JPS6126884A - Movement surveying method of ground water - Google Patents

Movement surveying method of ground water

Info

Publication number
JPS6126884A
JPS6126884A JP14745184A JP14745184A JPS6126884A JP S6126884 A JPS6126884 A JP S6126884A JP 14745184 A JP14745184 A JP 14745184A JP 14745184 A JP14745184 A JP 14745184A JP S6126884 A JPS6126884 A JP S6126884A
Authority
JP
Japan
Prior art keywords
water
ground
ground water
borehole
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14745184A
Other languages
Japanese (ja)
Other versions
JPH0619473B2 (en
Inventor
Minoru Ushida
牛田 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Consultants Co Ltd
Original Assignee
Dia Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Consultants Co Ltd filed Critical Dia Consultants Co Ltd
Priority to JP59147451A priority Critical patent/JPH0619473B2/en
Publication of JPS6126884A publication Critical patent/JPS6126884A/en
Publication of JPH0619473B2 publication Critical patent/JPH0619473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/02Determining existence or flow of underground water

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To survey the movement of ground water precisely by digging a boring hole of small bore diameter and measuring the three dimensional flow directional flow velocity of water in each water level in ground water in the hole. CONSTITUTION:Existence of permeated water 1 and existence of an impermeable layer 2 are ascertained by a survey of the ground surface and the surface level 5 of ground water is ascertained by an observation well 4. Boring holes 6a, 6b,-of small bore diameter are digged at the position required. A sensor is inserted into the hole to measure the three dimensional flow directional flow velocity of water in each water level of the ground water surface 5. The sensor consists of >=3 pieces ultrasonic wave oscillating elements 11, a ultrasonic receiving element 12 at the central part and a measuring part 13 incorporated with a direction detector. Measured data are transmitted to the ground by a communication cable incorporated in a flexible cable 14 and calculated by an analyzer to grasp the perfect movement of ground water at a measuring area from the result about the plural boring holes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地下水の動態調査方法に関し、さらに詳しく
は、小口径の垂直ボーリング孔内の水の三次元流向流速
を計測し、地下水の動態を精密に調査する方法に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for investigating the dynamics of groundwater, and more specifically, the present invention relates to a method for investigating the dynamics of groundwater. Concerning how to precisely investigate.

〔従来の技術〕[Conventional technology]

地下水の動態調査は、水資源の利用、透水や地すべりそ
の他地質地層の解明、構築物や防災施設等の設計、土木
工事の施工計画、その他にとって不可欠の要件であると
ころから、従来これらの計画に先立って調査が行われて
いた。
Groundwater dynamics research is an essential requirement for the use of water resources, the elucidation of permeability, landslides, and other geological strata, the design of structures and disaster prevention facilities, the construction planning of civil engineering works, and so on, so it has traditionally been conducted prior to these plans. An investigation was being conducted.

従来の地下水の動態調査方法としては、電解液の移動に
よる電極間抵抗変化を測定する二次元流速計法、アイソ
トープトレーサ法、普通トレーサ法、プロペラ法などが
知られている。
Conventional groundwater dynamics investigation methods include the two-dimensional current meter method, which measures changes in resistance between electrodes due to the movement of electrolyte, the isotope tracer method, the ordinary tracer method, and the propeller method.

二次元流速計法は、水と異なる比電気抵抗をもつ液を封
入した容器内に多数の電極棒を挿入しておき、これをボ
ーリング孔内に垂下して開放し、ボーリング孔内の水流
によって上記液が置換されて行く状態を各電極林間の比
抵抗の変化から検出するものである。このような調査方
法は直径100mmφ以上の大口径のボーリング孔の掘
さくを要する欠点がある。
In the two-dimensional current meter method, a large number of electrode rods are inserted into a container filled with a liquid with a specific electrical resistance different from that of water. The state in which the liquid is being replaced is detected from the change in resistivity between each electrode. Such an investigation method has the disadvantage that it requires drilling a large bore hole with a diameter of 100 mm or more.

