JPS61268357A - Method for preparing catalyst for liquefying coal - Google Patents

Method for preparing catalyst for liquefying coal

Info

Publication number
JPS61268357A
JPS61268357A JP11018085A JP11018085A JPS61268357A JP S61268357 A JPS61268357 A JP S61268357A JP 11018085 A JP11018085 A JP 11018085A JP 11018085 A JP11018085 A JP 11018085A JP S61268357 A JPS61268357 A JP S61268357A
Authority
JP
Japan
Prior art keywords
catalyst
iron
coal
sulfur
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11018085A
Other languages
Japanese (ja)
Inventor
Yoichi Yamada
洋一 山田
Nobuhiro Tamura
田村 亘弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11018085A priority Critical patent/JPS61268357A/en
Publication of JPS61268357A publication Critical patent/JPS61268357A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively prepare a catalyst for liquefying coal enhanced in activity, by drying an iron salt powder containing crystal water and/or adhered water and baking the dried one at 200-800 deg.C to form the catalyst for liquefying coal. CONSTITUTION:After an iron salt powder containing crystal water and/or adhered water was dried, the dried one is baked at 200-800 deg.C under a reductive atmosphere to prepare a catalyst for liquefying coal. As the iron salt powder, there is a salt consisting of divalent or trivalent iron and an acid and, concretely, there are inorg. iron salts such as ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous nitrate or ferric nitrate. In order to effectively advance fine pulverization in a degree equal to or more than the thermal decomposition of the iron salt and to enhance coal liquefying effect, sulfur and/or hydrogen sulfide gas sufficient to sulfide iron at the time of baking are allowed to coexist. As a baking reaction apparatus, there is a fluidized furnace or tunnel kiln.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭を水素添加して液状生成物とする石炭液
化に用いる触媒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a catalyst for use in coal liquefaction, in which coal is hydrogenated to produce a liquid product.

(従来の技術) 石炭を粉砕して加熱し、必要に応じて水素を加えてガス
および固形物を含む液化=af得る方法は長年研究され
、多くの技術が知られている。近年、燃料油資源等の問
題や化学品の多様化から、石炭液化技術の開発は非常に
盛んであり、多くの新しい技術が開発されつつある。
(Prior Art) A method for obtaining liquefaction (af) containing gas and solids by pulverizing and heating coal and adding hydrogen if necessary has been studied for many years, and many techniques are known. In recent years, due to problems such as fuel oil resources and the diversification of chemical products, the development of coal liquefaction technology has been very active, and many new technologies are being developed.

しかし、良質の燃料油やガンリン、あるいは化学原料油
を効率よく得るためには、まだ多くの問題点もかかえて
いる。例えば、高価な触媒または環境上望ましくない触
媒の添加が必要であったシ、石炭を液化する時に要する
水素が多量であったシ、反応中に炭化物が生成したシす
ることである。
However, there are still many problems in order to efficiently obtain high-quality fuel oil, ganlin, or chemical feedstock oil. For example, the addition of expensive or environmentally undesirable catalysts was required, the amount of hydrogen required to liquefy the coal was high, and the formation of char during the reaction.

なかでも石炭反応器中の反応条件、特にそのうち触媒の
選択は、液化油の品質を決めるだめの重要な因子の一つ
である。このためその化学種や物理的形状をかえた多種
の触媒が、添加方法も含めて開発されてきた。
Among them, the reaction conditions in the coal reactor, especially the selection of the catalyst, are one of the important factors that determine the quality of liquefied oil. For this reason, a wide variety of catalysts with different chemical species and physical shapes, including methods of addition, have been developed.

従来公知である石炭液化の触媒は非常に多いが、代表的
なものとして、塩化物では塩化亜鉛、塩化スズ、塩化ア
ルミ、塩化ニッケル、塩化鉄等が、硫化物では硫化スズ
、硫化モリブデン、硫化鉛、硫化銅、硫化亜鉛、硫化ニ
ッケル、硫化鉄等が、酸化物では酸化ニッケル、シリカ
、アルミナ、酸化鉄、酸化コバルト、酸化チタン等があ
シ、また、それらの混合物あるいは赤泥や鉱石などの使
用が知られてしる。
There are a large number of catalysts for coal liquefaction that have been known in the past, but typical chlorides include zinc chloride, tin chloride, aluminum chloride, nickel chloride, iron chloride, etc., and sulfides include tin sulfide, molybdenum sulfide, and sulfide. Lead, copper sulfide, zinc sulfide, nickel sulfide, iron sulfide, etc., oxides such as nickel oxide, silica, alumina, iron oxide, cobalt oxide, titanium oxide, etc., as well as mixtures thereof, red mud, ore, etc. The use of is known.

以上の触媒群を大別すると3群にわけられる。The above catalyst groups can be roughly divided into three groups.

第一群は塩化物系で、石炭液化反応にすぐれた触媒効果
を示す。中でも高濃度で用いる溶融塩法などにおいて、
@質油の生成に富み、発生ガス量が少なく、良好な液化
成績を示すことが報告されている。しかしながら、不法
を実用化していく上では、塩化水素ガスが共存すること
から、装置材質上大きな制約を受ける。
The first group is chloride-based, which exhibits excellent catalytic effects in coal liquefaction reactions. Among them, in the molten salt method used at high concentrations,
It has been reported that it produces a lot of quality oil, produces a small amount of gas, and shows good liquefaction results. However, in putting illegal methods into practical use, there are major restrictions on the material of the equipment due to the coexistence of hydrogen chloride gas.

第二群は、重質油水添などによく使われるCo。The second group is Co, which is often used for heavy oil hydrogenation.

Mo、Ni%Wなどの高価な金属群である。これらの触
媒は、水素化活性は高いが被毒を受けやすく、触媒寿命
が短いという欠点をもつ。また、触媒が高価であるため
に、H−Coal法の沸騰床の如く、触媒を反応器内に
とどめる工夫あるいはDoW法の如く、触媒を非常に低
濃度で使い、かつ大半を再使用循環するプロセス等が提
案されている。しかしながら、bずれも未だ完成の域に
達していない。
It is a group of expensive metals such as Mo and Ni%W. Although these catalysts have high hydrogenation activity, they have the drawbacks of being susceptible to poisoning and having a short catalyst life. In addition, since the catalyst is expensive, there are methods to keep the catalyst within the reactor, such as in the boiling bed of the H-Coal method, or methods to use the catalyst at a very low concentration and reuse and circulate most of it, as in the DoW method. Processes etc. have been proposed. However, the b deviation has not yet reached the stage of completion.

第三群は鉄化合物である。こitは安価で使い捨て触媒
として用いられる場合が多b0使用されている鉄化合物
の種類も多いが、中でも水酸化鉄、赤泥、鉄鉱石、硫酸
鉄等が代表的である。これらの鉄化合物は、硫黄が共存
すると活性が飛躍的に増大する。したがって、硫黄含有
量の少ない石炭においては、硫黄を添加して使用するこ
とも提案されて因る。
The third group is iron compounds. It is inexpensive and often used as a disposable catalyst.There are many types of iron compounds used, among which iron hydroxide, red mud, iron ore, iron sulfate, etc. are representative. The activity of these iron compounds increases dramatically when sulfur coexists. Therefore, it has been proposed to add sulfur to coal that has a low sulfur content.

また、天然の黄鉄鉱(FeS、 ;パイライト)の触媒
活性などもよく知られており、よシ活性の高す合成パイ
ライトの試作方法も種々検討されている(特願昭!M3
−58645)。
In addition, the catalytic activity of natural pyrite (FeS;
-58645).

(発明が解決しようとする問題点) 鉄化合物触媒の多くは、数十μ以上の大きさで用すられ
るが、その場合の石炭液化活性はあまり良くない。これ
を数μ以下に微粉砕、分級して用いると、飛躍的に活性
が上昇する。しかしながら、機械的に数μ以下まで微粉
砕、分級するには、設備コストが高い上、収率も悪く、
経済的に不利である。ここで、前述した合成パイライト
触媒(特願昭58−58645)等は、直接微粒触媒を
合成できるが、まだ若干製造コストが高い。
(Problems to be Solved by the Invention) Most iron compound catalysts are used with a size of several tens of microns or more, but the coal liquefaction activity in that case is not very good. When this is used after being finely pulverized and classified to a size of several microns or less, the activity increases dramatically. However, mechanically pulverizing and classifying to a size of several microns or less requires high equipment cost and poor yield.
Economically disadvantageous. Although the above-mentioned synthetic pyrite catalyst (Japanese Patent Application No. 58-58645) can be used to directly synthesize fine particle catalysts, the manufacturing cost is still somewhat high.

(問題点を解決するだめの手段) 本発明者らは5以上の問題点を解決するため、鋭意研究
を進めた結果、微粒の鉄化合物の合成あるいは天然の鉄
化合物の微粉砕などの繁雑な処理を行なわず、結晶水お
よび/または付着水を含む鉄塩粉体を乾燥処理した後、
200〜800Cで焼成することによシ、安価で高活性
な触媒ができることを見出し、本発明をなすに至った。
(Means to Solve the Problems) In order to solve the above five problems, the inventors of the present invention have carried out intensive research and have found that complex methods such as synthesis of fine particles of iron compounds or fine pulverization of natural iron compounds have been developed. After drying iron salt powder containing crystal water and/or attached water without any treatment,
It was discovered that an inexpensive and highly active catalyst could be produced by firing at 200 to 800C, and the present invention was completed.

すなわち、本発明は、結晶水および/または付着水を含
む鉄塩粉体を乾燥処理した後、200〜800Cで焼成
することを特徴とする石炭液化用触媒を製造する方法で
ある。
That is, the present invention is a method for producing a catalyst for coal liquefaction, which is characterized in that iron salt powder containing crystal water and/or adhering water is dried and then calcined at 200 to 800C.

さらには、焼成を還元雰囲気下で行う上記の方法であシ
、また、焼成時に硫黄および/または硫化水素ガスを共
存させて鉄塩と反応させる前記の方法である。
Furthermore, the above-mentioned method is one in which the calcination is carried out in a reducing atmosphere, and the above-mentioned method is in which sulfur and/or hydrogen sulfide gas is allowed to coexist during the calcination to react with the iron salt.

以下、本発明方法を詳しく説明する。The method of the present invention will be explained in detail below.

本発明において、鉄塩粉体とは、2価ないしは3価の鉄
と酸からなる塩を意味し、塩化第一鉄、塩化第二鉄、硫
酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄等の無
機鉄塩、酢酸第一鉄、酢酸第二鉄、蓚酸第一鉄、蓚酸第
二鉄等の有機鉄塩が挙げられる。
In the present invention, iron salt powder means a salt consisting of divalent or trivalent iron and an acid, including ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, and ferrous nitrate. Examples include iron, inorganic iron salts such as ferric nitrate, and organic iron salts such as ferrous acetate, ferric acetate, ferrous oxalate, and ferric oxalate.

結晶水とは、結晶中に一定の化合比で含まれ、その結晶
格子の安定化に必要な水を意味し、付着水とは、結晶水
以外で単純に物理的に粉体に付着している水をいう。結
晶水は、ある定まった温度で、段階的に脱水するため、
拡散ある込は伝熱が悪いと局部的に水が凝結し、これに
粉体が一度溶解した後、再析出し、この際、結晶が成長
し、焼成を阻害する原因になる。また、付着水が多いと
、流動性が悪く、均一な焼成が困難になる。
Crystal water refers to water that is contained in a crystal at a certain compounding ratio and is necessary to stabilize the crystal lattice. Adhering water refers to water other than crystal water that simply physically adheres to the powder. refers to the water that exists. Crystal water dehydrates in stages at a certain temperature, so
If heat transfer is poor during diffusion, water will locally condense, and after the powder is once dissolved, it will re-precipitate, and at this time crystals will grow, which will impede firing. Furthermore, if there is a large amount of attached water, fluidity will be poor and uniform firing will be difficult.

したがって、優れた触媒を得るためには、結晶水あるい
は付着水の除去を目的とした乾燥工程は非常に重要であ
る。しかしながら、この乾燥工程で、完全に全部の結晶
水および/または付着水を除去する必要はなく、一部の
結晶水および/または付着水が残っても支障はなり0た
とえば硫酸鉄であれば、1〜3水塩程度で充分である。
Therefore, in order to obtain an excellent catalyst, a drying step for the purpose of removing crystallization water or adhering water is very important. However, it is not necessary to completely remove all the crystal water and/or adhering water in this drying process, and there is no problem even if some crystal water and/or adhering water remains.For example, in the case of iron sulfate, About 1-3 hydrate salt is sufficient.

乾燥温度は、この付着水あるいは結晶水が脱離するのに
充分な温度をかけなければならな−。必要であれば、何
段かの工程にわけて乾燥してもよい。乾燥装置としては
、公知のいずれのタイプのものを使用してもより0 原料に、よっては、この乾燥工程の前後に粉砕工程を入
れると、さらに安定して高活性触媒が得られる場合もあ
る。たとえば、粉体の粒径を200μ以下程度まで小さ
くしておくと、次の焼成工程の運転に好影響を及ぼす場
合が多い。
The drying temperature must be high enough to remove this adhered water or water of crystallization. If necessary, drying may be carried out in several stages. As for the drying device, it is possible to use any known type of drying device. . For example, reducing the particle size of the powder to about 200 μm or less often has a favorable effect on the operation of the next firing step.

焼成温度は、200C未満では反応が充分に進まず、5
ooCを越えると焼結が進み、粉体の表面積が小さくな
り、触媒活性が低下するので、2ooC以上800C以
下の温度が好ましか。この焼成時に鉄塩の熱分解反応が
進行し、粉体はさらに微粒化され、石炭液化活性が増す
。また、Fe50.タイプがFe、 0.に比較して、
石炭液化活性が高い傾向にあるので、焼成を還元雰囲気
条件下で行い、微粒のFe、O,を主物質とした粉体を
生成させるのが、より好ましい。還元雰囲気をつくるた
めには、コークスあるいは硫黄などを共存して焼成する
等の公知の技術を採用することができる。
If the firing temperature is less than 200C, the reaction will not proceed sufficiently;
If the temperature exceeds ooC, sintering progresses, the surface area of the powder decreases, and the catalytic activity decreases, so a temperature of 2ooC or more and 800C or less is preferable. During this firing, the thermal decomposition reaction of the iron salt progresses, the powder becomes further finely divided, and the coal liquefaction activity increases. Also, Fe50. Type is Fe, 0. compared to
Since the coal liquefaction activity tends to be high, it is more preferable to perform the firing under reducing atmosphere conditions to produce a powder mainly composed of fine particles of Fe and O. In order to create a reducing atmosphere, a known technique such as firing in the coexistence of coke or sulfur can be employed.

また、鉄塩と反応するのに必要な硫黄やコークス以外に
、雰囲気中の酸素を消費するのに必要とする量の硫黄や
コークス等も添加しなければならない。この時に添加す
る還元物質の量は、計算によシある程度求められるが、
実際には、反応系内に洩れこんでくる酸素量を完全に把
握し得ないこと、および添加した還元物質が100q6
完全に反応で消費されるとは限らないことから、最終的
には実験によシ決定しなければならない。
In addition to the sulfur and coke required to react with the iron salt, it is also necessary to add sulfur, coke, etc. in an amount necessary to consume oxygen in the atmosphere. The amount of reducing substance added at this time can be determined to some extent by calculation, but
In reality, it is impossible to completely grasp the amount of oxygen leaking into the reaction system, and the amount of reducing material added is 100q6.
Since it is not guaranteed that it will be completely consumed in the reaction, the final decision must be made experimentally.

鉄塩の熱分解以上に微粒化を進め、かつ石炭液化活性を
高めるためには、焼成時に、鉄を硫化するのに充分な硫
黄および/または硫化水素ガスを共存させると、よシ効
果的である。鉄が硫化するとともに、より微粒化する。
In order to advance the atomization beyond the thermal decomposition of iron salts and increase the coal liquefaction activity, it is more effective to coexist with sufficient sulfur and/or hydrogen sulfide gas to sulfidize the iron during calcination. be. As iron sulfides, it becomes finer.

また、組成もFe S、になると石炭液化活性は、より
増加する。
Moreover, when the composition becomes FeS, the coal liquefaction activity increases more.

焼成反応装置としては、流動炉、トンネル炉、ロータリ
ーキルンなど、公知の炉のいずれのタイプでもよい。
The calcination reactor may be any type of known furnace, such as a fluidized bed furnace, tunnel furnace, or rotary kiln.

乾燥工程と焼成工程は、別の装置を用いて、連続的ある
いはそれぞれ回分的に処理してもよいし、あるいは同一
の装置を用いて1回分的に乾燥工程と焼成工程を交互に
繰り返してもかまわない。
The drying process and the firing process may be performed continuously or in batches using separate equipment, or the drying process and the firing process may be performed alternately in one batch using the same equipment. I don't mind.

本発明で調整した触媒は、−次粒子として5μ以下であ
る。特に好ましい条件で製造すれば、−次粒子として1
μ以下のものを容易に製造し得る。
The catalyst prepared in the present invention has a secondary particle size of 5 μm or less. If produced under particularly preferable conditions, 1
It is possible to easily produce particles smaller than μ.

本発明は、以上の方法で調製した触媒を用いて石炭の液
化を行なうものであるが、以下に石炭液化の方法につい
て、さらに詳細に説明する。
The present invention liquefies coal using the catalyst prepared by the method described above, and the method for liquefying coal will be explained in more detail below.

本発明でいう石炭とは、無煙炭、歴青炭、亜歴宵炭、か
つ炭、泥炭等をいう。本発明に使用する石炭としては、
歴青炭、亜歴青炭、かつ炭がより好ましい。
Coal as used in the present invention refers to anthracite coal, bituminous coal, subalcohol, charcoal, peat, and the like. The coal used in the present invention includes:
Bituminous coal, subbituminous coal, and charcoal are more preferred.

石炭の加熱は650〜800Cで行なわれる。Coal is heated at 650-800C.

 9一 温度が低いと液化速度が遅く、温度が高しと炭化物やガ
スが増大する。400〜500Cが最も好ましい。
91 If the temperature is low, the liquefaction rate is slow, and if the temperature is high, carbide and gas increase. 400-500C is most preferred.

本発明では水素を用いなくても、例えば、あらかじめ水
添した触媒などを用すて液化する方法も可能であるが、
条件によっては液化率が向上しない。したがって、水素
の存在下で液下反応を行なうのが通常で、その際できる
だけ純度の高いものを使用するのが望ましい。
In the present invention, it is also possible to liquefy without using hydrogen, for example, using a pre-hydrogenated catalyst.
Depending on the conditions, the liquefaction rate may not improve. Therefore, it is common to carry out a sub-liquid reaction in the presence of hydrogen, and in this case it is desirable to use the highest possible purity.

また、水素の反広時の圧力は10)9/cIIt以上が
好ましく、100〜500 kg/mが最適である。
Further, the pressure when hydrogen is diffused is preferably 10)9/cIIt or more, and optimally 100 to 500 kg/m.

水素の反応は複雑で、石炭の構造、混合するスラリー化
溶媒等によって適当な圧力が選ばれる。
The hydrogen reaction is complex, and an appropriate pressure is selected depending on the structure of the coal, the slurry solvent to be mixed, etc.

本発明で液化とは、石炭の大部分を沸点が常圧換算で常
温(約20C)以上900C以下の液体にすることをい
うが、一部高沸点の化合物、ロー状物、ペースト状物が
含まれていてもよい。したがって、本発明で生成粗油と
は、これらのものを含んだ混合物を指す。
In the present invention, liquefaction refers to turning most of the coal into a liquid whose boiling point is above room temperature (approximately 20C) and below 900C in terms of normal pressure, but some high-boiling point compounds, wax-like substances, and paste-like substances are May be included. Therefore, in the present invention, the produced crude oil refers to a mixture containing these substances.

本発明の触媒を用いた石炭液化においては、炭化水素油
を触媒として石炭に対して重量比率で50φ以上、好ま
しくは100〜400%添加して運転する。
In coal liquefaction using the catalyst of the present invention, operation is carried out by adding hydrocarbon oil as a catalyst to coal in a weight ratio of 50 φ or more, preferably 100 to 400%.

ここで使用する炭化水素油とは、石炭の液化油筒たは液
化油を水添した油であり、芳香族炭化水素、脂肪族炭化
水素、酸性油、塩基性油、硫黄化合物等が使用される。
The hydrocarbon oil used here refers to liquefied coal oil or hydrogenated liquefied oil, and contains aromatic hydrocarbons, aliphatic hydrocarbons, acidic oils, basic oils, sulfur compounds, etc. Ru.

また、これらを含むクレオソート油、アントラセン油等
の混合油、石油留分等も使用できる。炭化水素油の沸点
は、常圧下150C以上、600Cまでの範囲のものが
よい。
Mixed oils containing these oils such as creosote oil and anthracene oil, petroleum fractions, and the like can also be used. The boiling point of the hydrocarbon oil is preferably in the range from 150C to 600C under normal pressure.

本発明で製造した触媒のうち、その中に硫黄を含まない
もの、あるいは含量が少ないものは、全体としてS /
 Feが原子数比として1〜2になるように、硫黄を加
えて用いるとよい。もちろん、原料石炭中に多量の硫黄
を含む場合は、このかぎりではない。
Among the catalysts produced according to the present invention, those that do not contain sulfur or those that contain only a small amount of sulfur have an overall S/
It is preferable to add sulfur so that the atomic ratio of Fe is 1 to 2. Of course, this is not the case when raw coal contains a large amount of sulfur.

(発明の効果) 本発明の効果を以下にまとめる。(Effect of the invention) The effects of the present invention are summarized below.

(1)非常に微粒な高活性触媒が、安定に、かつ容易に
製造できる。
(1) Very fine, highly active catalysts can be produced stably and easily.

(2)工程が単純である。(2) The process is simple.

(3)原料および中間原料の取扱いが容易である。(3) Raw materials and intermediate materials are easy to handle.

(不活性ガス雰囲気等で処理する必要はない。)(4)
副生物を特に分離する工程を必要としない。
(There is no need to process in an inert gas atmosphere, etc.) (4)
No special step to separate by-products is required.

(5)以上の事実から、設備費および原料比例骨等が安
価になシ、経済的に非常に有利である。
(5) From the above facts, the equipment cost and raw material proportionate bone etc. are inexpensive, and it is economically very advantageous.

(実施例) 以下、実施例により本発明をさらに具体的に説明するが
、本発明は、この実施例に制限されるものではない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 塩化第一鉄四水和物602を110Cで減圧乾燥し、石
英の皿に盛シ、横壓電気炉にセットした石英管の中に挿
入し、空気′f:15t/H流通させながら、6007
::で6時間焼成した。冷却後とり出した粉体は赤色で
、X線回折分析の結果、 Fe、03と同定された。こ
れをA触媒とする。
Example 1 Ferrous chloride tetrahydrate 602 was dried under reduced pressure at 110C, plated on a quartz plate, inserted into a quartz tube set in a horizontal electric furnace, and air was circulated at 15 t/H. While, 6007
:: Baked for 6 hours. The powder taken out after cooling was red in color and was identified as Fe, 03 as a result of X-ray diffraction analysis. This is designated as catalyst A.

実施例2 硫酸第1鉄7水塩60?と硫黄粉末20,7 fを混合
し、これを石英の皿に盛り、横型電気炉にセットした石
英管の中に挿入し、窒素ガスを11t/H流通させなが
ら、110Cで1時間乾燥処理した後、450Cで2時
間焼成した。冷却後取出した粉体は黒色で、X線回折分
析の結果、主成分はFe、Q、であった。量論的には硫
黄が過剰になるが、実際には、昇温中に過剰の硫黄は系
外に流出したものと考えられる。これをB触媒とする。
Example 2 Ferrous sulfate heptahydrate 60? and 20.7 f of sulfur powder were mixed, placed in a quartz dish, inserted into a quartz tube set in a horizontal electric furnace, and dried at 110C for 1 hour while flowing nitrogen gas at 11t/h. After that, it was fired at 450C for 2 hours. The powder taken out after cooling was black in color, and as a result of X-ray diffraction analysis, the main components were Fe and Q. Although sulfur is stoichiometrically excessive, it is thought that the excess sulfur actually leaked out of the system during temperature rise. This is designated as catalyst B.

比較例 硫酸第1鉄7水塩609と硫黄粉末20.71を混合し
、これを石英管の皿に盛り、窒素ガスを11t/H流通
させながら一気に昇温し、450Cで2時間焼成した。
Comparative Example Ferrous sulfate heptahydrate 609 and sulfur powder 20.71 were mixed, placed in a quartz tube dish, heated at once while nitrogen gas was flowing at 11 t/h, and fired at 450C for 2 hours.

冷却後とシ出した粉体は、ところどころダマができてい
た。これらは手で容易にほぐれた。このダマの中央部に
は、未反応の硫酸鉄が残っていた。製品のX線回折の結
果% FeaO4とFeSO4とFe51の混合物であ
った。これをD触媒とする。第2図にB触媒とD触媒の
粒径分布を示した。乾燥工程を経たB触媒の方が微粒で
、かつ分布がシャープなのがわかる。
The powder that was discharged after cooling had lumps in some places. These were easily loosened by hand. Unreacted iron sulfate remained in the center of this lump. As a result of X-ray diffraction of the product, it was found to be a mixture of % FeaO4, FeSO4 and Fe51. This is designated as catalyst D. Figure 2 shows the particle size distribution of catalyst B and catalyst D. It can be seen that catalyst B, which has undergone the drying process, has finer particles and a sharper distribution.

−16一 実施例3 有効面積0,3 TItの流動乾燥機の熱風入口温度を
250 c、風速を1.Om / S 、層高iso鰭
に設定し、工業用硫酸鉄を20kg/Hの速度で投入し
、乾燥処理した。この乾燥粉体を振動ロッドミルに供給
した振動ロッドミルの全容積は30t2仕込ロツドは1
3φのもの56本、振動数11000cp、全振幅91
m11.原料供給速度2 kg / mmの条件で処理
した。取得製品の平均粒径は18μであった。このよう
に【−て得た粉体に、硫黄粉末を原子比でS / Fe
 = 6になるように混合した。
-16-Example 3 The hot air inlet temperature of a fluidized fluidized dryer with an effective area of 0.3 TIt was 250 c, and the wind speed was 1. Om/S, layer height was set to iso fin, and industrial iron sulfate was introduced at a rate of 20 kg/H for drying. The total volume of the vibrating rod mill that supplied this dry powder to the vibrating rod mill was 30t2, and the charging rod was 1
56 pieces of 3φ, frequency 11000cp, total amplitude 91
m11. Processing was performed at a raw material supply rate of 2 kg/mm. The average particle size of the obtained product was 18μ. In this way, sulfur powder was added to the powder obtained by [-] in an atomic ratio of S/Fe
= 6.

直径30c1r1の流動焼成炉に空気を吹き込み、ぶツ
M 述の混合原料を32に9/Hでフィードし、ベッド
温度を400Cに保った。空気の線速度は、同温度で1
8 cm/ sとした。製品はサイクロンを用いて回収
し、さらに100C以下に冷却してとり出した。反応筒
内に流入する空気中の酸素は、原料中の硫黄とすみやか
に反応して、筒内は低酸素濃度状態に保たれる。
Air was blown into a fluidized furnace having a diameter of 30c1r1, and the mixed raw materials described above were fed into the furnace at a rate of 9/H, and the bed temperature was maintained at 400C. The linear velocity of air is 1 at the same temperature
The speed was set at 8 cm/s. The product was collected using a cyclone, further cooled to below 100C, and taken out. Oxygen in the air flowing into the reaction cylinder reacts quickly with sulfur in the raw material, and the inside of the cylinder is maintained at a low oxygen concentration.

とり出した製品は5暗緑黒色でX線回折分析の結果、は
とんど全体がきれいなFed、であった。製品の一次粒
子の平均粒径は0.4μであった。サイクロンで捕集で
きるのは、これらの粒子が凝集しているためと考えられ
る。これをC触媒とする。
The product taken out had a dark greenish-black color, and X-ray diffraction analysis revealed that it was a clean Fed throughout. The average particle size of the primary particles of the product was 0.4μ. The reason why these particles can be collected by a cyclone is thought to be because these particles are agglomerated. This is designated as C catalyst.

実験例 本発明の触媒3種と対照1種の石炭液化反応を、内容積
1tの攪拌式オートクレーブを用いて行った。その反応
条件を以下に示す。
Experimental Example Coal liquefaction reactions with three types of catalysts of the present invention and one type of control were carried out using a stirred autoclave having an internal volume of 1 ton. The reaction conditions are shown below.

(1)石炭:幌内炭 無水無灰炭として601(2)溶
媒:脱晶アントラセン油120t(3)触媒濃度:無水
無灰炭あたり鉄として2重量%(4)水素仕込圧:80
kg/cm (5)反応温度:460C (6)反応時間:1時間 (力添加物:A、B、Dの三種の触媒については、触媒
が含有する鉄と等モルの粉末硫 黄を添加 第1図に本実験結果を示した。A、B、Cの3種類が、
上記3種類の本発明触媒である。Eは比較として、鉱物
パイライトの実験結果を示した。
(1) Coal: Horonai coal 601 as anhydrous ash-free coal (2) Solvent: Decrystallized anthracene oil 120 tons (3) Catalyst concentration: 2% by weight of iron per anhydrous ash-free coal (4) Hydrogen charging pressure: 80
kg/cm (5) Reaction temperature: 460C (6) Reaction time: 1 hour (For three types of catalysts: A, B, and D, powdered sulfur was added in an amount equal to the amount of iron contained in the catalyst. The results of this experiment are shown in the figure.Three types, A, B, and C,
These are the above three types of catalysts of the present invention. For comparison, E shows experimental results for the mineral pyrite.

Dは乾燥工程を経ないでつくった触媒例(比較例)であ
る。
D is a catalyst example (comparative example) made without a drying process.

第1図の横軸は、ヘキサン可溶分抽の全油に対する重量
分率であって、水添度合を示す尺度と考えることができ
る。ここで全油とは、ヘキサン可溶分抽とアスファルテ
ンおよびプレアスファルテンの総重量をいう。また、縦
軸は生成軽質油の仕込無水無灰炭に対する重量分率を示
し、水素化分解の度合を示す尺度とみなされる。ここで
いう軽質油とは、ヘキサン等の炭素数5以上の物質であ
って、かつ常圧の沸点が5ooc以下のものをいう。こ
の図は、液化が軽質化の方向に進むと右上がシとなり、
結果的に触媒活性の尺度となりうる。
The horizontal axis in FIG. 1 is the weight fraction of the hexane soluble fraction extracted with respect to the total oil, which can be considered as a measure of the degree of hydrogenation. Here, the total oil refers to the total weight of the hexane soluble fraction extracted, asphaltenes, and pre-asphaltenes. The vertical axis indicates the weight fraction of the light oil produced relative to the charged anhydrous ash-free coal, which is considered as a measure of the degree of hydrocracking. The term "light oil" as used herein refers to a substance having 5 or more carbon atoms, such as hexane, and having a boiling point of 5 ooc or less at normal pressure. In this figure, when liquefaction progresses toward lightening, the upper right becomes a square,
As a result, it can be used as a measure of catalytic activity.

第1図により5本発明による触媒が高活性であることは
明白である。
It is clear from FIG. 1 that the catalyst according to the invention is highly active.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による触媒とその他の触媒との性能を比
較して示したグラフ、第2図は本発明によるB触媒とそ
の他の触媒の粒径分布を比較して等/n へNサン可滑啄かに/km (ガ) 芽21η 融径(/L) 手続補正書 昭和61年1月14日
Figure 1 is a graph comparing the performance of the catalyst according to the present invention and other catalysts, and Figure 2 is a graph comparing the particle size distribution of catalyst B according to the present invention and other catalysts. Smooth crab/km (moth) Bud 21η Melting diameter (/L) Procedural amendment January 14, 1985

Claims (3)

【特許請求の範囲】[Claims] (1)結晶水および/または付着水を含む鉄塩粉体を乾
燥処理した後、200〜800℃で焼成することを特徴
とする石炭液化用触媒を製造する方法。
(1) A method for producing a catalyst for coal liquefaction, which comprises drying iron salt powder containing water of crystallization and/or adhering water, and then calcining it at 200 to 800°C.
(2)焼成を還元雰囲気下で行う特許請求の範囲第1項
記載の石炭液化用触媒を製造する方法。
(2) A method for producing a catalyst for coal liquefaction according to claim 1, wherein the calcination is performed in a reducing atmosphere.
(3)焼成時に硫黄および/または硫化水素ガスを共存
させて、鉄塩と反応させる特許請求の範囲第1項記載の
石炭液化用触媒を製造する方法。
(3) A method for producing a catalyst for coal liquefaction according to claim 1, in which sulfur and/or hydrogen sulfide gas is allowed to coexist during calcination to react with iron salt.
JP11018085A 1985-05-24 1985-05-24 Method for preparing catalyst for liquefying coal Pending JPS61268357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11018085A JPS61268357A (en) 1985-05-24 1985-05-24 Method for preparing catalyst for liquefying coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11018085A JPS61268357A (en) 1985-05-24 1985-05-24 Method for preparing catalyst for liquefying coal

Publications (1)

Publication Number Publication Date
JPS61268357A true JPS61268357A (en) 1986-11-27

Family

ID=14529072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11018085A Pending JPS61268357A (en) 1985-05-24 1985-05-24 Method for preparing catalyst for liquefying coal

Country Status (1)

Country Link
JP (1) JPS61268357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037296A1 (en) * 1995-05-25 1996-11-28 Asahi Kasei Kogyo Kabushiki Kaisha Iron sulfides and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155495A (en) * 1983-02-24 1984-09-04 Asahi Chem Ind Co Ltd Coal liquefaction
JPS59165586A (en) * 1983-03-09 1984-09-18 Sony Corp Television signal receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155495A (en) * 1983-02-24 1984-09-04 Asahi Chem Ind Co Ltd Coal liquefaction
JPS59165586A (en) * 1983-03-09 1984-09-18 Sony Corp Television signal receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037296A1 (en) * 1995-05-25 1996-11-28 Asahi Kasei Kogyo Kabushiki Kaisha Iron sulfides and process for producing the same
US6056935A (en) * 1995-05-25 2000-05-02 Asahi Kasei Kogyo Kabushiki Kaisha Iron sulfide and process for producing the same
US6258259B1 (en) 1995-05-25 2001-07-10 Asashi Kasei Kabushiki Kaisha Iron sulfide and process for producing the same
CN1089278C (en) * 1995-05-25 2002-08-21 旭化成株式会社 Iron sulfides and process for producing the same

Similar Documents

Publication Publication Date Title
US7955497B2 (en) Process for recovering ultrafine solids from a hydrocarbon liquid
US4320030A (en) Process for making high activity transition metal catalysts
CA2221920C (en) Iron sulfide and process for producing the same
WO2005023416A1 (en) Molybdenum sulfide/carbide catalysts
JPH0273023A (en) Production of alcohol and olefin from h2 and co2 using iron carbide base catalyst
US4024076A (en) Process for producing granular sulfurized material, granular carbon or granular activated carbon
JPH026853A (en) Method for producing a catalyst for hydrogenation and method for hydrogenating conversion with use of the catalyst
JPS5861178A (en) Desulfurization demetallization denitrogenation for coal or coal liquid raw material
CA1322746C (en) Hydrocracking of heavy oils in presence of petroleum coke derived from heavy oil coking operations
JPS61268357A (en) Method for preparing catalyst for liquefying coal
CN107930648B (en) A kind of heavy oil floating bed hydrocracking catalyst and preparation method thereof
JPS5839193B2 (en) Coal liquefaction method
JPS6160115B2 (en)
JPS6126955B2 (en)
Pradel et al. Ferric hydroxide oxide from the goethite process: characterization and potential use
JPS62160143A (en) Method for liquefying coal
US3475328A (en) Treatment of hydrocarbons and catalysts therefor
JPH0350579B2 (en)
JP2000254509A (en) Production of iron hydroxide type coal liquefying catalyst composition
JPS6218594B2 (en)
JPS62160142A (en) Method for liquefying coal
JP3128292B2 (en) Method for producing catalyst for coal liquefaction
JPS62158788A (en) Method for liquefying coal
JP3502221B2 (en) Iron sulfide and method for producing the same
JPS6121731A (en) Preparation of coal liquefying catalyst