JPH0350579B2 - - Google Patents

Info

Publication number
JPH0350579B2
JPH0350579B2 JP24227784A JP24227784A JPH0350579B2 JP H0350579 B2 JPH0350579 B2 JP H0350579B2 JP 24227784 A JP24227784 A JP 24227784A JP 24227784 A JP24227784 A JP 24227784A JP H0350579 B2 JPH0350579 B2 JP H0350579B2
Authority
JP
Japan
Prior art keywords
catalyst
coal
oil
iron
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24227784A
Other languages
Japanese (ja)
Other versions
JPS61120641A (en
Inventor
Yoshihiro Kudo
Yoichi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP24227784A priority Critical patent/JPS61120641A/en
Publication of JPS61120641A publication Critical patent/JPS61120641A/en
Publication of JPH0350579B2 publication Critical patent/JPH0350579B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭を水素添加して液状生成物とす
る石炭液化に用いる触媒の製造方法に関する。さ
らに詳しくは、分離回収再使用、もしくは反応器
内に長時間留めての使用が可能で、かつ高活性な
触媒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a catalyst for use in coal liquefaction, in which coal is hydrogenated to produce a liquid product. More specifically, the present invention relates to a method for producing a highly active catalyst that can be separated, recovered, reused, or kept in a reactor for a long period of time.

(従来の技術) 石炭を粉砕して加熱し、必要に応じて水素を加
えてガスおよび固形物を含む液化物を得る方法は
長年研究され、多くの技術が知られている。近
年、燃料油資源等の問題や化学品の多様化から、
石炭液化技術の開発は非常に盛んであり、多くの
新しい技術が開発されつつある。
(Prior Art) A method for obtaining a liquefied product containing gas and solids by pulverizing and heating coal and adding hydrogen if necessary has been studied for many years, and many techniques are known. In recent years, due to problems such as fuel oil resources and the diversification of chemical products,
The development of coal liquefaction technology is very active, and many new technologies are being developed.

しかし、良質の燃料油やガソリン、あるいは化
学原料油を効率よく得るためには、まだ多くの問
題点もかかえている。例えば、高価な触媒または
環境上望ましくない触媒の添加が必要であつた
り、石炭を液化する時に要する水素が多量であつ
たり、反応中に炭化物が生成したりすることであ
る。
However, many problems still exist in order to efficiently obtain high-quality fuel oil, gasoline, or chemical feedstock oil. For example, the addition of expensive or environmentally undesirable catalysts, the high amount of hydrogen required to liquefy the coal, and the formation of char during the reaction.

なかでも石炭反応器中の反応条件、特にそのう
ち触媒の選択は、液化油の品質を決めるための重
要な因子の一つである。このためその化学種や物
理的形状をかえた多種の触媒が、添加方法も含め
て開発されてきた。
Among them, the reaction conditions in the coal reactor, especially the selection of the catalyst, are one of the important factors for determining the quality of liquefied oil. For this reason, a wide variety of catalysts with different chemical species and physical shapes, including methods of addition, have been developed.

従来公知である石炭液化の触媒は非常に多い
が、代表的なものとして、塩化物では塩化亜鉛、
塩化スズ、塩化アルミ、塩化ニツケル、塩化鉄等
が、硫化物では硫化スズ、硫化モリブデン、硫化
鉛、硫化銅、硫化亜鉛、硫化ニツケル、硫化鉄等
が、酸化物では酸化ニツケル、シリカ、アルミ
ナ、酸化鉄、酸化コバルト、酸化チタン等があ
り、また、それらの混合物あるいは赤泥や鉱石な
どの使用が知られている。
There are many catalysts for coal liquefaction that have been known in the past, but the typical ones include zinc chloride, zinc chloride,
Tin chloride, aluminum chloride, nickel chloride, iron chloride, etc.; sulfides include tin sulfide, molybdenum sulfide, lead sulfide, copper sulfide, zinc sulfide, nickel sulfide, iron sulfide, etc.; oxides include nickel oxide, silica, alumina, Examples include iron oxide, cobalt oxide, titanium oxide, etc., and the use of mixtures thereof, red mud, ore, etc. is also known.

以上の触媒群を大別すると3群にわけられる。
第一群は塩化物系で、石炭液化反応にすぐれた触
媒効果を示す。中でも高濃度で用いる溶融塩法な
どにおいて、軽質油の生成に富み、発生ガス量が
少なく、良好な液化成積を示すことが報告されて
いる。しかしながら、本法を実用化していく上で
は、塩化水素ガスが共存することから、装置材質
上大きな制約を受ける。
The above catalyst groups can be roughly divided into three groups.
The first group is chloride-based, which exhibits excellent catalytic effects in coal liquefaction reactions. Among them, it has been reported that in the molten salt method used at high concentrations, light oil is produced abundantly, the amount of gas generated is small, and good liquefaction formation is exhibited. However, in putting this method into practical use, there are major restrictions on the material of the equipment due to the coexistence of hydrogen chloride gas.