アイソトープトレーサ法は放射性同位体を用い、また、
普通トレーサ法は電解液、染料などの木とは異質な物質
を用いてこれらを投入孔に投入し、別に掘さくした観測
孔においてその現出状況を観測するもので、観測孔の周
囲に多数の観測用ボーリング孔を掘さくすることを必須
要件とし、−次元または二次元の測定しか行うことかで
きない。この方法では三次元的な地下水の動きを地下水
面勾配または地表勾配から推定する方法をとっている。
The isotope tracer method uses radioactive isotopes and
Normally, the tracer method uses substances that are foreign to wood, such as electrolytes and dyes, and injects them into the injection hole, and observes their appearance in a separately dug observation hole. It is an essential requirement to drill observation boreholes, and only -dimensional or two-dimensional measurements can be performed. This method estimates three-dimensional groundwater movement from the groundwater table gradient or ground surface gradient.

この方法は多数のボーリング孔を掘さくするため調査費
用が嵩むばかりでなく、上記のように推定を含むので、
精度が高くない。
This method not only increases survey costs because it requires drilling a large number of boreholes, but also involves estimation as described above.
Accuracy is not high.

プロペラ法は、ボーリング孔内に水流によって駆動され
るプロペラを挿入する方法である。比較的小口径のボー
リング孔内の水流測定ができるが、一方向、例えば垂直
方向成分のみの測定に限られ、調査精度の高い調査に対
しては不適当である。
The propeller method is a method in which a propeller driven by water flow is inserted into a borehole. Although it is possible to measure water flow in boreholes with relatively small diameters, it is limited to measuring only the component in one direction, for example, the vertical direction, and is not suitable for highly accurate surveys.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来方法の欠点を改善した地下水の動態調
査方法を提供することを目的とするものである。
An object of the present invention is to provide a method for investigating the dynamics of groundwater, which improves the drawbacks of the above-mentioned conventional methods.

本発明によれば、大口径ボーリング孔の掘さくを必要と
せず、従来量も普通に簡易に行われている6 6 m 
mφのボーリング孔を用い、また、別々の投入孔と観測
孔とを要することなく、ボーリング孔内の水の三次元流
向流速を測定することができ、最小限の数の小口径ボー
リング孔の掘さくによって高性能、高精度の地下水動態
調査方法を実現することができる。
According to the present invention, it is not necessary to drill a large-diameter borehole, and the conventional amount of 6 6 m is easily carried out.
It is possible to measure the three-dimensional direction and flow velocity of water in the borehole using a borehole of mφ and without requiring separate injection holes and observation holes. Through this method, a high-performance, high-precision groundwater dynamics investigation method can be realized.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、小口径ボーリング
孔を掘さくし、該ボーリング孔内の地下水中の各水位レ
ベルにおける水の三次元流向流速を計測し、該計測値か
ら地下水の動態を解析することを特徴とする地下水の動
態調査方法を要旨とするものである。
In order to achieve the above object, the present invention drills a small-diameter borehole, measures the three-dimensional flow direction and velocity of water at each water level in the groundwater in the borehole, and analyzes the dynamics of groundwater from the measured values. The gist of this paper is a groundwater dynamics investigation method that is characterized by:

以下、図面を参照して本発明方法を詳細に説明する。第
1図は本発明方法を模式的に示す傾斜地の地下水の調査
方法を概念的に示したものである。
Hereinafter, the method of the present invention will be explained in detail with reference to the drawings. FIG. 1 conceptually shows a method for investigating groundwater on a slope, schematically illustrating the method of the present invention.

第1図に示す対象区域の水資源を調査する場合、例えば
、地表調査により浸透水lの存在や不透水層2の存在を
確認し、観測、井4により、地下水の水面5が確かめら
れる。
When investigating water resources in the target area shown in FIG. 1, for example, the presence of seepage water 1 and the presence of an impermeable layer 2 are confirmed by a ground surface survey, and the groundwater level 5 is confirmed by observation and a well 4.

本発明では、以上のように調査すべき対象区域の実状を
地表調査した上、所要位置に小口径ボーリング孔6a、
6b、6c、・・・を掘さくする。
In the present invention, after conducting a ground survey of the actual condition of the target area to be investigated as described above, small-diameter boreholes 6a,
Dig 6b, 6c,...

