)
JP2581548B2 (en) Method for manufacturing semiconductor device
JPS61269375A (en) Manufacture of semiconductor device
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JPS60258964A (en) Manufacture of semiconductor device
JP2519251B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS61269376A (en) Manufacture of semiconductor device
JPS62232963A (en) Manufacture of semiconductor device
JP3609906B2 (en) Bipolar transistor manufacturing method
JPH02180022A (en) Manufacture of semiconductor device
JPS6328067A (en) Manufacture of semiconductor device
JPS63226065A (en) Manufacture of semiconductor device
JPH0810696B2 (en) Method for manufacturing semiconductor device
JPH04278586A (en) Manufacture of semiconductor device
JPH04287329A (en) Lateral bipolar transistor and its manufacture
JPH07105398B2 (en) Method for manufacturing semiconductor device
JPS63261878A (en) Semiconductor device
JPS63102363A (en) Manufacture of semiconductor device
JPH0513422A (en) Manufacture of semiconductor device
JPH08162474A (en) Manufacture of bipolar transistor