第二群は、重質油水添などによく使われるCo、
Mo、Ni、Wなどの高価な金属群である。これら
の触媒は、水素化活性は高いが被毒を受けやす
く、触媒寿命が短いという欠点をもつ。また、触
媒が高価であるために、H−Coal法の沸騰床の
如く、触媒を反応器内にとどめる工夫あるいは
Dow法の如く、触媒を非常に低濃度で使い、か
つ大半を再使用循環するプロセス等が提案されて
いる。しかしながら、いずれも未だ完成の域に達
していない。
The second group consists of Co, which is often used for heavy oil hydrogenation, etc.
It is a group of expensive metals such as Mo, Ni, and W. Although these catalysts have high hydrogenation activity, they have the drawbacks of being susceptible to poisoning and having a short catalyst life. In addition, since the catalyst is expensive, there are methods to keep the catalyst within the reactor, such as the boiling bed of the H-Coal method, or
Processes have been proposed, such as the Dow process, in which catalysts are used at very low concentrations and most of the catalyst is reused and recycled. However, none of them have reached the stage of completion yet.

第三群は鉄化合物である。これは安価で使い捨
て触媒として用いられる場合が多い。使用されて
いる鉄化合物の種類も多いが、中でも水酸化鉄、
赤泥、鉄鉱石、硫酸鉄等が代表的である。これら
の鉄化合物は、硫黄が共存すると活性が飛躍的に
増大する。したがつて、硫黄含有量の少ない石炭
においては、硫黄を添加して使用することも提案
されている。
The third group is iron compounds. This is inexpensive and is often used as a disposable catalyst. There are many types of iron compounds used, among them iron hydroxide,
Representative examples include red mud, iron ore, and iron sulfate. The activity of these iron compounds increases dramatically when sulfur coexists. Therefore, it has been proposed to add sulfur to coal that has a low sulfur content.

また、天然の黄鉄鉱(FeS2;パイライト)の
触媒活性などもよく知られており、より活性の高
い合成パイライトの試作方法も種々検討されてい
る(特開昭59−183831号公報)。
Furthermore, the catalytic activity of natural pyrite (FeS 2 ; pyrite) is well known, and various methods for producing synthetic pyrite with higher activity have been studied (Japanese Patent Laid-Open No. 183831/1983).

鉄化合物触媒の多くは、数十μ以上の大きさで
用いられるが、その場合、石炭液化活性は不充分
であり、数μ以下に微粉砕ないしは分級して用い
ないと、石炭液化活性は充分ではない。これに対
して、前述の合成パイライトや水酸化鉄、あるい
は微粉砕した鉄鉱石や黄鉄鉱は、粒子径が数μ程
度の微粒であり、石炭液化活性が高い。これらの
微粒の高活性触媒は、比較的高価であるため、経
済性の面から、石炭液化油、石炭灰分等の石炭起
源の生成物から分離回収して再利用することが望
まれる。そこで、微粒の鉄の硫化物を造粒乾燥し
たものを触媒とし、その沈降速度を灰分のそれよ
りも大きくし、重力濃縮分離法により回収し、循
環再使用する方法(特開昭59−210992号公報)、
微粒の鉄の硫化物を造粒乾燥し、さらに焼成処理
によつて耐微粉化強度を持たせたものを触媒と
し、重力濃縮分離法により回収し、循環再使用す
る方法(特開昭61−23687号公報)などが検討さ
れている。
Most iron compound catalysts are used with a size of several tens of microns or more, but in that case, the coal liquefaction activity is insufficient, and the coal liquefaction activity is insufficient unless it is used after being finely pulverized or classified to a size of several tens of microns or less. isn't it. On the other hand, the aforementioned synthetic pyrite, iron hydroxide, or finely pulverized iron ore and pyrite are fine particles with a particle diameter of about several μm and have high coal liquefaction activity. These particulate highly active catalysts are relatively expensive, and therefore, from the economic point of view, it is desirable to separate and recover them from coal-derived products such as coal liquefied oil and coal ash for reuse. Therefore, a method of using granulated and dried fine iron sulfide as a catalyst, making its sedimentation rate higher than that of ash, recovering it by gravity concentration separation method, and recycling and reusing it (Japanese Patent Application Laid-Open No. 59-210992) Publication No.),
A method in which fine particles of iron sulfide are granulated and dried, and then calcined to make them resistant to pulverization, are used as a catalyst, recovered by gravity concentration separation method, and recycled for reuse. 23687) are being considered.

(発明が解決しようとする問題点) 微粒の鉄化合物を造粒乾燥したもの、あるいは
さらに焼成処理を加えたものを触媒とすることに
より、石炭液化活性が高く、さらに重力濃縮分離
法によつて回収し、循環再使用が可能である。し
かしながら、微粒の鉄の硫化物について合成する
場合にはその調製工程が、また、天然のものを使
用する場合には数μ以下までの高度な微粉砕工程
が必要となる。また、造粒乾燥時には、鉄化合物
の沈降を防いで均一なスラリーとするために、高
度な撹拌操作が必要である等の問題がある。
(Problems to be Solved by the Invention) By using as a catalyst a granulated and dried fine grained iron compound, or one which has been further calcined, the coal liquefaction activity is high, and furthermore, by gravity concentration separation method, coal liquefaction activity is high. It can be collected and reused. However, when fine-grained iron sulfide is synthesized, a preparation process is required, and when natural iron sulfide is used, a sophisticated pulverization process is required to a size of several microns or less. Further, during granulation and drying, there are problems such as the need for sophisticated stirring operations in order to prevent precipitation of iron compounds and obtain a uniform slurry.