ボーリング孔の数は調査対象の実状と調査目的とによっ
て、その本数が決定されるが、本発明方法は従来のいず
れの方法よりも少ない本数のボーリング孔の掘さくで十
分である。これは三次元流向流速の計測ができるからで
ある。ボーリング孔は通常、垂直ボーリング孔とするが
、実状に応じて傾斜ボーリングを用いることも可能であ
る。
The number of boreholes is determined depending on the actual situation of the object to be investigated and the purpose of the investigation, but in the method of the present invention, it is sufficient to drill a smaller number of boreholes than in any of the conventional methods. This is because three-dimensional flow direction and current velocity can be measured. The borehole is usually a vertical borehole, but it is also possible to use an inclined borehole depending on the actual situation.

ボーリング孔の直径は小口径で最も汎用されている66
mmφでよい。ボーリング孔は、口径の大小によって、
使用機械も特殊となり、所要費用に莫大な差異を生じる
ので、この点において本発明は、経済的にも技術的にも
極めて優れた利点を看するものである。
The diameter of the borehole is 66, which is the most commonly used small diameter borehole.
mmφ is sufficient. Depending on the diameter of the borehole,
Since the machines used are also specialized, and the required costs vary greatly, the present invention has extremely excellent advantages in this respect both economically and technically.

次に、ボーリング孔内にセンサを挿入し、地下水面5の
各水位レベルにおける水の三次元流向流速を計測する。
Next, a sensor is inserted into the borehole to measure the three-dimensional flow direction and velocity of water at each water level of the groundwater table 5.

この計測には、本発明者が開発した超音波を利用するセ
ンサを用いるのが最も好適である。
For this measurement, it is most suitable to use a sensor that utilizes ultrasonic waves developed by the present inventor.

第2図に、このようなセンサの外観を傍系した。超音波
発信素子11は対向しており、はぼ直径50mmφ程度
の円の円周上の同一直径の両端に配置される。その数は
3個以上である。発信素子11と一定の距離を隔てた中
心部に1個の受信素子12が設置される。この超音波発
受信素子11.12は、超音波発生装置と受信装置とを
内蔵する測定部13に結合されており、この測定部13
はフレキシブルケーブル14によってボーリング孔内に
吊下される。
Figure 2 shows the external appearance of such a sensor. The ultrasonic transmitting elements 11 face each other and are arranged at both ends of the same diameter on the circumference of a circle having a diameter of approximately 50 mmφ. The number is three or more. One receiving element 12 is installed at the center separated from the transmitting element 11 by a certain distance. The ultrasonic transmitting/receiving elements 11 and 12 are coupled to a measuring section 13 that includes an ultrasonic generating device and a receiving device.
is suspended in the borehole by a flexible cable 14.

測定部13は、外径がボーリング孔径より6〜10mm
程度小さく、超音波発信素子11の配列円の直径より大
きい直径を有し、また、数十cm程度の長さを持ち、ボ
ーリング孔内に沿って容易に上下動可能であって、かつ
、超音波発信素子11をボーリング孔の壁に衝突させる
ことのないように案内する。また、超音波発受信素子1
1゜12と測定部13との間には、水の三次元流向流速
を妨げないような空間が設けられる。
The measuring part 13 has an outer diameter 6 to 10 mm larger than the diameter of the borehole.
It is relatively small, has a diameter larger than the diameter of the arrangement circle of the ultrasonic transmitting elements 11, has a length of about several tens of centimeters, is easily movable up and down along the borehole, and is ultrasonic. To guide a sound wave transmitting element 11 so as not to collide with the wall of a borehole. In addition, the ultrasonic transmitter/receiver element 1
A space is provided between 1° 12 and the measurement part 13 so as not to impede the three-dimensional direction and flow velocity of water.

さらに測定部13内には、小型の方位検出装置、例えば
、小型磁石とホール素子を利用したコンパスが内蔵され
る。
Furthermore, a small azimuth detection device, for example, a compass using a small magnet and a Hall element, is built into the measurement unit 13.

フレキシブルケーブル14は、測定部13を吊り下げる
に十分な強度と、測定部13がポー1ノング孔内で自由
に回動することができる可撓性とを有し、電力回線と通
信回線とを内蔵してし)る。このケーブル14は地上に
おいて適当なケープフレドラムに巻回されてボーリング
孔内に巻下げ巻上lヂ自在に保持され、超音波発受信装
置の孔内深さ位置を検知することができる。
The flexible cable 14 has sufficient strength to suspend the measurement unit 13 and flexibility to allow the measurement unit 13 to freely rotate within the port 1 non-hole, and connects the power line and the communication line. built-in). This cable 14 is wound around a suitable Cape Fred drum on the ground and held in a borehole so that it can be freely lowered and raised, thereby making it possible to detect the depth position of the ultrasonic transmitter/receiver in the borehole.

超音波発信素子11の各素子から順次時分割発信された
超音波は順次超音波受信素子12に受信され、その到達
時間差をIQ−12秒オーダで測定する。
The ultrasonic waves sequentially time-divisionally transmitted from each element of the ultrasonic transmitting element 11 are sequentially received by the ultrasonic receiving element 12, and the difference in arrival time is measured on the order of IQ-12 seconds.

いま、 ΔTニ一対の超音波発受信素子間の時間差L′:超音波
発受信素子間の距離 C:音速 ■二超音波発受信素子間の水の流速 とすれば、 ΔT=2VL/C2 の関係があり、ΔTを測定すること番こよって流速■を
求めることができる。この場合、水温や密度等による音
速Cの変化は発受信素子間の直接音速測定により自動的
に補正されている。このような方法を用いると、発受信
素子間隔として数Cm程度をとることにより、5 m 
m /秒程度以上の流速を精度よく検出することができ
る。
Now, if ΔT is the time difference L' between the pair of ultrasonic transmitting and receiving elements: the distance between the ultrasonic transmitting and receiving elements C is the speed of sound■ the flow velocity of water between the two ultrasonic transmitting and receiving elements, then ΔT=2VL/C2. There is a relationship, and by measuring ΔT, the flow velocity can be determined. In this case, changes in the sound speed C due to water temperature, density, etc. are automatically corrected by direct sound speed measurement between the transmitting and receiving elements. Using this method, by setting the spacing between the transmitting and receiving elements to be approximately several centimeters, the distance of 5 m
Flow velocities of approximately m 2 /sec or higher can be detected with high accuracy.

上記一対の発信素子と受信素子との間の測定を複数の発
信素子について行い、これらの測定イ直と発受信素子の
位置との組み合わせを解析すれば、ボーリング孔内の水
の三次元流向流速を測定することが容易に可能である。
By measuring the distance between the above pair of transmitting and receiving elements for multiple transmitting elements, and analyzing the combination of these measurements and the positions of the transmitting and receiving elements, we can determine the three-dimensional flow direction and velocity of water in the borehole. is easily possible to measure.

この測定の解析演算は、フレキシブルケーブル14内に
内蔵した通信ケーブルによって地上の解析器に入力され
たデータから、直ちに演算することができる。この演算
器の出力をチャートレコーダに記録させ、またtまデジ
タルデータロガ−に入力することもでき、これをコンピ
ュータに接続して各種の解析を行うことも可能である。
This measurement analysis calculation can be performed immediately from data input to the ground analyzer via a communication cable built into the flexible cable 14. The output of this calculator can be recorded on a chart recorder, or can be input into a digital data logger, and can be connected to a computer to perform various analyses.

以上のように単一孔内においても上昇流 、下降流、水
平流を測定することが可能であり、三次元的流速ベクト
ルを求めることが可能である。さらに複数のボーリング
孔について各水位レベルにおける流速ベクトルの測定を
行い、それらの結果から測定区域の完全な地下水の動態
を把握することができる。
As described above, it is possible to measure upward flow, downward flow, and horizontal flow even within a single hole, and it is possible to obtain a three-dimensional flow velocity vector. Furthermore, the flow velocity vectors at each water level are measured in multiple boreholes, and the complete groundwater dynamics in the measurement area can be understood from these results.

例えば第1図では不透水層2上方に不被圧帯水層7があ
り、その動態の解析ができ、ピエゾメータ木頭面9が確
認され、この区域の水資源の合理的な開発資料を得るこ
とができる。
For example, in Figure 1, there is an unconfined aquifer 7 above the impermeable layer 2, and its dynamics can be analyzed, the piezometer head surface 9 can be confirmed, and data for rational development of water resources in this area can be obtained. I can do it.

本発明方法によれば、極めて精度の高い地下水動態の解
析をすることができ、高度の調査目的に合致した調査を
簡易に短時日に安価に提供することができる。
According to the method of the present invention, groundwater dynamics can be analyzed with extremely high accuracy, and surveys that meet advanced survey objectives can be easily provided in a short period of time and at low cost.

〔実施例〕〔Example〕

河川堤防の浸透流について本発明方法による解析を行っ
た。河川堤防には、洪水による堤防の安全をおびやかず
現象がいくつかあり、その1つにパイピングと呼ばれる
現象がある。このパイピングは堤体中の浸透流が土質に
応じたある流速(限、 界流速)以上になると堤体の材
料を押し流してしまい、堤防の破壊につながる現象であ
る。
The infiltration flow of river embankments was analyzed using the method of the present invention. There are several phenomena on river embankments that threaten the safety of the embankment due to flooding, one of which is a phenomenon called piping. This piping is a phenomenon in which when the seepage flow in the levee body exceeds a certain flow velocity (limit flow velocity) depending on the soil quality, the material of the levee body is washed away, leading to the destruction of the levee.

第3図に示すように、堤体lに66 m mφのボーリ
ング孔6a、6b、・・・を掘さくするとともに、堤防
の河川側に洪水水位の貯水池22を設け、本発明によっ
て浸透流23の動態を解析した。
As shown in FIG. 3, boring holes 6a, 6b, . We analyzed the dynamics of

その結果、洪水時における堤体内の三次元流向流速と限
界流速とを比較することができ、パイピングの危険性を
精度よく判定することができ、洪水時の安全性を完全に
確保するための施策を明確にすることができた。
As a result, it is possible to compare the three-dimensional flow direction and flow velocity within the embankment body during floods and the critical flow velocity, and the danger of piping can be accurately determined, and measures can be taken to completely ensure safety during floods. was able to clarify.

なお、洪水時の堤防をモデル化し、有限要素法による浸
透流計算を行い、流速が最大となる堤体状先部の流速ベ
クトルを求め、堤体の透水係数と流向流速との関係を求
めたところ、計算による流向流速と上記実測による流向
流速とは比較的良好な一致を見ることができた。
In addition, we modeled the levee during a flood, performed seepage flow calculations using the finite element method, determined the flow velocity vector at the tip of the levee body where the flow velocity is maximum, and determined the relationship between the hydraulic conductivity of the levee body and the flow direction and velocity. However, it was possible to see a relatively good agreement between the calculated flow direction and flow velocity and the above-mentioned actually measured flow direction and flow velocity.

〔発明の効果〕〔Effect of the invention〕

本発明は、小口径のボーリング孔内の水の三次元流向流
速を求め、これを解析する方法をとるので、安価で高精
度の地下水の動態調査が可能となり、貢献するところが
大である。
The present invention has a method of determining and analyzing the three-dimensional direction and flow velocity of water in a small-diameter borehole, making it possible to investigate the dynamics of groundwater at low cost and with high precision, making a major contribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は本発明方法の説明図、第2図は本発明
方法の実施に好適に用いることのできるセンサの斜視図
である。
FIGS. 1 and 3 are explanatory diagrams of the method of the present invention, and FIG. 2 is a perspective view of a sensor that can be suitably used in carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 小口径ボーリング孔を掘さくし、該ボーリング孔内
の地下水中の各水位レベルにおける水の三次元流向流速
を計測し、該計測値から地下水の動態を解析することを
特徴とする地下水の動態調査方法。
1. A groundwater dynamics investigation characterized by drilling a small-diameter borehole, measuring the three-dimensional flow direction and velocity of water at each water level in the groundwater in the borehole, and analyzing the dynamics of groundwater from the measured values. Method.
JP59147451A 1984-07-18 1984-07-18 Groundwater dynamics survey method Expired - Fee Related JPH0619473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59147451A JPH0619473B2 (en) 1984-07-18 1984-07-18 Groundwater dynamics survey method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59147451A JPH0619473B2 (en) 1984-07-18 1984-07-18 Groundwater dynamics survey method

Publications (2)

Publication Number Publication Date
JPS6126884A true JPS6126884A (en) 1986-02-06
JPH0619473B2 JPH0619473B2 (en) 1994-03-16

Family

ID=15430647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59147451A Expired - Fee Related JPH0619473B2 (en) 1984-07-18 1984-07-18 Groundwater dynamics survey method

Country Status (1)

Country Link
JP (1) JPH0619473B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562378A (en) * 1978-11-02 1980-05-10 Osaka Gas Co Ltd Flowing speed measuring device
JPS56160679A (en) * 1980-05-16 1981-12-10 Jio Consultant:Kk Method and apparatus for checking ground water layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562378A (en) * 1978-11-02 1980-05-10 Osaka Gas Co Ltd Flowing speed measuring device
JPS56160679A (en) * 1980-05-16 1981-12-10 Jio Consultant:Kk Method and apparatus for checking ground water layer

Also Published As

Publication number Publication date
JPH0619473B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
CN105676308B (en) A kind of underground water in single well seepage velocity flow directional detection method and measuring instrument
WO2019233105A1 (en) Device and method for measuring flow rate, flow direction, and geological parameter of deep-well cross-hole groundwater
CN105604066B (en) Application of the resistivity profiling in the detection of building foundation pit building enclosure percolating water
Morin et al. Fractured‐aquifer hydrogeology from geophysical logs; the Passaic Formation, New Jersey
CN103148992B (en) Three-dimensional flow velocity vector energy and mass measurement device
McGrath et al. Integrated high-resolution geophysical investigations as potential tools for water resource investigations in karst terrain
CN109238161A (en) A kind of observation device and observation method of tunnel surface absolute convergence amount
CN106869997A (en) A kind of colliery multi-aquifer prevention and controls
CN104459823A (en) Method for testing sea breach interface through comprehensive geophysical prospection
Benson et al. Spatial sampling considerations and their applications to characterizing fractured rock and karst systems
Paillet Use of geophysical well logs in evaluating crystalline rocks for siting of radioactive-waste repositories
CN208347764U (en) A kind of across the hole groundwater velocity and direction of deep-well and geologic parameter measurement device
KR100264630B1 (en) Rebar detection and detection method in concrete foundation piles by measuring 3-axis magnetic field in borehole
Alumbaugh et al. Monitoring infiltration within the vadose zone using cross borehole ground penetrating radar
Shapiro et al. Integrating multidisciplinary investigations in the characterization of fractured rock
JPS6126884A (en) Movement surveying method of ground water
Koerner et al. Detection methods for location of subsurface water and seepage
JPH0455790A (en) Examination of ground
Amini et al. Diameter Measurement of Jet-Grouting Column Using Geo-Electrical Probe: Construction and Field Testing
Zhang et al. Preliminary evaluation of the rock mass permeability of a granite site based on sonic logging
Yu-Feng et al. Three-dimensional forward modeling and response characteristics analysis of foundation pit leakage electric-field considering electrokinetic effect
Robertshaw et al. GEOPHYSICAL METHODS OF EXPLORATION AND THEIR APPLICATION TO CIVIL ENGINEERING PROBLEMS.
Kunar Application of Geophysical Survey in Two Different Engineering Projects-Case Study
By et al. Karst cavity detection by means of seismic tomography to help assess possible dam site in limestone terrain
Zulfahmi et al. Discontinuity characterization of rock strata using borehole wall imagery and scanline

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees