JPH0455790A - Examination of ground - Google Patents
Examination of groundInfo
- Publication number
- JPH0455790A JPH0455790A JP2166320A JP16632090A JPH0455790A JP H0455790 A JPH0455790 A JP H0455790A JP 2166320 A JP2166320 A JP 2166320A JP 16632090 A JP16632090 A JP 16632090A JP H0455790 A JPH0455790 A JP H0455790A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- penetration
- gamma ray
- density
- ray source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005251 gamma ray Effects 0.000 claims abstract description 50
- 230000035515 penetration Effects 0.000 claims abstract description 36
- 238000011835 investigation Methods 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 24
- 230000000149 penetrating effect Effects 0.000 claims description 10
- 239000000523 sample Substances 0.000 abstract description 5
- 238000005553 drilling Methods 0.000 description 21
- 238000005259 measurement Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 13
- 239000002689 soil Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000013142 basic testing Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000007586 pull-out test Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は地盤または岩盤(以下「地盤」という)内の状
況を調査する地盤調査方法に係り、特にγ線透過法を採
用して地盤の密度を測定し、かつ同時に貫入抵抗パラメ
ータを測定することにより地盤状況を高精度に、かつ広
範囲に推定し得る地盤調査方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ground investigation method for investigating the condition within the ground or rock (hereinafter referred to as "ground"), and in particular, the gamma ray transmission method is adopted to investigate the condition of the ground. The present invention relates to a ground investigation method capable of estimating ground conditions with high precision over a wide range by measuring density and penetration resistance parameters at the same time.
ラジオアイソトープ(RI)を用いる地盤調査方法とし
て、従来、散乱型(反射型)γ線密度計を用いる方法が
知られている。この反射型γ線密度計は一回の散乱をう
けたγ線を検出する方式であってコリメータを設けるこ
とにより注入状態の方向性は弁別できるが、測定可能範
囲はたかだか半径5〜10cm位である。また、測定値
は測定範囲内の密度分布に依存性があるので、平均密度
を表しているとは言えず、したがって、正確な測定がで
きない。As a ground investigation method using a radioisotope (RI), a method using a scattering type (reflection type) gamma ray densitometer is conventionally known. This reflection type gamma ray densitometer detects gamma rays that have been scattered once, and the directionality of the injection state can be determined by installing a collimator, but the measurable range is at most a radius of 5 to 10 cm. be. Furthermore, since the measured value is dependent on the density distribution within the measurement range, it cannot be said to represent the average density, and therefore accurate measurement cannot be performed.
このように、反射型の測定器を用いる従来の測定方法で
は、測定範囲が5〜10c+nと狭いため、正確な地盤
状況を把握するには狭い間隔で多数の試験孔を掘削しな
ければならず、また、測定回数もこれに伴って多くなり
、多大の手間と時間を要するという難点があり、さらに
本質的に精度が低いという難点があった。In this way, conventional measurement methods using reflective measuring instruments have a narrow measurement range of 5 to 10c+n, so it is necessary to drill a large number of test holes at narrow intervals in order to obtain accurate ground conditions. In addition, the number of measurements increases accordingly, requiring a great deal of effort and time, and furthermore, the accuracy is essentially low.
さらに、γ線透過法によっても、地盤密度を正確に測定
できるという利点はあるものの、測定範囲がなお半径数
十1以内とせまく、かつγ線の検出に時間がかかるため
広範囲な地盤状況を把握することは困難である。Furthermore, although the gamma-ray transmission method has the advantage of being able to accurately measure ground density, the measurement range is still narrow, within a radius of several tens of meters, and it takes time to detect gamma-rays, so it is difficult to grasp a wide range of ground conditions. It is difficult to do so.
一方、地盤の密度あるいはこれに関連する強度を知るた
めに各種サウンデイング法、例えばキコーブ型動貫人試
験、標準貫入試験、コーン型動貫入試験、動的円錐貫入
試験、静貫入試験、ポータプルコーン貫入試験、オラン
ダ式貫入試験、スエーデン式貫入試験、ベーン試験、簡
易ベーン試験、引抜き試験、イキスメーター試験等が知
られている。上述サウンデイングは貫入抵抗を測定する
ことにより密度あるいはこれに関連する強度を能率的に
測定し得るが、正確な密度を知るには不充分である。On the other hand, in order to know the density of the ground or its related strength, various sounding methods are used, such as Kikove type dynamic penetration test, standard penetration test, cone type dynamic penetration test, dynamic cone penetration test, static penetration test, and portal cone test. Penetration tests, Dutch penetration tests, Swedish penetration tests, vane tests, simple vane tests, pull-out tests, Ikismeter tests, etc. are known. Although the above-mentioned sounding can efficiently measure density or its related strength by measuring penetration resistance, it is insufficient to determine the exact density.
また、最近、ポーリング削孔装置を用いて削孔時の先端
ピットに生じる削孔抵抗を知り、これから地盤の強度を
推定する方法も採用されている。Recently, a method has also been adopted in which the strength of the ground is estimated from the drilling resistance generated at the tip pit during drilling using a polling device.
すなわち、削孔時の送水圧、回転トルク、推力、削孔速
度、回転速度、削孔時間、貫入力等を削孔パラメータと
して、モデル地盤による基礎試験から削孔パラメータと
地盤強度の関係を調べ、これから地盤状況あるいは改良
地盤の強度を測定するものである。この方法は短時間で
地盤の評価を得る点で優れているが、地盤密度を直接動
ることができないため、これらパラメータのみによって
は正確な地盤状況の把握は困難である。特に、モデル地
盤とパラメータを対応させるにせよ、多数のモデル地盤
と対応させるには自ずと限界がある。In other words, the relationship between drilling parameters and ground strength was investigated through basic tests using model ground, using water supply pressure, rotational torque, thrust, drilling speed, rotational speed, drilling time, penetration force, etc. during drilling as drilling parameters. This is used to measure the ground condition or the strength of the improved ground. Although this method is excellent in obtaining a ground evaluation in a short time, it is difficult to accurately grasp the ground condition based only on these parameters because the ground density cannot be directly determined. In particular, even if the parameters are made to correspond to the model ground, there is a limit to how many model grounds can be made to correspond.
また、多くのパラメータを用いないと正確な地盤状況が
把握できないため、非常に複雑となる。In addition, accurate ground conditions cannot be grasped unless many parameters are used, making the process extremely complex.
本発明者は上述のサウンデイングあるいは削孔抵抗パラ
メータによる調査に対し、さらに密度の要素がとり入れ
られれば、きわめて正確に地盤の変化、土層の強度、改
良地盤の改良度合等を把握し得ることを見い出し、上述
のサウンデイング用貫入体あるいは削孔管を貫入体と称
し、この貫入体にT線源を装着して周辺土層の密度を測
定し、同時に貫入抵抗値あるいは抵抗パラメータを測定
し、両者を対応させることにより正確に地盤を把握する
ことを可能にした。The present inventor has discovered that if the element of density is further incorporated into the investigation using the above-mentioned sounding or drilling resistance parameters, changes in the ground, the strength of the soil layer, the degree of improvement of the improved ground, etc. can be grasped very accurately. The above-mentioned sounding intruder or borehole pipe is called the intruder, and a T-ray source is attached to this intruder to measure the density of the surrounding soil layer and at the same time measure the penetration resistance value or resistance parameter. By matching the two, it became possible to accurately grasp the ground.
また、多くの抵抗パラメータを用いなくても、少ない抵
抗パラメータと密度とを組み合わせることにより充分な
地盤状況を把握できることも見い出した。例えば、削孔
速度と密度をある時点で測定しておけば、他の時点では
削孔条件を同じにして削孔し、削孔速度を測定すれば密
度を予測でき、このため極めて簡便に地盤条件を把握で
きる。We have also found that it is possible to sufficiently grasp the ground condition by combining a small number of resistance parameters and density without using many resistance parameters. For example, if you measure the drilling speed and density at a certain point, you can predict the density at other times by drilling under the same drilling conditions and measuring the drilling speed. Can understand the conditions.
このように、広範囲な調査対象地盤の代表的な地盤で密
度と貫入抵抗を測定して地盤の性情を正確に把握してお
けば、他はサウンデイングや削孔抵抗を測定するのみで
容易に対象地盤全体を正確に把握できる。また、この方
法を用いれば、自然地盤の土質状況を調査できるのみな
らず、地盤法人を行なった場合の注入前後の改良効果を
適確に知ることができる。In this way, if you accurately understand the characteristics of the ground by measuring the density and penetration resistance of a representative ground in a wide range of ground areas, you can easily measure other ground conditions by simply conducting soundings and measuring drilling resistance. The entire target ground can be accurately grasped. Furthermore, by using this method, it is possible not only to investigate the soil condition of natural ground, but also to accurately know the improvement effects before and after injection when performing soil engineering.
そこで、本発明の目的はγ線透過法を採用して地盤密度
を測定し、かつ同時に貫入抵抗パラメータを測定するこ
とにより地盤状況を高精度に、かつ、広範囲に推定し、
前述の公知技術に存する欠点を改良した地盤調査方法を
提供することにある。Therefore, the purpose of the present invention is to estimate the ground condition with high accuracy and over a wide range by measuring the ground density using the gamma ray transmission method and simultaneously measuring the penetration resistance parameter.
It is an object of the present invention to provide a ground investigation method that improves the drawbacks of the above-mentioned known techniques.
前述の目的を達成するため、本発明によれば、少なくと
もTa2源を内装した貫入体を地盤中に貫入し、このT
線源からのγ線を検出器により検出して地盤密度を測定
し、かつ、同時に貫入抵抗パラメータを測定し、これに
より地盤状況を把握することを特徴とする。In order to achieve the above-mentioned object, according to the present invention, a penetrating body containing at least a Ta2 source is penetrated into the ground, and the T
It is characterized by detecting gamma rays from a radiation source with a detector to measure the ground density, and at the same time measuring penetration resistance parameters, thereby understanding the ground condition.
以下、本発明を添付図面を用いて詳述する。Hereinafter, the present invention will be explained in detail using the accompanying drawings.
第1図は本発明にかかる地盤調査方法を説明するための
断面図を示す。第1図に示されるように、地盤A中には
T線源およびr@検出器をそれぞれ挿入するための調査
孔1.4が所定距離を隔てた位置にほぼ平行に掘削され
る。さらに調査孔1には先端にγ線源2の収容された挿
入管(サウンデイング用貫入体)3が挿入され、かつ調
査孔4にはプローブ5が挿入される。このプローブ5は
下方にγ線検出器6、これに給電する高圧電源7、およ
び検出器6の出力信号を増幅するプリアンプ8を収容し
、信号線が併設されたケーブル9によって調査孔4内に
吊り下げて挿入される。10は信号線を経て送られるT
線検出信号をカウントする計数器である。FIG. 1 shows a sectional view for explaining the ground investigation method according to the present invention. As shown in FIG. 1, investigation holes 1.4 for inserting a T-ray source and an r@ detector are excavated substantially parallel to each other in the ground A at predetermined distances apart. Furthermore, an insertion tube (sounding penetrating body) 3 containing a gamma ray source 2 at its tip is inserted into the investigation hole 1, and a probe 5 is inserted into the investigation hole 4. The probe 5 houses a gamma ray detector 6, a high-voltage power supply 7 that supplies power to it, and a preamplifier 8 that amplifies the output signal of the detector 6, and is inserted into the investigation hole 4 by a cable 9 with a signal line attached. It is inserted by hanging. 10 is T sent via the signal line
This is a counter that counts line detection signals.
上述の調査孔1内のγ線源2および調査孔4内のγ線検
出器6はそれぞれ調査孔1.4に沿って下方から上方に
移動され(上方から下方でもよい。The gamma ray source 2 in the investigation hole 1 and the gamma ray detector 6 in the investigation hole 4 described above are each moved from below to above (or may be moved from above to below) along the investigation hole 1.4.
以下も同様。)、γ線源2からのT線をγ線検出器6で
検出することにより地盤の密度を測定する。The same goes for the following. ), the density of the ground is measured by detecting T-rays from the gamma-ray source 2 with the gamma-ray detector 6.
なお、本発明は第4図示のように、調査孔1の挿入管3
内に複数個のγ線源2.2・・2を軸方向に沿って所定
の間隔をあけて配置し、一方、調査孔4内には1個のγ
線検出器6を配置し、このγ線検出器6のみを調査孔4
に沿って下方から上方に移動して各γ線源2.2・・2
からのT線を1個のγ線検出器6で移動しながら検出す
ることによりそれぞれの地盤レベルの密度を測定するこ
ともできる。もちろん、図示しないがこの逆の場合、す
なわち、γ線源2を1個、γ線検出器6を複数個それぞ
れ調査孔1.4内に配置し、γ線源2のみを調査孔1に
沿って下方から上方に移動して前述と同様に測定しても
よい。In addition, as shown in the fourth diagram, the present invention is directed to the insertion tube 3 of the investigation hole 1.
A plurality of γ-ray sources 2.2...2 are arranged at predetermined intervals along the axial direction, while one γ-ray source is placed inside the investigation hole 4.
A ray detector 6 is placed, and only this γ-ray detector 6 is inserted into the investigation hole 4.
Each gamma ray source 2.2...2
It is also possible to measure the density at each ground level by detecting T-rays from the ground while moving with one gamma-ray detector 6. Of course, although not shown, in the opposite case, one gamma ray source 2 and a plurality of gamma ray detectors 6 are arranged in the investigation hole 1.4, and only the gamma ray source 2 is placed along the investigation hole 1. The measurement may be performed in the same manner as described above by moving from the bottom to the top.
さらに、本発明では第3図示のように、γ線源2を挿入
する調査孔1を中心とし、この位置から所定間隔を隔て
た周囲(円周方向)にγ線検出器6を挿入する複数個の
調査孔4.4・・4を、例えば図示のように6個の調査
孔4.4・・4を、調査孔1とほぼ平行に掘削し、これ
ら調査孔1および4にそれぞれγ線源2およびγ線検出
器6を1個づつ挿入し、かつ、これらγ線源2およびγ
線検出器6を第1図示と同様にそれぞれ調査孔1.4に
沿って移動させながらγ線源2からのT線をγ線検出器
6.6・・6で検出することにより調査孔1を中心とし
たγ線検出器6.6・・6間の地盤状況をそれぞれ調査
することもできる。また、第3図において、γ線源2ま
たはγ線検出器6のいずれか一方を一つの調査孔1また
は4内に複数個、他方を1個それぞれ挿入し、第4図と
同様にして地盤状況を調査することもできる。Furthermore, in the present invention, as shown in the third figure, a plurality of gamma ray detectors 6 are inserted around the investigation hole 1, into which the gamma ray source 2 is inserted, at a predetermined distance from this position (in the circumferential direction). For example, as shown in the figure, six investigation holes 4.4...4 are drilled almost parallel to investigation hole 1, and these investigation holes 1 and 4 are filled with γ-rays, respectively. One source 2 and one gamma ray detector 6 are inserted, and these gamma ray sources 2 and gamma ray detectors 6 are inserted.
The investigation holes 1 are detected by detecting T-rays from the γ-ray source 2 with the γ-ray detectors 6.6 while moving the ray detectors 6 along the investigation holes 1.4 in the same manner as shown in the first diagram. It is also possible to investigate the ground conditions between the gamma ray detectors 6, 6, 6, and 6, respectively. In addition, in FIG. 3, a plurality of either the gamma ray source 2 or the gamma ray detector 6 are inserted into one investigation hole 1 or 4, and one of the other is inserted into the ground in the same manner as in FIG. You can also investigate the situation.
さらに、第3図において、調査孔4は調査孔1を中心と
する円周上に正六角形となるように配設したが、この例
に限られるものではなく、他の正多角形としてもよい。Further, in FIG. 3, the investigation holes 4 are arranged so as to form a regular hexagon on the circumference with the investigation hole 1 as the center, but the shape is not limited to this example, and other regular polygons may be used. .
また必ずしも調査孔4から調査孔1の距離および調査孔
4同志の間隔も同一である必要はない。ただ、調査孔4
を正多角形に配置すれば、平面的な地盤の密度変化の解
析が容易となり、また調査孔1を中心として左右対象に
配置することにより断面的な地盤の密度変化の解析が容
易になる利点がある。Further, the distance from the investigation hole 4 to the investigation hole 1 and the intervals between the investigation holes 4 do not necessarily need to be the same. However, investigation hole 4
The advantage of arranging them in a regular polygon makes it easier to analyze planar ground density changes, and by arranging them symmetrically around survey hole 1, it becomes easier to analyze cross-sectional ground density changes. There is.
なお、本発明において、γ線源2ならびにT線検出器が
挿入される調査孔はできるだけ平行に設置されることが
必要である。その理由はT線の検出は距離の二乗に反比
例するため距離が変化すると土層の変化よりも距離の変
化による影響が大きくなり、正確な解析が困難となるた
めである。In the present invention, it is necessary that the investigation holes into which the γ-ray source 2 and the T-ray detector are inserted are installed as parallel as possible. The reason for this is that detection of the T-line is inversely proportional to the square of the distance, so when the distance changes, the effect of the change in distance is greater than that of the change in the soil layer, making accurate analysis difficult.
また、同じ理由で調査孔内のγ線源、T線検出器の移動
は両者がほぼ同一深度を保持するようになされることが
望ましい。Furthermore, for the same reason, it is desirable that the γ-ray source and T-ray detector within the investigation hole be moved so that they both maintain approximately the same depth.
このことはすなわち、調査孔の最下部から同じ速度で両
者を引き上げながら(例えば1m/分)測定するとか、
あるいは0.5m毎に測定して引き上げる等の手段によ
って達成される。This means that measurements can be taken while pulling both up at the same speed (for example, 1 m/min) from the bottom of the investigation hole.
Alternatively, this can be achieved by measuring and pulling up every 0.5 m.
上述の本発明は自然地盤の土質調査のみならず、改良地
盤の効果の確認にも用いることができる。The present invention described above can be used not only for soil investigation of natural ground but also for confirming the effect of improved ground.
たとえば、第3図において注入前の地盤を測定してのち
、調査孔から薬液あるいはセメントグラウト注入し、そ
の後再度調査孔から改良地盤を測定すれば各土層におけ
る密度の増加状況を連続的に測定できる。For example, in Figure 3, if you measure the ground before injection, inject chemical solution or cement grout through the investigation hole, and then measure the improved ground again through the investigation hole, you can continuously measure the increase in density in each soil layer. can.
また、本発明における調査孔は垂直方向でなくても、斜
めまたは水平に設けてよいのはもちろんである。Further, it goes without saying that the investigation hole in the present invention does not have to be provided vertically, but may be provided diagonally or horizontally.
なお、前述の挿入管(サウンデイング用貫入体)3は削
孔管であってもよく、また、検出器6は貫入体3内に内
装されてもよい。さらに、本発明において、貫入抵抗パ
ラメータの測定は削孔管の先端に貫入抵抗測定センサを
装着して削孔管貫入時の押圧力を測定することにより行
なってもよい。Note that the aforementioned insertion tube (sounding penetrating body) 3 may be a borehole tube, and the detector 6 may be installed inside the penetrating body 3. Furthermore, in the present invention, the penetration resistance parameter may be measured by attaching a penetration resistance measurement sensor to the tip of the borehole tube and measuring the pressing force when the borehole tube penetrates.
第2図はγ線源、T線検出器および貫入抵抗測定センサ
の内蔵された本発明に用いる削孔管の断面図を示す。第
2図において、削孔管3aの先端部には貫入抵抗測定セ
ンサ11が内蔵され、その上部にはγ線源2が内蔵され
、その上に船速へい体12を経て、γ線検出器6が内蔵
される。このγ線検出器6はケーブル13を経てスケー
ラ14に連結される。15は先端ビットである。FIG. 2 shows a sectional view of a borehole tube used in the present invention, which is equipped with a gamma ray source, a T-ray detector, and a penetration resistance measuring sensor. In FIG. 2, a penetration resistance measuring sensor 11 is built into the tip of the borehole tube 3a, a gamma ray source 2 is built into the upper part of the sensor, and a gamma ray detector 6 is built-in. This gamma ray detector 6 is connected to a scaler 14 via a cable 13. 15 is a tip bit.
もちろん、貫入抵抗パラメータの測定は第2図のような
貫入抵抗測定センサ11のほかに、削孔時の送水圧、回
転トルク、削孔速度、回転速度、削孔時間等を測定する
ことにより行なうこともでき、また抑圧装置から押圧力
を測定するこきにより行なってもよい。Of course, the penetration resistance parameters are measured not only by the penetration resistance measurement sensor 11 as shown in FIG. 2, but also by measuring the water supply pressure, rotational torque, drilling speed, rotational speed, drilling time, etc. during drilling. Alternatively, it may be carried out by measuring the pressing force from a suppressing device.
上述の本発明では、第3図示の例の場合には、γ線源2
として10mC4を用い、γ線源2と検出器6の間隔を
50印とすると、約1分間の測定時間で必要な精度の測
定が可能である。まず、最下部で各検出器6の計数率を
所定の時間(この例では1分間)記録し、ついでγ線源
2と検出器6とを所定長ずつ引き上げながら測定を繰り
返すか、あるいは連続的に測定しながら1分間に1mと
いう速度で引き上げる。このようにすると、これらのデ
ータに基づいて地盤の密度変化の態様と地盤密度の分布
状態、土層の変化とその位置関係右よびこれらの立体的
な関係を知ることができるので、これらの情報から地盤
状況を精度よく推定することができる。In the present invention described above, in the case of the example shown in the third figure, the γ-ray source 2
If 10 mC4 is used as the source, and the distance between the gamma ray source 2 and the detector 6 is set to 50 marks, the required accuracy can be measured in a measurement time of about 1 minute. First, the counting rate of each detector 6 is recorded at the bottom for a predetermined period of time (1 minute in this example), and then the measurement is repeated while raising the gamma ray source 2 and detector 6 by a predetermined length, or the measurement is continuously performed. It was pulled up at a speed of 1 meter per minute while measuring the distance. In this way, based on this data, it is possible to know the mode of ground density changes, the distribution of ground density, changes in soil layers and their positional relationships, and the three-dimensional relationships between them. Ground conditions can be estimated with high accuracy.
また、貫入抵抗パラメータの測定は調査孔1あるいは4
の削孔の際の削孔管(図示せず)の回転トルク、削孔速
度、回転速度、削孔時間等を測定することにより行なわ
れる。本発明ではこれら地盤密度ならびに貫入抵抗パラ
メータを測定することにより地盤状況を把握する。In addition, the measurement of penetration resistance parameters was carried out in investigation hole 1 or 4.
This is done by measuring the rotational torque, drilling speed, rotational speed, drilling time, etc. of a drilling tube (not shown) during drilling. In the present invention, the ground condition is grasped by measuring these ground density and penetration resistance parameters.
また、第2図示の例の場合には、削孔管3aを地盤中に
貫入する際の貫入抵抗パラメータを貫入する際の貫入抵
抗パラメータを貫入抵抗測定センサ11で測定し、同時
にγ線源2からのrllAをγ線検出器6で検出してケ
ーブル13を経てスケーラ14で測定し、これら両側定
値により地盤状況を把握する。In the case of the example shown in the second figure, the penetration resistance parameter when the borehole pipe 3a penetrates into the ground is measured by the penetration resistance measurement sensor 11, and at the same time the γ-ray source 2 The rllA from the ground is detected by a gamma ray detector 6 and measured by a scaler 14 via a cable 13, and the ground condition is determined from these constant values on both sides.
以上のとおり、本発明はγ線透過法を採用して地盤密度
を測定し、同時に貫入抵抗パラメータを測定することに
より地盤状況を高精度に、かつ広範囲に推定しつる地盤
調査方法である。As described above, the present invention is a ground investigation method that uses the gamma ray transmission method to measure ground density and simultaneously measures penetration resistance parameters, thereby estimating the ground condition with high accuracy and over a wide range.
7・・・高圧電源、 8・・・プリアンプ、9・・・
ケーブル、 10・・・計数器、11・・・貫入抵抗測
定センサ。7...High voltage power supply, 8...Preamplifier, 9...
Cable, 10... Counter, 11... Penetration resistance measurement sensor.
特許出願人 強化土エンジニャリング株式会社Patent applicant: Reinforced Soil Engineering Co., Ltd.
第1図は本発明方法の原理を説明するための断面図、第
2図は本発明に用いる削孔管の一例の断面図、第3図お
よび第4図はそれぞれ本発明の他の具体例の断面図を示
す。
■、4・・・調査孔、 2・・・γ線源、3・・・
挿入管、 3a・・・削孔管、5・・・プローブ、
6・・・T線検出器、子
図
@
@
芽〆図
茅
図
手
続
補
正
書(方式)
%式%
事件の表示
平成2年特
許
願第166320号
2゜
発明の名称
地
盤
調
査
方
法
3゜
補正をする者
事件との関係FIG. 1 is a cross-sectional view for explaining the principle of the method of the present invention, FIG. 2 is a cross-sectional view of an example of a drilled tube used in the present invention, and FIGS. 3 and 4 are other specific examples of the present invention, respectively. A cross-sectional view is shown. ■, 4... Investigation hole, 2... γ-ray source, 3...
Insertion tube, 3a...Drilling tube, 5...Probe,
6... T-ray detector, child diagram @ @ Bud diagram Kawa diagram procedural amendment (method) % formula % Incident indication 1990 Patent Application No. 166320 2゜Name of invention Ground investigation method 3゜Amendment Relationship with cases involving persons who commit crimes
Claims (3)
入し、このγ線源からのγ線を検出器により検出して地
盤密度を測定し、かつ、同時に貫入抵抗パラメータを測
定し、これにより地盤状況を把握することを特徴とする
地盤調査方法。(1) Penetrating a penetrating body containing at least a γ-ray source into the ground, detecting γ-rays from this γ-ray source with a detector to measure the ground density, and simultaneously measuring the penetration resistance parameter, A ground investigation method characterized by grasping the ground condition through this method.
入体は削孔管またはサウンデイング用貫入体である方法
。(2) The ground investigation method according to claim 1, wherein the penetrating body is a borehole pipe or a sounding penetrating body.
出器は貫入体内に装着されるか、貫入体とほぼ平行な位
置に装着される方法。(3) In the ground investigation method according to claim 1, the detector is mounted inside the penetrating body or in a position substantially parallel to the penetrating body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2166320A JPH0455790A (en) | 1990-06-25 | 1990-06-25 | Examination of ground |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2166320A JPH0455790A (en) | 1990-06-25 | 1990-06-25 | Examination of ground |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0455790A true JPH0455790A (en) | 1992-02-24 |
Family
ID=15829170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2166320A Pending JPH0455790A (en) | 1990-06-25 | 1990-06-25 | Examination of ground |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0455790A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7254981B2 (en) | 2003-09-04 | 2007-08-14 | Tyco Electronics Amp K.K | Crimping apparatus |
JP2008539418A (en) * | 2005-04-27 | 2008-11-13 | 韓國電子通信研究院 | Soil structure detection method using potential gradient and ground resistance measurement |
JP2009259547A (en) * | 2008-04-15 | 2009-11-05 | Japan Automat Mach Co Ltd | Terminal crimping method, terminal crimping device, and terminal crimping wire manufacturing device |
JP2010524005A (en) * | 2007-12-14 | 2010-07-15 | シュルンベルジェ ホールディングス リミテッド | Radial density information from betatron density sonde |
JP2011503521A (en) * | 2007-12-21 | 2011-01-27 | シュルンベルジェ ホールディングス リミテッド | Formation density and Pe extraction method using pulse accelerator based on rock density tool |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56167251U (en) * | 1979-11-29 | 1981-12-10 | ||
JPS6244680A (en) * | 1985-08-20 | 1987-02-26 | エヌ・エル・インダストリ−ズ・インコ−ポレ−テツド | Bed density logging using two detector and line source |
JPS6442337U (en) * | 1987-09-10 | 1989-03-14 |
-
1990
- 1990-06-25 JP JP2166320A patent/JPH0455790A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56167251U (en) * | 1979-11-29 | 1981-12-10 | ||
JPS6244680A (en) * | 1985-08-20 | 1987-02-26 | エヌ・エル・インダストリ−ズ・インコ−ポレ−テツド | Bed density logging using two detector and line source |
JPS6442337U (en) * | 1987-09-10 | 1989-03-14 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7254981B2 (en) | 2003-09-04 | 2007-08-14 | Tyco Electronics Amp K.K | Crimping apparatus |
JP2008539418A (en) * | 2005-04-27 | 2008-11-13 | 韓國電子通信研究院 | Soil structure detection method using potential gradient and ground resistance measurement |
JP4837031B2 (en) * | 2005-04-27 | 2011-12-14 | 韓國電子通信研究院 | Soil structure detection method using potential gradient and ground resistance measurement |
JP2010524005A (en) * | 2007-12-14 | 2010-07-15 | シュルンベルジェ ホールディングス リミテッド | Radial density information from betatron density sonde |
US8321131B2 (en) | 2007-12-14 | 2012-11-27 | Schlumberger Technology Corporation | Radial density information from a Betatron density sonde |
JP2011503521A (en) * | 2007-12-21 | 2011-01-27 | シュルンベルジェ ホールディングス リミテッド | Formation density and Pe extraction method using pulse accelerator based on rock density tool |
JP2009259547A (en) * | 2008-04-15 | 2009-11-05 | Japan Automat Mach Co Ltd | Terminal crimping method, terminal crimping device, and terminal crimping wire manufacturing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104793264B (en) | Geological state applied to rig reflects and forward probe system and method in real time | |
US8803078B2 (en) | Method and apparatus for neutron logging using a position sensitive neutron detector | |
US8847149B2 (en) | Determining formation characteristics | |
EP1953571B1 (en) | Nuclear tool used in a borehole to determine a property of the formation | |
US20020170348A1 (en) | Well logging apparatus and method for measuring formation properties | |
NO343346B1 (en) | Borehole measurements using a fast and high-energy resolution gamma ray detector assembly | |
BR112012025644B1 (en) | METHOD AND APPARATUS FOR ASSESSING A DRILLED WELL HOLE IN A TERRESTRIAL FORMATION | |
RU2011111290A (en) | METHOD AND DEVICE FOR DETERMINING SATURATION OF WATER LAYER DURING DRILLING | |
US9389335B2 (en) | Pulsed neutron tool for downhole oil typing | |
BR112012023306B1 (en) | METHOD AND CONFIGURED APPARATUS TO ASSESS EARTH FORMATION | |
CN109141271A (en) | Multi-point type optical fiber grating bottom hole strain gauge | |
US10254438B2 (en) | Adaptive feedback for phase estimation and adjustment | |
NO343644B1 (en) | High-resolution gamma measurements and imaging | |
JPH0455790A (en) | Examination of ground | |
US8645068B2 (en) | Method and apparatus for determining formation and fluid properties | |
US20160154141A1 (en) | Neutron tool with dual-purpose detector | |
EP3066298B1 (en) | Improved measurement of downhole gamma radiation by reduction of compton scattering | |
Dasari et al. | In situ evaluation of radioisotope cone penetrometers in clays | |
JPS59203119A (en) | Method and grout injection pipe for measuring injection condition of grout and grout injection control system | |
US20060208184A1 (en) | Method for determining shale bed boundaries and gamma ray activity with gamma ray instrument | |
NL2033056B1 (en) | Portable soil density meter | |
US5272629A (en) | Method for determining the slowing down length and the porosity of a formation surrounding a borehole | |
US3532881A (en) | Submarine radioactivity logging technique | |
JPH0454484A (en) | Ground investigating method | |
CN215526137U (en) | Elastic wave tomography system for detecting spatial structure of barrier dam defect body |