(問題点を解決するための手段) 以上の問題点を解決するべく、鋭意研究を進め
た結果、本発明者らは、微粒の鉄化合物の合成あ
るいは天然の鉄化合物の微粉砕などの繁雑な処理
を行なわず、鉄化合物の水溶液をそのまま乾燥し
つつ造粒し、さらに、400〜1500℃で焼成するこ
とにより、高活性で、かつ重力濃縮分離法による
回収再使用が可能な触媒を発明した。
(Means for Solving the Problems) In order to solve the above problems, as a result of intensive research, the present inventors have discovered a complicated process such as synthesis of fine particles of iron compounds or pulverization of natural iron compounds. By drying and granulating an aqueous iron compound solution without any treatment, and then calcining it at 400 to 1500℃, we invented a highly active catalyst that can be recovered and reused using the gravity concentration separation method. .

すなわち、本発明は、鉄化合物の水溶液を乾燥
しつつ造粒した後、400〜1500℃で焼成すること
を特徴とする石炭液化用触媒の製造方法である。
That is, the present invention is a method for producing a catalyst for coal liquefaction, characterized in that an aqueous solution of an iron compound is granulated while drying, and then calcined at 400 to 1500°C.

以下、本発明方法を詳しく説明する。 The method of the present invention will be explained in detail below.

鉄化合物の水溶液とは、2価ないし3価の鉄塩
の水溶液を意味し、鉄塩としては塩化第一鉄、塩
化第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸第一
鉄、硝酸第二鉄などをはじめとする任意のものの
使用が可能である。
The aqueous solution of an iron compound means an aqueous solution of divalent or trivalent iron salts, and iron salts include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous nitrate, Any material can be used, including ferric nitrate and the like.

乾燥しつつ造粒する方法としては、噴霧乾燥造
粒法、流動乾燥造粒法などの公知の技術を適用で
きる。造粒時の触媒の粒径は、その使用方法、反
応条件などに応じて、灰分との分離に適した価が
選定される。例えば、触媒を石炭および溶媒であ
る炭化水素油とのスラリーとして反応器に供給
し、石炭液化油および灰分との分離に液体サイク
ロンを用いる場合、触媒の粒径は5〜200μであ
ればよいが、望ましくは10〜100μが選定される。
5μ未満では液体サイクロンによる捕集が困難と
なり、200μを超えると反応器内に蓄積してしま
うことによる反応器の閉塞などの心配が生じる。
また、反応器内に触媒粒子を滞留させて、灰分や
石炭液化油のみを反応器外へ流出させて分離を行
なう場合、触媒の粒径は100μ以上あればよいが、
望ましくは200μ〜数cmが選定される。100μ未満
であると、反応器外への触媒の散逸が起こつてし
まう。
As a method for granulating while drying, known techniques such as a spray drying granulation method and a fluidized drying granulation method can be applied. The particle size of the catalyst during granulation is selected to be suitable for separation from ash, depending on the method of use, reaction conditions, etc. For example, if the catalyst is supplied to the reactor as a slurry with coal and hydrocarbon oil as a solvent and a hydrocyclone is used to separate the coal liquefied oil and ash, the particle size of the catalyst may be between 5 and 200μ. , preferably 10 to 100μ.
If it is less than 5μ, it will be difficult to collect it with a liquid cyclone, and if it exceeds 200μ, there will be concerns about reactor clogging due to accumulation in the reactor.
In addition, when catalyst particles are retained in the reactor and only ash and coal liquefied oil are flowed out of the reactor for separation, the particle size of the catalyst should be at least 100 μm, but
Desirably, the thickness is selected from 200μ to several cm. If it is less than 100μ, the catalyst will dissipate to the outside of the reactor.

鉄化合物の水溶液には、その他の金属類や硬化
剤等を添加してもよい。また、原料により、乾燥
造粒時の製品の強度が弱い場合があるが、この際
には、鉄化合物の水溶液中に、ケイ酸化合物、ア
ルミニウム化合物、リン酸化合物などの無機質粘
結剤、あるいはポリビニルアルコール等の有機質
粘結剤を、鉄に対して1〜200重量%(乾燥時)
添加するのもよい。
Other metals, curing agents, etc. may be added to the aqueous solution of the iron compound. Also, depending on the raw materials, the strength of the product may be weak during dry granulation, but in this case, inorganic binders such as silicic acid compounds, aluminum compounds, phosphoric acid compounds, or Organic binder such as polyvinyl alcohol, 1 to 200% by weight (dry) based on iron.
It is also good to add.

乾燥造粒後の触媒を400〜1500℃で焼成するこ
とにより、石炭液化活性および強度を増大するこ
とができる。400℃未満では石炭液化活性および
強度の増加が不充分であり、1500℃を超えると触
媒の比表面積の低下等により、石炭液化活性が低
下する。焼成方法は、ロータリーキルン、トンネ
ル炉、流動床炉等の公知の技術が適用できる。焼
成雰囲気は、酸化性、還元性、不活性のいずれで
もよいが、望ましくは低酸素濃度雰囲気中で焼成
するのがよい。酸素が混入するのを防止できない
場合は、コークスあるいは硫黄などの還元性物質
を混入して焼成してもよい。
Coal liquefaction activity and strength can be increased by calcining the dry and granulated catalyst at 400-1500°C. Below 400°C, the increase in coal liquefaction activity and strength is insufficient, and above 1500°C, the coal liquefaction activity decreases due to a decrease in the specific surface area of the catalyst, etc. As the firing method, known techniques such as a rotary kiln, a tunnel furnace, a fluidized bed furnace, etc. can be applied. The firing atmosphere may be oxidizing, reducing, or inert, but it is preferable to perform the firing in a low oxygen concentration atmosphere. If mixing of oxygen cannot be prevented, reducing substances such as coke or sulfur may be mixed and fired.

本発明は、以上の方法で調製した触媒を用いて
石炭の液化を行なうものであるが、以下に石炭液
化の方法について、さらに詳細に説明する。
The present invention liquefies coal using the catalyst prepared by the method described above, and the method for liquefying coal will be explained in more detail below.

本発明でいう石炭とは、無煙炭、歴青炭、亜歴
青炭、かつ炭、泥炭等をいう。本発明に使用する
石炭としては、歴青炭、亜歴青炭、かつ炭がより
好ましい。
Coal as used in the present invention refers to anthracite coal, bituminous coal, subbituminous coal, charcoal, peat, and the like. As the coal used in the present invention, bituminous coal, subbituminous coal, and charcoal are more preferable.

石炭の加熱は350〜800℃で行なわれる。温度が
低いと液化速度が遅く、温度が高いと炭化物やガ
スが増大する。400〜500℃が最も好ましい。
Coal heating is carried out at 350-800°C. When the temperature is low, the liquefaction rate is slow, and when the temperature is high, carbide and gas increase. 400-500°C is most preferred.

本発明では水素を用いなくても、例えば、あら
かじめ水添した触媒などを用いて液化する方法も
可能であるが、条件によつては液化率が向上しな
い。したがつて、水素の存在下で液化反応を行な
うのが通常で、その際できるだけ純度の高いもの
を使用するのが望ましい。
In the present invention, it is possible to liquefy without using hydrogen, for example, using a pre-hydrogenated catalyst, but the liquefaction rate may not improve depending on the conditions. Therefore, it is common to carry out the liquefaction reaction in the presence of hydrogen, and it is desirable to use hydrogen with the highest possible purity.

また、水素の反応時の圧力は10Kg/cm2以上が好
ましく、100〜300Kg/cm2が最適である。水素の反
応は複雑で、石炭の構造、混合するスラリー化溶
媒等によつて適当な圧力が選ばれる。
Further, the pressure during the hydrogen reaction is preferably 10 Kg/cm 2 or more, and optimally 100 to 300 Kg/cm 2 . The hydrogen reaction is complex, and an appropriate pressure is selected depending on the structure of the coal, the slurry solvent to be mixed, etc.

本発明で液化とは、石炭の大部分を沸点が常圧
換算で常温(約20℃)以上900℃以下の液体にす
ることをいうが、一部高沸点の化合物、ロー状
物、ペースト状物が含まれていてもよい。したが
つて、本発明で生成粗油とは、これらのものを含
んだ混合物を指す。
In the present invention, liquefaction refers to turning most of the coal into a liquid whose boiling point is above room temperature (approximately 20 degrees Celsius) and below 900 degrees Celsius when converted to normal pressure. It may contain things. Therefore, the crude oil produced in the present invention refers to a mixture containing these substances.

本発明の触媒を用いた石炭液化においては、炭
化水素油を触媒として石炭に対して重量比率で50
%以上、好ましくは100〜400%添加して運転す
る。
In coal liquefaction using the catalyst of the present invention, hydrocarbon oil is used as a catalyst at a weight ratio of 50% to coal.
% or more, preferably 100 to 400%.

ここで使用する炭化水素油とは、石炭の液化油
または液化油を水添した油であり、芳香族炭化水
素、脂肪族炭化水素、酸性油、塩基性油、硫黄化
合物等が使用される。また、これらを含むクレオ
ソート油、アントラセン油等の混合油、石油留分
等も使用できる。炭化水素油の沸点は、常圧下
150℃以上、600℃までの範囲のものがよい。
The hydrocarbon oil used here is liquefied coal oil or oil obtained by hydrogenating liquefied oil, and aromatic hydrocarbons, aliphatic hydrocarbons, acidic oils, basic oils, sulfur compounds, etc. are used. Mixed oils containing these oils such as creosote oil and anthracene oil, petroleum fractions, and the like can also be used. The boiling point of hydrocarbon oil is under normal pressure.
A temperature range of 150℃ or higher and up to 600℃ is preferable.

本発明の触媒は、反応器に対して連続的に供
給、排出を行なつて、得られた生成粗油から触媒
を分離して循環再使用する方法、反応器内に触媒
を滞留させて、灰分や石炭液化油のみを反応器外
へ流出させることにより分離を行なう方法のいず
れでも適用できる。前者の場合、触媒の添加量
は、石炭に対する重量比率で0.01〜30%までいず
れでもよいが、1〜20%が最も好ましい。
The catalyst of the present invention can be continuously supplied to and discharged from a reactor to separate the catalyst from the resulting crude oil for circulation and reuse, or by allowing the catalyst to remain in the reactor. Any method that performs separation by draining only the ash and coal liquefied oil out of the reactor can be applied. In the former case, the amount of catalyst added may be any amount from 0.01 to 30% by weight relative to coal, but is most preferably from 1 to 20%.

触媒を反応器に対して連続的に供給、排出を行
なう場合、得られた生成粗油から触媒粒子を回収
する手法としては、いかなる方法でもかまわない
が、特に液体サイクロンあるいは遠心分離等の重
力濃縮分離法を用いて、触媒を優先的に回収する
のが好ましい。例えば、液体サイクロン法では、
直径が10mmφ以上、好ましくは10〜75mmφの液体
サイクロンコアを用い、液体サイクロンの工程一
段当り圧損1Kg/cm2以上、好ましくは1〜6Kg/
cm2で運転するとよい。
When the catalyst is continuously supplied to and discharged from the reactor, any method can be used to recover the catalyst particles from the resulting crude oil, but in particular gravity concentration such as hydrocyclone or centrifugation is acceptable. Preferably, separation methods are used to preferentially recover the catalyst. For example, in the hydrocyclone method,
A hydrocyclone core with a diameter of 10 mmφ or more, preferably 10 to 75 mmφ is used, and the pressure drop per stage of the hydrocyclone is 1 Kg/cm 2 or more, preferably 1 to 6 Kg/cm2.
It is better to drive in cm 2 .

この重力または遠心分離は、一段階以上、多段
階で分離することもできる。第一段階である程度
触媒を沈降させた残りの上層油液を、第二段の分
離装置にかけ、粘度や粒度を考慮して、それに応
じた遠心条件で効率よく触媒の濃縮をさせること
等が可能である。
This gravity separation or centrifugation can also be performed in one or more stages, or in multiple stages. The remaining upper layer oil liquid, in which the catalyst has been precipitated to some extent in the first stage, is applied to the second stage separation device, and the catalyst can be efficiently concentrated under centrifugal conditions that take into account the viscosity and particle size. It is.

かくして、石炭液化の生成粗油に当初存在して
いた触媒の大部分は、効率的に、かつ灰分の回収
を抑えながら回収することができ、好適な条件で
は70〜90%の触媒の回収が可能である。
Thus, most of the catalyst initially present in the crude oil produced from coal liquefaction can be recovered efficiently and with limited ash recovery, with 70-90% catalyst recovery under suitable conditions. It is possible.

このようにして回収された触媒(正確には触媒
粒子の懸濁したスラリー液)は、反応フイード液
と混合されるが、反応フイード液には上澄みとし
て失われた触媒の分だけが混合されていれば足り
ることになる。
The catalyst recovered in this way (more precisely, a slurry liquid in which catalyst particles are suspended) is mixed with the reaction feed liquid, but only the amount of catalyst lost as a supernatant is mixed in the reaction feed liquid. That will be enough.

反応フイード液との混合のしかたは、回収触媒
をあらかじめ溶媒炭化水素油に分散させてもよい
し、あるいはスラリー調製工程にフイードしても
よい。すなわち、結果的に反応フイード液に回収
容媒が含まれることになれば、いかなる手順で混
合してもさしつかえない。
Regarding the method of mixing with the reaction feed liquid, the recovered catalyst may be dispersed in a solvent hydrocarbon oil in advance, or it may be fed into a slurry preparation process. That is, as long as the reaction feed liquid eventually contains the recovery medium, any mixing procedure may be used.

反応器内に触媒粒子を長時間留め、触媒炭化水
素油および石炭起原の生成物のみを反応器外に流
出させるためには、固定床式、移動床式、流動床
式等の公知の技術が適用できる。なお、スラリー
の流れは、上昇流、下降流のいずれでもよいが、
灰分を反応器外に流出させるために、上昇流がよ
り好ましい。
In order to keep the catalyst particles in the reactor for a long time and allow only the catalytic hydrocarbon oil and coal-derived products to flow out of the reactor, known techniques such as fixed bed type, moving bed type, and fluidized bed type are used. is applicable. Note that the flow of the slurry may be either an upward flow or a downward flow, but
Upflow is more preferred in order to cause the ash to flow out of the reactor.

上昇流連続式の塔型反応器においては、反応器
内の温度、圧力における灰分の生成油中の沈降速
度が、反応器内の生成油の移動線速度よりも充分
小さく、かつ同条件下における触媒の生成油中の
沈降速度が、反応器内の生成油の移動線速度より
も充分大きいことが必要である。粒子の流体中の
沈降の終末速度Unは、一般に、 Um=√4(p−)p3……… Um:粒子の終末速度(m/sec) g:重力の加速度(m/sec2) ρp:固体粒子の密度(Kg/m3) ρ:流体の密度(Kg/m3) Dp:粒子の直径(m) C 粒子の抵抗係数(−) で求めることができる。灰分の平均粒径は2〜
10μ、真比重2前後であり、式によつてその沈
降速度が求められる。この値に対し、前記必要条
件を満たすべく、触媒粒径、反応器設計条件、運
転条件等が設定される。
In a continuous upward flow tower type reactor, the settling velocity of ash in the produced oil at the temperature and pressure inside the reactor is sufficiently smaller than the linear velocity of movement of the produced oil in the reactor, and under the same conditions It is necessary that the settling velocity of the catalyst in the produced oil is sufficiently greater than the linear velocity of movement of the produced oil in the reactor. The terminal velocity of sedimentation of a particle in a fluid, U n , is generally defined as: Um = √4 ( p −) p 3... Um: Terminal velocity of a particle (m/sec) g: Acceleration of gravity (m/sec 2 ) ρ p : Density of solid particles (Kg/m 3 ) ρ : Density of fluid (Kg/m 3 ) D p : Diameter of particles (m) C Coefficient of drag of particles (-) The average particle size of ash is 2~
10μ, true specific gravity is around 2, and its sedimentation rate can be determined by the formula. With respect to this value, the catalyst particle size, reactor design conditions, operating conditions, etc. are set in order to satisfy the above-mentioned requirements.

かくして、触媒の大部分は反応器内に長時間滞
留し、生成油、灰分、未反応炭等の溶媒炭化水素
油および石炭起原の生成物のみを反応器外に流出
することができる。反応フイード液中に添加する
触媒としては、微粒化等によつて反応器外に排出
されて失われた触媒の分だけでよい。
Thus, most of the catalyst remains in the reactor for a long time, and only solvent hydrocarbon oils and coal-based products such as produced oil, ash, unreacted coal, etc. can flow out of the reactor. The amount of catalyst added to the reaction feed liquid may be only the amount of catalyst lost by being discharged outside the reactor due to atomization or the like.

(発明の効果) 本発明により、従来技術と比較して非常に簡単
な工程で、高活性であり、かつ分離回収再使用も
しくは反応器内に長時間留めての使用が可能な石
炭液化用触媒が製造できる。乾燥しつつ造粒する
工程においては、鉄化合物が水溶液であるため、
スラリー状の原料で生じるような配管の詰まり、
摩耗などのトラブルも、本発明の方法では非常に
少なく、また、均一化するための高度な撹拌操作
も必要としない。したがつて、結果的に触媒を安
価に製造できる。また、分離回収再使用もしくは
反応器内に長時間留めての使用が可能であるか
ら、石炭液化プロセスにおいて、使用触媒量を大
幅に減少することができ、経済的効果をもたら
す。さらには、資源の有効利用、廃棄触媒が少な
いことによる環境対策ともなる。
(Effects of the invention) According to the present invention, the catalyst for coal liquefaction is highly active and can be separated, recovered and reused, or left in the reactor for a long period of time, with a very simple process compared to the conventional technology. can be manufactured. In the process of drying and granulating, since the iron compound is an aqueous solution,
Clogged pipes such as those caused by slurry-like raw materials,
Troubles such as abrasion are also extremely rare in the method of the present invention, and sophisticated stirring operations for uniformity are not required. Therefore, as a result, the catalyst can be manufactured at low cost. In addition, since it can be separated, recovered, reused, or kept in a reactor for a long period of time, the amount of catalyst used can be significantly reduced in the coal liquefaction process, resulting in an economical effect. Furthermore, it is also an environmental measure due to effective use of resources and less waste catalyst.

(実施例) 以下、実施例により本発明をさらに具体的に説
明するが、本発明は、この実施例に制限されるも
のではない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

硫酸第一鉄を水に溶解して20重量%の水溶液を
作り、これに濃度30重量%のシルカゾルを、鉄に
対してシリカが20重量%となるように加えてよく
混合し、均一な溶液とする。
Dissolve ferrous sulfate in water to make a 20% by weight aqueous solution, add Silcasol with a concentration of 30% by weight so that the ratio of silica to iron is 20% by weight, and mix well to form a homogeneous solution. shall be.

回転円盤式スプレードライヤーを入口空気温度
250℃、出口ガス温度130℃、熱風量7Nm3/min、
直径80mmφの回転円盤を32000rpmの条件で運転
し、先に調製した溶液を22/Hでフイードし、
乾燥しつつ造粒した。さらに、この造粒物につい
て、その含有する鉄と同一重量の粒末硫黄を添加
し、窒素ガス流通下、600℃で2時間の焼成を行
なつた。以上より得られた物が、本発明の方法に
よる触媒である。この時できた触媒の粒度分布を
第1図に示す。平均粒径は約15μであつた。
Inlet air temperature of rotating disc spray dryer
250℃, outlet gas temperature 130℃, hot air volume 7Nm 3 /min,
A rotating disk with a diameter of 80 mmφ was operated at 32000 rpm, and the previously prepared solution was fed at 22/H.
It was granulated while drying. Further, to this granulated material, powdered sulfur in an amount equal to the weight of iron contained in the granulated material was added, and sintering was performed at 600.degree. C. for 2 hours under nitrogen gas flow. The product obtained above is the catalyst produced by the method of the present invention. The particle size distribution of the catalyst produced at this time is shown in FIG. The average particle size was approximately 15μ.

以上のようにして調製した触媒を用いて、石炭
液化反応実験を行なつた。装置は石炭処理規模が
20Kg/日の連続式反応装置を使用した。運転条件
は以下のとおりである。
A coal liquefaction reaction experiment was conducted using the catalyst prepared as described above. The equipment has a coal processing scale
A continuous reactor with a capacity of 20 kg/day was used. The operating conditions are as follows.

(1) 石炭:幌内炭(400メツシユパス) (2) 溶媒:脱晶アントラセン油 (3) 触媒濃度:無水無灰炭当り鉄重量として10% (4) 反応圧力:200Kg/cm2 (5) 反応温度:460℃ これによつて生成した粗油を、胴部径10mmφの
液体サイクロンに、スラリー流量200/H、温
度80℃でフイードした。この時の流量比は44%で
あつた。この流量比とは、下向流量のフイード流
量に対する割合である。この結果、分離された上
向流および下向流のうち、下向流中に含有される
触媒量および灰分量の、液体サイクロンのフイー
ド流量中に含有されるそれぞれの量に対する割合
(回収率)を、それぞれの粒径に対してプロツト
したのが第2図である。これによると、一般的な
生成粗油中に含有される灰分の粒径は約3μであ
るから、第2図より回収率は約40%である。これ
に対し、平均粒径15μの触媒の回収率は約90%で
あり、充分に優先濃縮回収が可能である。また、
第2図より、粒径が2〜3μの微粒触媒を用いた
場合には、回収率は40〜50%であり、灰分の回収
率と大差なく、触媒の優先濃縮回収が難しいこと
が分かる。
(1) Coal: Horonai coal (400 mesh pass) (2) Solvent: Decrystallized anthracene oil (3) Catalyst concentration: 10% iron weight per anhydrous ash-free coal (4) Reaction pressure: 200Kg/cm 2 (5) Reaction Temperature: 460°C The crude oil thus produced was fed into a liquid cyclone with a body diameter of 10 mm at a slurry flow rate of 200/H and a temperature of 80°C. The flow rate ratio at this time was 44%. This flow rate ratio is the ratio of the downward flow rate to the feed flow rate. As a result, the ratio (recovery rate) of the amount of catalyst and ash contained in the separated upward flow and downward flow to the respective amounts contained in the feed flow rate of the hydrocyclone. FIG. 2 shows a plot of the difference in particle size for each particle size. According to this, the particle size of the ash contained in the general crude oil produced is about 3 μm, so the recovery rate is about 40% as shown in Figure 2. On the other hand, the recovery rate of a catalyst with an average particle size of 15 μm is about 90%, and sufficient preferential concentration recovery is possible. Also,
From FIG. 2, it can be seen that when a fine catalyst with a particle size of 2 to 3 μm is used, the recovery rate is 40 to 50%, which is not much different from the recovery rate of ash, indicating that it is difficult to preferentially concentrate and recover the catalyst.

さらに、上記の本発明による触媒と、他の鉄系
化合物触媒との石炭液化反応結果を比較したのが
第3図である。対照とした触媒は、人為的に合成
した微粒の鉄化合物触媒および赤泥であり、それ
ぞれの粒度分布を第1図に示す。合成微粒鉄化合
物触媒は特願昭58−58645の実施例にしたがつて
製造したものであり、以下のような方法で製造し
た。
Furthermore, FIG. 3 compares the results of coal liquefaction reactions between the catalyst according to the present invention and other iron-based compound catalysts. The catalysts used as controls were an artificially synthesized fine particle iron compound catalyst and red mud, and the particle size distribution of each is shown in FIG. The synthetic fine particle iron compound catalyst was manufactured according to the example of Japanese Patent Application No. 58-58645, and was manufactured by the following method.

硫酸第一鉄および酢酸第一鉄の1対1の混合物
を、鉄として230gとり、これを4の純水に溶
解した。硫化ソーダの五水塩610gを4の純水
に溶解した。これらの2液を混合し、硫酸を用い
てPHを6に調整し、生成したスラリーに硫黄粉末
を184g加えてよくまぜ、80℃で40時間撹拌しな
がら反応させた。反応器は少量の窒素を流通させ
ている状態で運転した。反応後のスラリーは濾過
して固形分を回収し、さらに乾燥して触媒とし
た。また、赤泥は微粉砕し、さらに分級したもの
で鉄の含有率36%のものである。
230 g of iron was taken as a 1:1 mixture of ferrous sulfate and ferrous acetate, and dissolved in 4 pure water. 610 g of sodium sulfide pentahydrate was dissolved in 4 pure water. These two liquids were mixed, the pH was adjusted to 6 using sulfuric acid, 184 g of sulfur powder was added to the resulting slurry, mixed well, and reacted at 80° C. for 40 hours with stirring. The reactor was operated with a small amount of nitrogen flowing through it. The slurry after the reaction was filtered to recover the solid content, which was further dried to obtain a catalyst. In addition, red mud is finely ground and further classified, and has an iron content of 36%.

本発明の触媒および対照2種の石炭液化反応
は、内容積1の撹拌式オートクレープを用いて
行ない、その反応条件は以下のとおりである。
The coal liquefaction reactions of the catalyst of the present invention and the two controls were carried out using a stirred autoclave with an internal volume of 1, and the reaction conditions were as follows.

(1) 石炭:太平洋炭(400メツシユパス)、無水無
灰炭として60g (2) 溶媒:脱晶アントラセン油120g (3) 触媒濃度:無水無灰炭当り鉄重量として1.8
% (4) 水素仕込圧:105Kg/cm2(反応圧190〜200
Kg/cm2) (5) 反応温度:450℃ (6) 反応時間80分 (7) 添加物:本発明の触媒および赤泥について
は、触媒が含有する鉄の0.9倍重量の粉末硫黄
を添加 第3図の横軸は、ヘキサン可溶分油の全油に対
する重量分率であつて、水添度合を示す尺度と考
えることができる。ここで全油とは、ヘキサン可
溶分油とアスフアルテンおよびプレアスフアルテ
ンの総重量をいう。また、縦軸は生成軽質油の仕
込無水無灰炭に対する重量分率を示し、水素化分
解の度合を示す尺度とみなされる。ここでいう軽
質油とは、ヘキサン等の炭素数5以上の物質であ
つて、かつ常圧の沸点が300℃以下のものをいう。
この図は、液化軽質化の方向に進むと右上がりと
なり、結果的に触媒活性の尺度となりうる。
(1) Coal: Pacific coal (400 mesh passes), 60 g as anhydrous ash-free coal (2) Solvent: 120 g of decrystallized anthracene oil (3) Catalyst concentration: 1.8 as iron weight per anhydrous ash-free coal
% (4) Hydrogen charging pressure: 105Kg/cm 2 (reaction pressure 190~200
Kg/cm 2 ) (5) Reaction temperature: 450℃ (6) Reaction time 80 minutes (7) Additives: For the catalyst and red mud of the present invention, powdered sulfur was added in an amount 0.9 times the weight of iron contained in the catalyst. The horizontal axis in FIG. 3 is the weight fraction of hexane-soluble oil relative to the total oil, and can be considered as a measure of the degree of hydrogenation. Here, the total oil refers to the total weight of hexane-soluble oil, asphaltene, and pre-asphaltene. The vertical axis indicates the weight fraction of the light oil produced relative to the charged anhydrous ash-free coal, which is considered as a measure of the degree of hydrocracking. The light oil referred to herein refers to a substance having a carbon number of 5 or more, such as hexane, and having a boiling point of 300° C. or less at normal pressure.
This figure slopes upward in the direction of liquefaction and lightening, and can be used as a measure of catalyst activity.

第3図より、本発明による触媒の活性は、赤泥
よりもはるかに高く、微粒合成鉄化合物触媒とほ
ぼ同レベルであることが明白である。
From FIG. 3, it is clear that the activity of the catalyst according to the present invention is much higher than that of red mud and approximately on the same level as that of the fine-grained synthetic iron compound catalyst.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例で示した本発明による触媒、
人為的に合成した微粒の鉄化合物触媒および赤泥
の粒度分布を積算量で示した図表、第2図は、実
施例において液化実験後、生成粗油を液体サイク
ロンで処理した時、下向流に含有される触媒量お
よび灰分量の、サイクロンへのフイード液中の量
に対する割合(回収率)を、それぞれ粒径に対し
てプロツトした図表、第3図は、本発明による触
媒およびほかの触媒について、石炭液化反応にお
ける活性を示した図表である。
FIG. 1 shows a catalyst according to the present invention shown in Examples,
Figure 2 shows the particle size distribution of artificially synthesized fine grained iron compound catalyst and red mud in cumulative amounts. Figure 3 is a graph plotting the ratio of the amount of catalyst and ash contained in the catalyst to the amount in the feed liquid to the cyclone (recovery rate) against the particle size. This is a chart showing the activity of coal in the coal liquefaction reaction.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄化合物の水溶液を乾燥しつつ造粒した後、
400〜1500℃で焼成することを特徴とする石炭液
化用触媒の製造方法。
1 After drying and granulating the iron compound aqueous solution,
A method for producing a catalyst for coal liquefaction, which comprises firing at a temperature of 400 to 1500°C.
JP24227784A 1984-11-19 1984-11-19 Production of catalyst for liquefying coal Granted JPS61120641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24227784A JPS61120641A (en) 1984-11-19 1984-11-19 Production of catalyst for liquefying coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24227784A JPS61120641A (en) 1984-11-19 1984-11-19 Production of catalyst for liquefying coal

Publications (2)

Publication Number Publication Date
JPS61120641A JPS61120641A (en) 1986-06-07
JPH0350579B2 true JPH0350579B2 (en) 1991-08-02

Family

ID=17086865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24227784A Granted JPS61120641A (en) 1984-11-19 1984-11-19 Production of catalyst for liquefying coal

Country Status (1)

Country Link
JP (1) JPS61120641A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2707626B2 (en) * 1988-09-05 1998-02-04 東ソー株式会社 Method for producing catalyst for hydrogenation reaction
ATE552228T1 (en) 2001-10-24 2012-04-15 Daikin Ind Ltd METHOD FOR RECOVERING CATALYSTS IN A PROCESS AND FOR PRODUCING PERFLUORALKYLIODIDE TELOMERS

Also Published As

Publication number Publication date
JPS61120641A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
CN102380396B (en) Bimetal or multi-metal high-dispersion composite coal tar hydrogenation catalyst and preparation method thereof
US6258259B1 (en) Iron sulfide and process for producing the same
CA1107214A (en) Coal hydrogenation catalyst recycle
JPS58157892A (en) Coal liquefaction
US2587149A (en) Hydrofining with sulfate regenerated catalyst
JPS5853983A (en) Coal liquification
CA1322746C (en) Hydrocracking of heavy oils in presence of petroleum coke derived from heavy oil coking operations
JPH0350579B2 (en)
CN105233829B (en) A kind of iron slag prepares the method and its application of hydrocracking catalyst
NL8203780A (en) Process for the hydroprocessing of heavy hydrocarbonaceous oils.
JPS6126836B2 (en)
JPS58108290A (en) Coal liquefaction by recycling ethyl acetate- insoluble matter
JPS6218594B2 (en)
JPS5839193B2 (en) Coal liquefaction method
JP3128292B2 (en) Method for producing catalyst for coal liquefaction
JPS6126955B2 (en)
JP3502221B2 (en) Iron sulfide and method for producing the same
DE3035486A1 (en) METHOD FOR THE OXIDATIVE GASIFICATION OF CARBON-CONTAINING MATERIAL
JPS6160115B2 (en)
JPS6333421B2 (en)
US4518709A (en) Dual particle hydrotreating catalyst
JPS62160142A (en) Method for liquefying coal
CN110813295B (en) Preparation method and application of slurry bed hydrogenation catalyst
JPS61268357A (en) Method for preparing catalyst for liquefying coal
JPS62161889A (en) Liquefaction of coal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees