JPS5861178A - Desulfurization demetallization denitrogenation for coal or coal liquid raw material - Google Patents

Desulfurization demetallization denitrogenation for coal or coal liquid raw material

Info

Publication number
JPS5861178A
JPS5861178A JP56146407A JP14640781A JPS5861178A JP S5861178 A JPS5861178 A JP S5861178A JP 56146407 A JP56146407 A JP 56146407A JP 14640781 A JP14640781 A JP 14640781A JP S5861178 A JPS5861178 A JP S5861178A
Authority
JP
Japan
Prior art keywords
coal
manganese nodules
nickel
nodules
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56146407A
Other languages
Japanese (ja)
Inventor
ト−マス・オ−エン・ミツチエル
マルビ−ナ・フア−カシユ−
ダレル・ドウエイン・ホワイトハ−スト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US06/142,189 priority Critical patent/US4303497A/en
Priority to EP81304039A priority patent/EP0073860A1/en
Priority to AU75025/81A priority patent/AU7502581A/en
Priority to CA000385329A priority patent/CA1157409A/en
Priority to ZA816296A priority patent/ZA816296B/en
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Priority to JP56146407A priority patent/JPS5861178A/en
Publication of JPS5861178A publication Critical patent/JPS5861178A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/14Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/16Metal oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/24Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing with hydrogen-generating compounds
    • C10G45/28Organic compounds; Autofining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は石炭tたは石IIt液の処理に関する。[Detailed description of the invention] This invention relates to the treatment of coal or stone liquids.

j!に詳しくはこの発明は石炭を九は石炭液から硫黄、
窒素および金属化合物の除去のための接触処理に関する
j! In detail, this invention converts coal into sulfur from coal liquid,
Concerning contact treatments for the removal of nitrogen and metal compounds.

この発明は硫黄不純物を含有する石炭または石炭液原料
を水素を添加しないでマンガン団塊。
This invention produces manganese nodules from coal or coal liquid raw materials containing sulfur impurities without adding hydrogen.

沼鉄鉱、沼マンガンおよびニッケル献上にッケルクテテ
イト)からなる群から選ばれた天然産多孔質金属鉱石か
らなる触媒と、および水素供与体溶媒と接触させること
からなる硫黄不純−含有石炭ま九は石炭液、原料の脱硫
、脱金属および脱窒素方法を提供するものである。
A sulfur-impure-containing coal is produced by contacting it with a catalyst consisting of a naturally occurring porous metal ore selected from the group consisting of swampite, swampmanganese and nickel-coated metal ore, and a hydrogen donor solvent. , provides a method for desulfurizing, demetallizing and denitrifying raw materials.

石油留分の脱i1 K wンjン化合吻を使用すること
は周知でToゐ、米1i1411許第J、JJO,/I
t号は炭化水素留分をJ40f−jデqC<zoo”p
〜710ア)の温度で水酸化マンガンまた紘水和酸化マ
ンガンと接触させて硫黄を除去することを開示している
。米国特許952.JJD、094号紘マンガン団塊(
ノデューh) tllE用してガス鎮から硫黄化合物を
除去することを記載している。米国特許第s、ti参、
−J番号はマンガン団塊が触媒として有用な脱硫、脱窒
津、水素化処理を開示している。米13iiI特許第J
J 09,0亭7号はマンガン団塊を水素イオンでイオ
ン交換し【クラッキング。
It is well known to use a decoupling system for decoupling petroleum fractions.
No. t is the hydrocarbon fraction J40f-jdeqC<zoo”p
discloses the removal of sulfur by contacting with manganese hydroxide or hydrated manganese oxide at a temperature of ~710 a). U.S. Patent 952. JJD, No. 094 Komangan baby boomer (
Describes the removal of sulfur compounds from gas sinter using Nodew h) tllE. U.S. Patent No. s.ti.
-J numbers disclose desulfurization, denitrification, and hydrogenation processes in which manganese nodules are useful as catalysts. US 13III Patent No. J
J 09,0 Tei No. 7 is cracked by ion-exchanging manganese nodules with hydrogen ions.

水素化クラッキング、酸化、オレフィン水素化および異
性化のような炭化水素の転化反応に有用な組成物となす
ことを開示している。米S%許第J、t t J、Oj
o号および第J、t / J、J J /号は石油残さ
油をマンガン団塊て脱金属および脱硫する代表的なもの
でめろ。
Compositions useful in hydrocarbon conversion reactions such as hydrocracking, oxidation, olefin hydrogenation, and isomerization are disclosed. U.S.S% Permit No. J, t t J, Oj
No. O, No. J, T/J, and J J/ are typical examples of demetallization and desulfurization using manganese nodules from petroleum residue.

鉄のある糧の化合管が石炭の脱硫に有用であることも既
知である。米S轡許第J、909.コ/J号は石炭中に
硫黄含有有機化合一を溶解できるものとして塩化第二鉄
のような金属塩化物塩の使用を開示している。米国特許
第3,741,911号で祉石炭から黄鉄鉱性硫黄を除
く丸めに第二鉄イオンを使用している。米国特許第3,
999.9!を号は硫黄を除くために石炭と強磁性粒子
との反応を開示している。
It is also known that ferrous compound pipes are useful in desulfurizing coal. U.S. Patent No. J, 909. Co/J discloses the use of metal chloride salts, such as ferric chloride, as capable of dissolving sulfur-containing organic compounds in coal. No. 3,741,911 uses ferric ions to round off pyritic sulfur from coal. U.S. Patent No. 3,
999.9! issue discloses the reaction of coal with ferromagnetic particles to remove sulfur.

この発明によれば石炭または石炭液原料の脱硫、脱金属
および脱窒素処理轢前記原料を、外部から水素を添加し
なめて、マンガン団塊、沼鉄鉱、 沼マンガン%また線
ニッケル紅±にッケルラデライト)のような天然産多孔
質金属鉱石の触媒有効量と、水素供与体溶媒とを接触さ
せることにより行われる。
According to the present invention, the desulfurization, demetallization and denitrification treatment of coal or coal liquid raw materials is carried out by adding hydrogen from the outside to the raw materials to produce manganese nodules, swamp iron ore, swamp manganese% and wire nickel red (nickel ladelite). This is carried out by contacting a catalytically effective amount of a naturally occurring porous metal ore, such as, with a hydrogen donor solvent.

液体の石油の貯蔵量に比べて石炭の埋蔵量は美大である
から1石炭を液体燃料およびガス状熔料に変えることは
絶えず重要性を増しつつある0石炭および石炭から訪導
された重質液は水素含量が低くペテロ原子の含量が高い
から低品位のものである。これらの物質祉残さ油tた拡
ボイラー燃料として使用で!るか、或は経済的によりi
Itしい油および無成分石炭製品KII触的にアップグ
レードされる。しかし1石炭の接触転化には金属汚染−
によυ被毒されにくい触媒を必要とする。j!に石炭中
に含まれる大量の硫黄、窒素および酸素が触媒の全体の
活性を史に低下させる。種々の水嵩化脱硫方法が提唱さ
れたが、このような方法はいずれも大量の水素を消費を
消費するためにコスト高である。
Since the reserves of coal are large compared to the reserves of liquid petroleum, the conversion of coal into liquid fuel and gaseous melt is constantly increasing in importance. The quality liquid is of low quality because it has a low hydrogen content and a high content of petro atoms. These residual oils can be used as boiler fuel! or economically more i
Fresh oil and pure coal products KII will be catalytically upgraded. However, metal contamination in the catalytic conversion of coal.
Requires a catalyst that is less susceptible to poisoning. j! The large amounts of sulfur, nitrogen and oxygen contained in the coal significantly reduce the overall activity of the catalyst. Various water bulking desulfurization methods have been proposed, but all of these methods consume large amounts of hydrogen and are therefore expensive.

この発明の方法に工タ、外部から水嵩を添加しないで、
且つ水素供与体溶媒の存在に&いて石炭の脱硫、脱金属
および脱窒素KIl!用できる単純で低価格の触媒が見
出された。この触媒はiンカン団塊、沼鉄鉱、沼マンガ
ン!1にはニッケルラグ2イトのような天然産多孔質金
属鉱石からなる。これらの物質拡大量に取得でき、且つ
比較的低価格である。更にこのような鉱石は石炭原料か
ら効果的に脱硫および脱窒素を行うことができ、金属不
純−を除くこともてきる。
In the method of this invention, without adding water volume from outside,
And in the presence of hydrogen donor solvent & desulfurization, demetalization and denitrification of coal! A simple and inexpensive catalyst has been found that can be used. This catalyst is incan nodules, swamp iron ore, and swamp manganese! 1 consists of a naturally occurring porous metal ore such as nickel lag 2ite. These materials can be obtained in expanded quantities and are relatively inexpensive. Furthermore, such ores can effectively desulfurize and denitrify coal raw materials, and can also remove metal impurities.

この多孔質触媒が使用によp汚染されて不活性となつ九
ら、それらを廃棄してもそれらが低価格のものであるか
ら、この石炭処理方法の経済面罠は大し九効果はない。
The economic trap of this method of coal processing is that the porous catalysts become inactive due to p-contamination during use, and their disposal is not very effective since they are of low cost. .

マンガン団塊は、すでに知られているようK。Manganese nodules are known as K.

鉄、コバルト、ニッケルおよび鋼を含めた他の金属と共
にマンガンからなる水底に見出される天然産堆積−であ
る。それらは海底や湖底に多量に見出されゐ。例えばそ
れらは太平洋や大西洋の海底およびミシガン湖の湖底に
大量に存在する。マンガン団塊は大きな表面積すなわち
t z o s”/g以上の次面積をもつことが特徴で
ある。これらの団塊は種々の形状をしているが、大抵は
ジャガイモのような形の海洋から得られるものと同じ外
Wtをしている。淡水の水底、例えはミシガン湖底から
得られるものは大きさが海底からのものより小さい傾向
がある。それらの色社含有するマンガンおよび鉄の相対
量に応じズ土よう黒色から褐色でめる。マンガン団塊社
多孔質で軽Nく、平均比重は約−1亭である。
It is a naturally occurring deposit found on the ocean floor consisting of manganese along with other metals including iron, cobalt, nickel and steel. They are found in large quantities on the ocean floor and lake bottom. For example, they are abundant on the ocean floors of the Pacific and Atlantic oceans and on the lakebeds of Lake Michigan. Manganese nodules are characterized by a large surface area, i.e., a surface area greater than t z o s”/g. These nodules come in various shapes, but most are obtained from the ocean and are shaped like potatoes. Those obtained from the bottom of fresh water, such as the bottom of Lake Michigan, tend to be smaller in size than those from the ocean floor, depending on the relative amounts of manganese and iron they contain. It is clayey and has a black to brown color. It is porous and has a light nitrogen content, with an average specific gravity of about -1.

一般にそれらi直径が0.Jコ(至)〜ココ9aIlで
あるが、しかし長さ/J、JIB、直@ti、亭(至)
で、重さり?J#にも達するかなp大きな40壕でTo
為。
Generally, their i diameter is 0. Jko (to) ~ Koko9aIl, but the length/J, JIB, direct@ti, tei (to)
So, the weight? I wonder if it will reach J#? To with a big 40 trench
For.

上述の金属のほかに、!シガン団塊紘ケイ素、アルきニ
ウム、カルシウムおよびマグネシウムおよび少量のモリ
ブデン、亜鉛%に!1%バナジウムおよび希土類元素を
も含む。
In addition to the metals mentioned above! Shigan Dandan Hiro silicon, aluminium, calcium and magnesium and a small amount of molybdenum, zinc%! Also contains 1% vanadium and rare earth elements.

訳出水素原料の脱硫用触sg分としてのマンガン団塊の
化学的および物理的性質抹こO目的Kl!用される慣用
の触媒成分にくらべて着干異なる−のである。団塊線約
ioo〜−z Own”/i (D高置面積をもつ、し
かし、それら紘脱硫反応中に金属の沈積により表面積が
減少する・さらに[アノリカン@電ネラロジスト(λm
@riaanMin*ra1.ogiat ) J j
 /巻(/lA&牛)191〜!Oコj[にロジャー譬
ジーφバーンズ(Rog@r咀Burns )およびデ
ィ・ダブリュウ・ファースーiナウ(D、W、 Fu@
rgtsnau )により[エレクロトンーグローベ中
テター(ネーシ曹ン・オフ−インター−エレメント・リ
レーシ冒ンシツプス・イン会マンガン“・ノブ為−ル」
に示されるように、団塊中に含まれる種々0*属、すな
わちマンカン、鉄、コバルト、鋼およびニッケルの濃度
は団塊の結晶構造全体にわたって均一で祉なく、むしろ
、団塊の断面の横方向において場所場所によって種々の
金属の濃度が顕著に変化する。しかし、鉄とコバルトの
濃度間には相関性があるように見える。他方、製造され
え触媒は製造業者が達成できる範囲での最高の均一性を
もつ。
Chemical and physical properties of manganese nodules as catalysts for desulfurization of hydrogen raw materials This is quite different from the conventional catalyst components used. The baby boom line is about ioo~-z Own”/i (D has a high surface area, but the surface area decreases due to metal deposition during the hydrodesulfurization reaction.
@riaanMin*ra1. ogiat ) J j
/ Volume (/lA & Cow) 191~! Rog@r Tsui Burns and D,W, Fu@
rgtsnau) by [Electroton-Globe Middle Teter (Nessian Off-Inter-Element Relay Enships In-kai Mangan “Nobu Tame-ru”)
As shown in Figure 2, the concentrations of the various 0* groups contained in the nodule, namely mankan, iron, cobalt, steel, and nickel, are not uniform throughout the crystal structure of the nodule, but are rather distributed in the lateral direction of the nodule cross section. Concentrations of various metals vary markedly depending on location. However, there appears to be a correlation between iron and cobalt concentrations. On the other hand, the catalysts that can be produced have the highest degree of uniformity that can be achieved by the manufacturer.

マンガン団塊は実質上深堀された状態で、すなわちそれ
らが存在する水底床から堆得されたtまの状態で石炭原
料の脱硫/税金II/脱窒索触媒として使用できる。こ
うし工、団塊は採掘されたtまで、場合により洗浄して
海水中湖水および泥或は団塊の表面からゆるく付着して
いる物質を除いた後で使用できる。
Manganese nodules can be used as desulfurization/tax II/denitrification catalysts for coal feedstocks substantially in their deep-seated state, ie, as deposited from the water bed in which they reside. The nodule can be used up to the time it is mined, optionally after cleaning to remove salt water and mud or loosely adhering material from the nodule surface.

仁の発明の方法はまた前処理しマンガン団塊を触媒とし
て使イして実施してもよい、マンガン団塊の前処理とは
硫化処珈または団塊から1種または一種以上の成分を除
く浸出処理がtすれる。
The method of Jin's invention may also be carried out using pre-treated manganese nodules as a catalyst. Pre-treatment of the manganese nodules may include sulfurization or leaching treatment to remove one or more components from the nodules. I can pass.

マンガン団塊の硫化処運拡原料の脱金属度を増大させる
。この処ahまた脱硫度を増大させ。
Increase the degree of demetalization of manganese nodules sulfurization treatment raw material. This treatment also increases the degree of desulfurization.

コンラドソン残留炭素(OOR)を減少させるが。Although Conradson reduces carbon residual (OOR).

これらの各々拡ともKi1重しい仁とであみ。この処理
は例えばマンガン団塊を硫化水嵩と接触させることによ
って夷mされる。*化水素は純粋でも或は他のガス′と
混合し丸tのでもよい。
Each of these has a heavy Ki1 weight and depth. This treatment is carried out, for example, by contacting the manganese nodules with a volume of sulfide water. * Hydrogen chloride may be pure or mixed with other gases.

しかし硫化水素は実質上水素を含まないtのであるべき
でおる。硫化処理0温度はlダIC〜−JコCで、時間
は参〜l峙間である。硫化処理紘例えばマンガン団塊上
に硫化反応中硫化水嵩を連続的に通すことにより行うこ
とができる。
However, the hydrogen sulfide should be substantially hydrogen-free. The sulfiding treatment temperature is from 1 to 1, and the time is from 1 to 1. Sulfurization treatment can be carried out, for example, by continuously passing a volume of sulfurized water over the manganese nodules during the sulfurization reaction.

硫化水素の空間速度鉱厳重な制@はないが、着干の硫化
水素が排出ガス流中に連続的に検出されるように装置に
見合った空間速度で行うのが適当である。
Although there are no strict limits on the space velocity of hydrogen sulfide, it is appropriate to carry out the extraction at a space velocity commensurate with the equipment so that dry hydrogen sulfide is continuously detected in the exhaust gas stream.

マンガン団塊はまた浸出処11によって前処理し、  
/IIま九は一種以上の成分を隷いてもよい。
The manganese nodules are also pretreated by a leaching station 11,
/II may contain one or more ingredients.

マンガン団塊は前述のようにマンガンのほかに銅、ニッ
ケルおよびモリブデンを含む、マンカン団塊はこれを浸
出前処理すみことによって鋼、ニッケルまたはモリブデ
ン、ま九祉それら金属の任意のコ種または3糧食部を除
くことができる。マンガン団塊拡鋼、ニッケルおよびモ
リブデンを工業的原資として供給できるのに充分な量で
含有する。更にマンカン団塊からこれらの金属およびそ
の他の金属成分を少くと4部分的に除去しても団塊の触
媒活性には有害な作用は及ぼさない、こうして、この発
明の実施態様によれば銅、ニッケル、モリブデンおよび
他O金lIIをマンガン団塊から回収して経済的利益を
得ると共にマンガン団塊の残りを触媒として使用できる
As mentioned above, manganese nodules contain copper, nickel and molybdenum in addition to manganese, and manganese nodules can be processed into steel, nickel or molybdenum, and any kind or three of these metals by pre-leaching treatment. can be excluded. It contains expanded manganese nodules, nickel and molybdenum in sufficient quantities to provide industrial resources. Furthermore, the at least partial removal of these metals and other metal components from mankan nodules does not have a detrimental effect on the catalytic activity of the nodules; thus, according to embodiments of the invention, copper, nickel, Molybdenum and other gold III can be recovered from the manganese nodules for economic benefit and the remainder of the manganese nodules can be used as a catalyst.

鋼およびニッケルの除去はマンガン団塊を強酸の水溶液
で浸出することによって行いうる。
Steel and nickel removal may be accomplished by leaching the manganese nodules with an aqueous solution of strong acid.

ここに強酸と#′i塩酸、硫鐵および硝酸を意味するO モリブデン祉マンガン団塊を水酸化ナトリウムtたは炭
酸ヂトリウムのような塩基水溶液で浸出することによっ
てマンカン団塊から除去できる。これらの塩基水溶液は
少くともtq)pH1好ましくけ少くとも10のpHを
持りベきである。塩基水溶液による浸出処mass温度
または前記水溶液の沸点で行うことができる・マンガン
団塊は前処理す為か、或は前処理なしに、破砕し、整粒
し、使用する操作のタイプ、例えば固定床操作壕九轄流
動床操作などに応じた所望の粒子寸法を得ることができ
る。
Herein, strong acids and #'i mean hydrochloric acid, iron sulfur and nitric acid. Molybdenum thiomganese nodules can be removed from mankan nodules by leaching with an aqueous base solution such as sodium hydroxide or dithrium carbonate. These aqueous base solutions should have a pH of at least tq) pH 1, preferably at least 10. Leaching with an aqueous base solution can be carried out at the mass temperature or the boiling point of said aqueous solution.The type of operation in which the manganese nodules are crushed, sized and used with or without pretreatment, e.g. fixed bed. Desired particle size can be obtained according to operation trench, fluidized bed operation, etc.

使用後、そして触媒的に失WIまえは廃触媒となった触
媒は銅、ニッケh%毫すプデンなどの有価金属を回収す
るためoISmtみことができる。それは他の成分を回
収する九めO12理もできる。
After use and before catalytic loss, the spent catalyst can be used to recover valuable metals such as copper, nickel, etc. It can also be used to recover other components.

脱硫/脱金属/脱窒素処MK使用できる他の天然産多孔
質金属鉱石は沼鉄鉱として知られる湿地から得られるゆ
るく一凝集し九鉱石である。
Another naturally occurring porous metal ore that can be used in the desulphurization/demetallization/denitrification process MK is a loose mono-agglomerated ore obtained from wetlands known as swampite.

沼鉄鉱性約60重量−の鉄を含有する天然意鉄の水利酸
化物である褐鉄鉱(JハtOs ” J′Ht’ )の
変種である。これは黄色ないし褐色で、他の鉄鉱石の例
えは酸化および/または水利による変化により形成され
たtのである。沼鉄鉱嬬米国およびヨーロッパにおいて
普通に見かける、重要な鉱石である。これ控非晶質でs
’l/尚ptOd以上の表面積と、j−、t、jの硬度
(篭オス硬度)と平均密度3.トiをもつことを特徴ζ
すを次いで破砕し、恒量になるまで乾燥し、i。
It is a variety of limonite (J'Ht'), a naturally occurring ferrous oxide containing approximately 60% iron by weight.It is yellow to brown in color and similar to other iron ores. Iron ore is an important ore commonly found in the United States and Europe, formed by oxidation and/or alteration due to water use.
'l/In addition, the surface area of ptOd or more, the hardness of j-, t, and j (basket male hardness), and the average density 3. ζ
The mixture is then crushed and dried to constant weight, i.

〜−〇メツシュ(米国ふるい系列)K整粒する。~-〇Mesh (American sieve series) K Sort.

盾望により、沼鉄鉱はマンガン団塊に示したのと同様に
して浸出ま九は硫化処理または両者を行ってもよい。
Depending on the requirements, swamp iron ore may be leached or sulfurized in the same manner as shown for manganese nodules, or both.

沼マンガンは使用できる他の天然産多孔質金属鉱石であ
る。この鉱石も予め浸出を九は硫化壇たはそれらの両者
の処理に付してもよい、沼マンカンは沼鉄鉱に類似し、
主としてマンガンの酸化物および水からなり、若干の鉄
の酸化−と、しはしはシリカ、アルミナ、バライタをも
含む。これ祉非晶質で10が71以上の表面積、約6の
モオス硬度、3.4〜ダ、JAの重度をtつ。
Swamp manganese is another naturally occurring porous metal ore that can be used. This ore may also be pre-leached and subjected to sulfide treatment or both.Numamankan is similar to swampite;
It consists primarily of oxides of manganese and water, with some oxidation of iron, and also contains silica, alumina, and baryta. It is amorphous with a surface area of 10 to 71 or more, a Moos hardness of about 6, and a severity of JA of 3.4 to 10.

沼マンガンと硬マンガン鉱と拡別の鉱石種であると線考
えられていないで、種々の吸着し九不純−を含むコロイ
ド状酸化マンガンである。沼マンガン祉ヨーロツAK’
1lltBシ、  ミシガン湖のレイク・スーベリアー
ー赤鉄鉱堆積物と調像がToゐ。
Swamp manganese and anhydrite are not considered to be separate ore types, but are colloidal manganese oxide containing various adsorbed impurities. Numa Mangan Welfare Yorotsu AK'
1lltB, Lake Superior in Lake Michigan - hematite deposits and tonal features.

/ Q −79以上のl1m積をtつ、使用可能な他の
適当な鉱石祉ニッケル含有2ftイト鉱である。普通の
ラテライトおよび珪苦土ニッケル鉱のようなケイ酸塩型
のうf’)イトニッケル鉱は東南アジア、キューバ、テ
エコスロバキア、ニューカレドニア、フイリツビン、イ
ンドネシア、ギリシャ、ユーゴスラビア、グアテマラお
よびベネズエラに見出される。これらの鉱石は通常遊離
および結合水を含有し、乾燥基準でJ重量S以下のニッ
ケル、0./1重量−以下のコバルトおよび73重量−
以上の鉄O分析値を示す。
/Q-79 or more, other suitable ores that can be used include nickel-containing 2ft ore. Silicate-type nickelites, such as common laterites and siliceous nickelites, are found in Southeast Asia, Cuba, Teecoslovakia, New Caledonia, Philippines, Indonesia, Greece, Yugoslavia, Guatemala and Venezuela. These ores usually contain free and bound water and on a dry basis less than J weight S of nickel, 0. /1 wt. - less than or equal to cobalt and 73 wt.
The above iron O analysis values are shown.

ラテライト鉱石の代置的分析値は下記の通りである: Ni+Oo      コ、J       コ、9 
 (NiOとして)ハ      /1.3     
 コロ、j(ハ、0.として)Or         
/、コ       /、り (Or、O,として)M
gO/ 、t      / j 810、    J 、t      J 、tAI 
、O、事、!    ダ、! 010     θ、/  、    0./LOI 
    / /j     / /、!OO ニッケル鉱はこの発明の方法の触媒として適した理想的
なもので、採掘時の状態で更に品位向上処理を施すこと
なく直接使用できる。所望により、これらの鉱石は前述
のように浸出または硫化ま九祉それら両者の処理により
前処理できる・ 脱硫/脱金属/脱窒禦操作は水素供与体溶媒の存在下に
行われる。溶媒二石炭の重量比が0、!〜t:/%好ま
しくは約−2:/の量の石炭と溶媒とが使用される。水
素供与体溶媒は周知であり、適当な水素供与体溶媒とし
てヒドロナフタリン例えばテトラリ/、ヒトロアyトラ
セ/およびヒドロ7エナ/トレ/などのような水素化芳
香族、ナンテンー芳香族化合物を挙けることができる。
The alternative analytical values for laterite ore are as follows: Ni+Oo Ko, J Ko, 9
(as NiO) C /1.3
Koro, j (ha, as 0.) Or
/, ko /, ri (as Or, O,) M
gO/, t/j 810, J, tJ, tAI
,O,thing,! Da! 010 θ, / , 0. /LOI
/ /j / /、! OO nickel ore is ideally suited as a catalyst for the process of this invention and can be used directly in as-mined condition without further upgrading treatment. If desired, these ores can be pretreated by leaching or sulfurization or both treatments as described above. The desulfurization/demetalization/denitrification operations are carried out in the presence of a hydrogen donor solvent. The weight ratio of solvent and coal is 0! An amount of coal and solvent of ~t:/%, preferably about -2:/% is used. Hydrogen donor solvents are well known, and suitable hydrogen donor solvents include hydrogenated aromatic, nandene-aromatic compounds such as hydronaphthalene, eg, tetrali/, hydrotrace/, and hydro7ena/tre/. I can do it.

少くとも1個、好ましくはコ個または3個またはV個の
芳香族核をもち、芳香族共鳴を含むように部分的に水素
化され、且つオレフィン性結合を含む化合物がすぐれた
水素供与体として役立つ。完全に芳香族構造のものは水
素供与体として有効でない。完全に水素化された縮合環
分子は水翼移動傾向は小さい0従って水素供与体は多核
芳香族を部分水素化して平均7個ないし3個の水素分子
を導入し部分水素化された少くとも7個の環を残すこと
によって優先的につ〈シ出される。
Compounds having at least one, preferably co or three or V aromatic nuclei, partially hydrogenated so as to contain an aromatic resonance, and containing an olefinic bond are excellent hydrogen donors. Helpful. Completely aromatic structures are not effective as hydrogen donors. Fully hydrogenated fused ring molecules have a small tendency to wing migration.Hence, the hydrogen donor partially hydrogenates the polynuclear aromatic to introduce an average of 7 to 3 hydrogen molecules and at least 7 partially hydrogenated molecules. By leaving a ring of individuals, it is preferentially emitted.

水素供与体溶媒は任意の給源から得られゐことを理解さ
れたい。特に価値あるものは石炭加工系から入手できる
溶媒、例えば/??’C〜pgコ”C(yro〜too
°F)、好ましくはコ0参℃〜3り1℃(WOO〜り0
0°F)で沸とうする石炭液化処理から得られる中間流
である。このタイプの中間流は水素化芳香族、ナフテン
性炭化水素、フェノール性物質および類似の化合物から
成多、水累供与体であることが知られている化合物を少
くとも30重量%ないし50重量%含む@例えば米国特
許第3.tWに’yvi号を参照されたい。水嵩供与体
溶媒は例えば接触還元によって外部的に再生でき、所望
により再循環できる。再循環供与体溶媒は純粋な水素供
与体またはそれらの混合物である必要はなく不活性溶媒
で実質的に希釈されていてもよい。
It is to be understood that the hydrogen donor solvent can be obtained from any source. Particularly valuable are the solvents available from coal processing systems, e.g. ? 'C~pgko''C(yro~too
°F), preferably 0°C to 31°C (WOO to 0°C)
It is an intermediate stream obtained from a coal liquefaction process that boils at 0°F. This type of intermediate stream consists of hydrogenated aromatics, naphthenic hydrocarbons, phenolics and similar compounds, containing at least 30% to 50% by weight of compounds known to be water donors. Including @ e.g. U.S. Patent No. 3. Please refer to 'yvi issue in tW. The water bulk donor solvent can be regenerated externally, for example by catalytic reduction, and optionally recycled. The recycled donor solvent need not be pure hydrogen donor or a mixture thereof, but may be substantially diluted with an inert solvent.

石油または石炭から誘導された溶媒の代9K、或は該溶
媒と組合わせて他の水素含有溶媒を使用できる。このよ
うな物質には水混和性および水非混和性低級脂肪族アル
コール例えばメタノール、エタノール、プロパツール、
イングロパノール;ブタノール、ペンタノール、ヘキす
ノール: 脂m式アルコール例えばシクロヘキサノール
およびエーテル例えばジメチルエーテル。
Other hydrogen-containing solvents can be used in conjunction with petroleum or coal derived solvents or in combination with the solvents. Such substances include water-miscible and water-immiscible lower aliphatic alcohols such as methanol, ethanol, propatool,
Inglopanol; butanol, pentanol, hexanol: Fatty alcohols such as cyclohexanol and ethers such as dimethyl ether.

ジエチルエーテルがあゐ。Diethyl ether.

脱硫/脱金属/脱窒素反応は原料の石炭と触媒とを水素
供4体溶媒の存在に訃いて接触させることによってlI
!施され為、使用する温度はコJJ’C〜j44℃(a
go 〜1ozo°F)、好責しくは3弘3℃〜ptj
’c(6tσ〜t!O”p)である。使用する触媒量は
広範囲にわたって変化でき、普通使う量は石炭の重量に
基いて0J−100重量X1好ましくは/ −J 0重
量%である。溶媒と一緒に原料の石炭を昇流式反応器中
の触媒の固足床を昇流させるか、或は降流式トリクル床
反応器中の触媒の固足床を降流させてもよい0反応はま
た原料石炭と溶媒とを触媒の流動床を通すことくよって
も行うことができる。また原料の石炭と溶媒と触媒とを
四分式反応器中で接触させ為ことによっても行うことが
できる。
The desulfurization/demetallization/denitrogenation reaction is carried out by bringing the raw material coal into contact with a catalyst in the presence of a hydrogen donor solvent.
! The temperature used is 44℃ (a
go ~1 ozo°F), preferably 3 h 3°C ~ ptj
'c(6tσ~t!O''p). The amount of catalyst used can vary over a wide range, and the amount commonly used is 0 J - 100 wt. The raw coal together with the solvent may be passed up a solid bed of catalyst in a riser reactor or down a solid bed of catalyst in a down-flow trickle bed reactor. The reaction can also be carried out by passing the raw coal and solvent through a fluidized bed of catalyst.The reaction can also be carried out by contacting the raw coal, solvent and catalyst in a quarter reactor. can.

高揮発分および低揮発分れき前置、!l褐炭、泥炭のよ
うな天然石炭または溶媒精義石炭または関連する「変性
」石炭を含む任意の固体炭素質物質を「石炭」として使
用できる0石炭は高灰分、高金属分、高硫黄分で粘結性
に乏しいものでもこの発明に対して極めて適した石炭で
ある。この発明の処理手順は天然産石炭または溶媒精製
石炭の燃焼規格に合致するために除去が最も困難な硫黄
を除くのく特に有用である。
High volatile content and low volatile content prefix,! l Any solid carbonaceous material can be used as 'coal', including natural coals such as lignite, peat, or solvent-refined coals or related 'modified' coals. Coal is a viscous substance with a high ash, high metal and sulfur content. Even coals with poor cohesiveness are extremely suitable for this invention. The process of this invention is particularly useful for removing sulfur, which is the most difficult to remove to meet combustion specifications for naturally occurring or solvent refined coals.

この発明の方法に使用する前に石炭を適当な摩砕機例え
はハンマーンルで摩砕して石炭の少くともSOXがvO
メツシュ(米国ふるい系列)を通るようにするのが好ま
しい。磨砕した石炭を次に適当な溶媒中に溶解するか子
ラリとなす。
Before use in the method of this invention, the coal is ground in a suitable mill, such as a hammer mill, to remove at least the SOX of the coal.
It is preferable to pass through a mesh (American sieve series). The ground coal is then dissolved or ground into a suitable solvent.

所望によル、固体炭素物質はここに記載の反応条件下で
液体に転化されない物質′fr:#<ために反応前に業
界で既知の慣用の手段によシ処還してもよい。この発明
て使用するのに適した種々硫黄   /、、7 JX 
   o、J t96    o、s 3%窒素   
/j 3 XO,t IXO,7lIN酸素   7ク
デI   /!!、40z   JJO41z炭z  
 go、tgz   &!、!Jz   !Wjtz水
素      j?、3 J #       j、り
Op       j、参コ111分      λ、
? 71       j、ワ9 #       j
、グE1石炭はこの発明によル転化される主た゛為物質
であゐが、これが転化されゐ噛−の固体炭素質物質であ
る必要はなi・例えば都市ゴイ、ゴム(天然または合成
)、セルロース質廃*、従来埋められたシ、焼かれた夛
或は他の手RKよりすてられてきた他の廃ポリマ類の/
〜j0重量%も原料石炭に加見て使用できる。草、穀物
、樹木、海草(クルゾ)および他の海洋の植物のような
再生可能な炭素源として定義される生物体も固体R素質
物質に含まれる。この方法にむ−のような物質を添加す
ると捨てなければならない低価格な容易に入手しうる物
質からの価値なる液生燃料展品の収量を増大させる。
If desired, the solid carbon material may be recycled by conventional means known in the art prior to reaction for materials that are not converted to a liquid under the reaction conditions described herein. Various types of sulfur suitable for use with this invention /,7 JX
o, J t96 o, s 3% nitrogen
/j 3 XO, t IXO, 7lIN oxygen 7 kude I /! ! , 40z JJO41z charcoalz
go, tgz &! ,! Jz! Wjtz hydrogen j? , 3 J # j, Op j, Sanko 111 minutes λ,
? 71 j, wa9 # j
Although coal is the main material to be converted according to this invention, it is not necessary that it be a solid carbonaceous material to be converted, such as urban carp, rubber (natural or synthetic), etc. , cellulosic waste*, conventionally buried waste, burned waste or other waste polymers that have been disposed of from other sources.
~j0% by weight can also be used in addition to the raw material coal. Organisms defined as renewable carbon sources, such as grasses, grains, trees, seaweed (curzo) and other marine plants, are also included in solid R-potential materials. The addition of such materials to this process increases the yield of valuable liquid fuel products from low cost, readily available materials that would otherwise have to be discarded.

以下にこの発明t−実施する最良の爽施態様による例を
掲げてこの発WAt−説明する。
This invention will be explained below by giving examples of the best mode for carrying out the invention.

例7〜例炉 下記第3表に示すようTiC,300Ct、不銹鋼オー
トクレーブに短接触時間溶媒精製石炭(例1〜例−)お
よびモンテレイ(MOnteray )石炭(例5)z
llずつ原料として装入した0例1〜例餌の原料はテト
ラヒドロフッ7に完全に可溶性である。第3表に示す量
の水素供与体溶媒と触媒(もし使用するなら)を添加し
た。オートクレーブを閉じ、アルゴンで圧力テストを行
LA、/気圧のアルゴンを装入し1表に示す温度に攪拌
下に7〜1時間加熱した。この系を攪拌下に自生圧の下
で表に示した温度訃よび時間忙保った。
Example 7 ~ Example Furnace A TiC, 300 Ct, stainless steel autoclave was heated with short contact time solvent refined coal (Example 1 ~ Example -) and Monterrey coal (Example 5) as shown in Table 3 below.
The raw material for the bait in Examples 1 to 1, which was charged as a raw material in 1 ml, is completely soluble in tetrahydrofurinated fluoride. The amounts of hydrogen donor solvent and catalyst (if used) as shown in Table 3 were added. The autoclave was closed, pressure tested with argon, charged with argon at LA/atmosphere and heated under stirring to the temperature shown in Table 1 for 7 to 1 hour. The system was kept under agitation and autogenous pressure at the temperatures and times indicated in the table.

次いでオートクレーブの内容物と接触している冷却コイ
ルに水を通すことによってl−一分間で強制冷却した0
オートクレーブを開き、内容物をテトラヒドロフランで
洗い出し、触媒をテトラヒドロフランでソックスレーに
よ少抽出し、抽出液を他方の内容物の液に加えた。溶媒
を次いでロータリエバポレータで除き、残分を減圧下に
蒸留して3す3℃+(thsooF)溶媒精製生成物を
生じた。
It was then forced to cool down for 1 minute by passing water through a cooling coil in contact with the contents of the autoclave.
The autoclave was opened, the contents were washed out with tetrahydrofuran, the catalyst was slightly extracted with tetrahydrofuran in a Soxhlet, and the extract was added to the other contents. The solvent was then removed on a rotary evaporator and the residue was distilled under reduced pressure to yield a 3<0>C solvent-purified product.

例! この例では例1〜例−の溶媒精衾石脚を得た原料に似た
モ7テv −(Mont@r@7) 石炭(MT )で
あった・この石炭はコ、り0fitXの有機硫黄を含有
した。この例で石炭約−slを合成溶媒(〜−2Xr−
ピコリン、”XP  /Vゾール、@1Xテトラリン%
  ztNJ−メチルナフタリン)巾約J:lのスラリ
ーとして同じ混合物の予熱した溶媒中に注入した。得ら
れた混合物をG<!7℃(ざoo″F)でりJ 9 J
 kPa (デy、HE(4雇2(/3.y3psi)
)の水素圧下jlc90分間攪拌シタ。
example! In this example, Mont@r@7 coal (MT) was similar to the raw material from which the solvent-extracted stone legs of Examples 1 to 2 were obtained. Contains sulfur. In this example, approximately -sl of coal is mixed with a synthesis solvent (~-2Xr-
Picoline, “XP/Vsol, @1X Tetralin%
ztNJ-Methylnaphthalene) was injected as a slurry with a width of about J:1 into the same mixture of preheated solvent. The resulting mixture was mixed with G<! 7℃(zaoo″F) J 9 J
kPa (day, HE (4 hire 2 (/3.y3psi)
) under hydrogen pressure with stirring for 90 minutes.

混合物を急冷し、抽出にピリジンを使用した以外は上述
と同様に後処理した。S、S:石炭の比は6:/であっ
た。
The mixture was quenched and worked up as described above, except that pyridine was used for extraction. The ratio of S, S:coal was 6:/.

第3表 0 ヂ、31・7 M  /J    /、0 ・ 8  V、t    //J 灰分 0.l− 芳香族璽  −− 1/JX=ファウジャサイトとして知られる結晶性アル
電。
Table 3 0 ヂ, 31・7 M /J /, 0・8 V, t //J Ash content 0. l- aromatic ring -- 1/JX=crystalline alkaline compound known as faujasite.

、2  Mn 1104 : 1ンガン団塊 @/表参
照J  MsOH−メタノール Oり、り M   /J 8    /、デ 0、/ //  BNO= fli1MIKIII石炭J   
             弘           
     31時間        1時間     
  90分t*3yv(aobr)       5t
sb(zso)        デJya(tssJ)
CH*)!シリケートのナトリウム形 トツリ:/、3t%−−メチルナフタリン計算に入れな
い 第3表から最良の脱硫はH3なしく例31例tI)FC
水素供与溶媒(メタノールまたはテトラリ/)中のマン
ガン団塊により得られることがわかる。この場合には更
にN、 O,および灰分(金属)成分も顕著に減少した
。(7アウジヤサイ) Na型)/jX分子ふるい(例
1)の場合の収率は低く、脱硫は無視できるほどであっ
た。ブランク反応(触媒なし、例J)では収率は低く脱
硫は不充分であった。例jは比較のために適した実験で
ある。何となれば他の例の実験原料は例Sにおいて約参
分間で例Sの実験中に生成した8RO(溶媒精製右脚)
に等し鱒からである。この例ではテ・−トラリンを使っ
てさえ、また水素と触媒としての可能性がある石炭の鉱
物が存在しても7.91量%からへS重量%への脱硫が
達成されたのくすぎない。現在のボイラー燃料規格に合
格するためには硫黄含量は約0.テ重量〜でなければな
らない。
, 2 Mn 1104: 1 ngan nodules @/see table J MsOH-methanol O ri, ri M /J 8 /, de 0, // BNO= fli1MIKIII coal J
Hiroshi
31 hours 1 hour
90 minutes t*3yv(aobr) 5t
sb (zso) de Jya (tssJ)
CH*)! Sodium form of silicate: /, 3t%--Methylnaphthalene From Table 3, the best desulfurization is without H3 Example 31 Example tI) FC
It can be seen that manganese nodules are obtained in a hydrogen donating solvent (methanol or tetrali/). In this case, N, O, and ash (metallic) components were also significantly reduced. The yield was low and the desulfurization was negligible for the (7 augia sai) Na type)/jX molecular sieve (Example 1). In the blank reaction (no catalyst, Example J), the yield was low and desulfurization was insufficient. Example j is a suitable experiment for comparison. After all, the experimental raw material for the other examples is 8RO (solvent purified right leg) produced during the experiment of Example S in about 1 minute.
from trout. In this example, desulfurization from 7.91 wt.% to S wt.% was achieved even with tetralin and in the presence of hydrogen and coal minerals as a potential catalyst. do not have. To pass current boiler fuel specifications, the sulfur content must be approximately 0. The weight must be ~.

例Jおよび例1で得たマンガン団塊は太平洋の海底から
採取された。これらの団塊は海底から採取後、塩水およ
び拠1m<ために洗浄し。
The manganese nodules obtained in Example J and Example 1 were collected from the ocean floor of the Pacific Ocean. After collecting these nodules from the seabed, they were washed with salt water and 1 m of water.

次いで粉砕し、沸とう水で5分間浸出し、100℃で恒
量まで乾燥し、l―〜30メツシエ(米国標準ふるい系
列)K11gllシた。この団塊は王妃の物理的特性お
よび化学組成を備えるものであった: 第 +l!! 表面積 寓7f           J Jツ気孔直
径〔オ/ゲストローム■〕SJ 気孔体積(CIrL”/l )         o、
参J Aマンガン(Mn ) (重量jg’)    
  Jj、σ鉄 (Fθ)(11量X )      
 / !、0ニッケル(Ni)(重量X)      
<o、ot酸化第1 コハル) (000) (重量X
)   <o、op三酸化モリブデン(MOO,)(重
量X)    <0.01例6 例7〜例jの操作に従ってニュージャーシイ州、バラ)
 (Batsto )から得た沼鉄鉱を洗浄して泥その
他のゆるく付着した物質を除いた後、破砕し、ioo℃
で恒量になるまで乾燥し、30メツシュ(米国ふるい系
列)K整粒した。この粒整した粒子jIt−溶媒精製石
炭(モアテレ−短接触時間石炭)!1%溶媒tsl(メ
タノールコjIおよび一一メチルナフタリン5oil 
)と混合し、得られた混合物をφコt”c<too’F
)KJ時間加熱した。冷後反応混合物をテトラヒドロ7
ランで洗い、ニッケル触媒をテトラヒドロフランで抽出
し、この抽出液を他方の液に加え、溶媒を蒸発により除
き、次いで蒸留して硫黄、窒素および灰分含量が減少し
た溶媒精製石炭生成物を得た。
It was then ground, leached with boiling water for 5 minutes, dried at 100° C. to constant weight, and sieved through 1-30 mesh (American standard sieve series) K11 gll. This nodule had the physical characteristics and chemical composition of the queen: No. +l! ! Surface area 7f J Jtsu Stomatal diameter [O/Gestrom■] SJ Stomatal volume (CIrL”/l) o,
Reference JA Manganese (Mn) (Weight jg')
Jj, σ iron (Fθ) (11 quantity X)
/! , 0 nickel (Ni) (weight X)
<o, ot 1st oxidation cohar) (000) (weight x
) <o, op molybdenum trioxide (MOO,) (weight
Swamp iron ore obtained from (Batsto) is washed to remove mud and other loosely adhered materials, then crushed and
It was dried to a constant weight and sized with 30 mesh (US sieve series) K. This sized particle jIt-solvent refined coal (moretele-short contact time coal)! 1% solvent TSL (methanol coj and 11 methylnaphthalene 5 oil
), and the resulting mixture is φkot"c<too'F
) Heated for KJ hours. After cooling, the reaction mixture was diluted with tetrahydro7
The nickel catalyst was extracted with tetrahydrofuran, the extract was added to the other liquor, the solvent was removed by evaporation, and then distilled to obtain a solvent refined coal product with reduced sulfur, nitrogen and ash content.

例7 ニュー・カレドニア産うテライトニッケル鉱の分析値は
下記の通りである: 重量% N1        八31 Co         O,09コ 全re     #/J MgOj、り5 M20II4Iλ! Sin、              り、ダ0例/〜
例jK述べた操作に従って、このニッケル鉱を洗浄して
泥および他のゆるく付着した物質を除いた。鉱石を破砕
し、100℃て恒量に乾燥し、コSメツシ二(米国ふる
い系列)K整粒した。この整粒した鉱石sliを溶媒精
製6脚(モンテレー短接触時間石炭)IIと溶媒7jy
゛(メタノールコslと一一メチルナフタリン5op)
と混合し、得られた混合物をシー7℃に一時間加熱した
。冷後1反応混合物をテトラヒドロ7ランで洗浄し、ニ
ッケル触媒をテトラヒドロン2/で抽出し、この抽出液
を他方の液に加え、得られた溶媒を蒸発して除き、残分
を蒸留すれば硫黄、窒素および灰分が減少した溶媒精製
石炭製品が得られた。
Example 7 The analytical values of telite nickel ore from New Caledonia are as follows: Weight % N1 831 Co O, 09 all re #/J MgOj, 5 M20II4Iλ! Sin, ri, da 0 cases/~
The nickel ore was washed free of mud and other loosely adhered materials according to the procedure described in Example JK. The ore was crushed, dried at 100° C. to a constant weight, and sized using Komatsu K (American sieve series). This sized ore sli is purified by solvent refining hexapod (Monterrey short contact time coal) II and solvent 7jy.
(Methanol co-sl and 11-methylnaphthalene 5op)
and the resulting mixture was heated to 7° C. for 1 hour. After cooling, one reaction mixture is washed with tetrahydro 7 run, the nickel catalyst is extracted with tetrahydrone 2/, this extract is added to the other solution, the obtained solvent is removed by evaporation, and the residue is distilled. A solvent refined coal product with reduced sulfur, nitrogen and ash content was obtained.

Claims (1)

【特許請求の範囲】 l 硫黄不#I瞼を含有する石炭ま九は石炭液原料を、
添加した水素の不在下に水素供与体溶媒およびマンガン
団塊、沼鉄鉱、沼!ンガンおよびニッケルツクライトか
らなる群から選ばれた天然産多孔質金属鉱石からなる触
媒と接触させることを特徴とする、硫黄不純物含有石炭
まえは石炭液原料の脱硫、脱金属および脱窒素方法。 λ 多孔質金属鉱石が沼鉄鉱である特許請求の範囲記載
第1項記載の方法。 3 多孔質金属鉱石が沼Vンガンでおる特許請求の範囲
第1項記載の方法。 飢 多孔質金属鉱石がニッケルツクライトである特許請
求の範囲第7項記載の方法。 ま 多孔質金属鉱石がマンガン団塊として知られる水底
堆構物である特許flll求OSS第1項記載O方法。 櫨 多孔質金属鉱石が浸出まえは硫化前処理されたもの
である特許請求の範囲第1項ないし第1項のいずれかに
記載0方法。 Z マンガン団塊が少くともJコCの温度および100
万部当Jl) 1oao@以下0全壌含量の水で該団塊
の接近でき!II面積を増大するのに充分な期間洗浄ず
みのものを使用する特許請求の範囲第1項ないしwi4
項のいずれかに記載の方法。 l マンガン団塊がその組成中に鋼、ニッケルtたはモ
リブデンを含み、その鋼、ニッケルまたはモリブデン含
量の少くとも一部が除去ずみであるマンガン団塊を使用
する**et*の範囲第S項記載の方法。 デ マンガン団塊をIIO水溶液で浸出すること忙よジ
マンガン団塊から鋼曾たはニッケル含量の一部が除去ず
みのマンガン団塊を使用する特許請求の範囲第を項記載
の方法。 /(2マンガン団塊を塩基の水fB液で浸出することK
よ多マンガン団塊からモリブデン含量の少くとも一部が
除去ずみのマンガン団塊を使用する特許請求の範囲第を
項記載の方法。 l/ 塩基の水溶液のpHが少くともtでああ特許請求
の範囲第1O項記載の方法。 lユ 塩基の水溶液のpHが少くと%10である特許請
求の範囲第1/項記載の方法。
[Scope of Claims] l Coal containing sulfur is a liquid coal raw material,
Hydrogen donor solvent and manganese nodules in the absence of added hydrogen, swamp iron ore, swamp! 1. A process for desulfurization, demetalization and denitrification of sulfur impurity-containing coal or liquid coal raw materials, characterized by contacting them with a catalyst consisting of a naturally occurring porous metal ore selected from the group consisting of carbon dioxide and nickel tucrite. λ The method according to claim 1, wherein the porous metal ore is swamp iron ore. 3. The method according to claim 1, wherein the porous metal ore is grown in a swamp. 8. The method according to claim 7, wherein the porous metal ore is nickel tucrite. The method described in paragraph 1 of the patented OSS, wherein the porous metal ore is an underwater sedimentary material known as manganese nodules. The method according to any one of claims 1 to 1, wherein the porous metal ore is pre-sulfurized before leaching. Z The temperature of the manganese nodules is at least JC and 100
1,000,000 parts per Jl) 1oao @ or less 0 total soil content of water can approach the nodules! II. Claims 1 to wi4 using a product that has been washed for a sufficient period of time to increase the area.
The method described in any of the paragraphs. l The scope of **et* described in paragraph S, where the manganese nodules contain steel, nickel t or molybdenum in their composition and at least a part of the steel, nickel or molybdenum content has been removed. the method of. A method as claimed in claim 1, wherein the manganese nodules are leached with an IIO aqueous solution and the manganese nodules from which a portion of the steel or nickel content has been removed are used. /(2 Leaching manganese nodules with basic water fB solution K
The method according to claim 1, which uses manganese nodules from which at least part of the molybdenum content has been removed. The method according to claim 1O, wherein the pH of the aqueous solution of the base is at least t. The method according to claim 1, wherein the pH of the aqueous solution of the base is at least 10%.
JP56146407A 1978-09-25 1981-09-18 Desulfurization demetallization denitrogenation for coal or coal liquid raw material Pending JPS5861178A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US06/142,189 US4303497A (en) 1978-09-25 1980-04-21 Desulfurization, demetalation and denitrogenation of coal
EP81304039A EP0073860A1 (en) 1978-09-25 1981-09-04 Desulfurization, demetalation and denitrogenation of coal
AU75025/81A AU7502581A (en) 1978-09-25 1981-09-08 Desulphurisation, demetalation and denitrogenation of coal and coal liquids
CA000385329A CA1157409A (en) 1978-09-25 1981-09-08 Desulfurization, demetalation and denitrogenation of coal
ZA816296A ZA816296B (en) 1978-09-25 1981-09-10 Desulfurization, demetalation and denitrogenation of coal
JP56146407A JPS5861178A (en) 1978-09-25 1981-09-18 Desulfurization demetallization denitrogenation for coal or coal liquid raw material

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US94528178A 1978-09-25 1978-09-25
US06/142,189 US4303497A (en) 1978-09-25 1980-04-21 Desulfurization, demetalation and denitrogenation of coal
EP81304039A EP0073860A1 (en) 1978-09-25 1981-09-04 Desulfurization, demetalation and denitrogenation of coal
AU75025/81A AU7502581A (en) 1978-09-25 1981-09-08 Desulphurisation, demetalation and denitrogenation of coal and coal liquids
CA000385329A CA1157409A (en) 1978-09-25 1981-09-08 Desulfurization, demetalation and denitrogenation of coal
ZA816296A ZA816296B (en) 1978-09-25 1981-09-10 Desulfurization, demetalation and denitrogenation of coal
JP56146407A JPS5861178A (en) 1978-09-25 1981-09-18 Desulfurization demetallization denitrogenation for coal or coal liquid raw material

Publications (1)

Publication Number Publication Date
JPS5861178A true JPS5861178A (en) 1983-04-12

Family

ID=34109263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146407A Pending JPS5861178A (en) 1978-09-25 1981-09-18 Desulfurization demetallization denitrogenation for coal or coal liquid raw material

Country Status (6)

Country Link
US (1) US4303497A (en)
EP (1) EP0073860A1 (en)
JP (1) JPS5861178A (en)
AU (1) AU7502581A (en)
CA (1) CA1157409A (en)
ZA (1) ZA816296B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344838A (en) * 1979-10-18 1982-08-17 Mobil Oil Corporation Coal conversion catalysts
GB2089831B (en) * 1980-12-18 1984-10-31 Univ Salford Ind Centre Conversion of municipal waste to fuel
US4354922A (en) * 1981-03-31 1982-10-19 Mobil Oil Corporation Processing of heavy hydrocarbon oils
DE3215727A1 (en) * 1982-04-28 1983-11-03 Rheinische Braunkohlenwerke AG, 5000 Köln METHOD FOR TREATING RED SLUDGE
US4465784A (en) * 1982-07-02 1984-08-14 Intevep, S.A. Hydrotreatment catalyst
JPS59136135A (en) * 1983-01-26 1984-08-04 Hokkaido Daigaku Catalyst and method for coal-direct liquefaction
US4508616A (en) * 1983-08-23 1985-04-02 Intevep, S.A. Hydrocracking with treated bauxite or laterite
US4610777A (en) * 1984-08-15 1986-09-09 Mobil Oil Corporation Coal liquefaction with Mn nodules
US5936134A (en) * 1997-03-26 1999-08-10 Consejo Superior Investigaciones Cientificas Method for obtaining storable products of calorific energy and synthetical oils, by processing waste rubber materials with coal
US6068737A (en) * 1997-05-16 2000-05-30 Simon Bolivar University Simultaneous demetallization and desulphuration of carbonaceous materials via microwaves
KR20110007400A (en) * 2009-07-16 2011-01-24 한국에너지기술연구원 Sulfur compounds absorbents for solvent extraction process of coal, and method of sulfur compounds absorption and coal refinement using the same
US8658030B2 (en) * 2009-09-30 2014-02-25 General Electric Company Method for deasphalting and extracting hydrocarbon oils
EP2743333A1 (en) * 2012-12-11 2014-06-18 Studiengesellschaft Kohle mbH Process for converting phenolic compounds into aromatic hydrocarbons
CA2907122C (en) * 2013-03-15 2021-09-21 The Board Of Regents Of The University Of Texas System Processes for liquefying carbonaceous feedstocks and related compositions
US11534746B2 (en) 2018-04-06 2022-12-27 Utah State University Red mud compositions and methods related thereto

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB109056A (en) * 1916-07-27 1918-07-04 Rhenania Chem Fab Improvements in the Preparation of Catalytic Substances from Natural Ores Containing Iron Oxide which Contains Water of Hydration.
NL56327C (en) * 1938-11-08
US2591525A (en) * 1947-12-22 1952-04-01 Shell Dev Process for the catalytic desulfurization of hydrocarbon oils
US2987470A (en) * 1958-11-13 1961-06-06 Hydrocarbon Research Inc Demineralization of oils
US3184401A (en) * 1962-01-19 1965-05-18 Consolidation Coal Co Process for producing hydrogenenriched hydrocarbonaceous products from coal
US3772185A (en) * 1971-07-22 1973-11-13 Mobil Oil Corp Catalyst for the demetalation of a hydrocarbon charge stock
US3985548A (en) * 1972-05-30 1976-10-12 Leas Brothers Development Corporation Direct metal reduction from coal
US3840456A (en) * 1972-07-20 1974-10-08 Us Interior Production of low-sulfur fuel from sulfur-bearing coals and oils
JPS5148644B2 (en) * 1973-03-30 1976-12-22
US3923634A (en) * 1974-03-22 1975-12-02 Mobil Oil Corp Liquefaction of coal
US3916479A (en) * 1974-12-13 1975-11-04 Jamesbury Corp Hinge and detent mechanism
NL170814C (en) * 1977-06-10 1983-01-03 Nippon Mining Co Ltd En Hitach METHOD FOR MANUFACTURING A CATALYST FOR CRACKING HEAVY OILS
DE2806806A1 (en) * 1978-02-17 1979-08-23 Metallgesellschaft Ag METHOD FOR PROCESSING SOLID STATE OILS OR TARS

Also Published As

Publication number Publication date
CA1157409A (en) 1983-11-22
US4303497A (en) 1981-12-01
AU7502581A (en) 1983-03-17
EP0073860A1 (en) 1983-03-16
ZA816296B (en) 1983-04-27

Similar Documents

Publication Publication Date Title
JPS5861178A (en) Desulfurization demetallization denitrogenation for coal or coal liquid raw material
CN101927167B (en) Compound coal tar hydrogenation catalyst and preparation method thereof
Guin et al. Effects of coal minerals on the hydrogenation, desulfurization, and solvent extraction of coal
US3502564A (en) Hydroprocessing of coal
JPS63113096A (en) Catalytic hydroconversion of heavy oil using two-metal catalyst
GB1576039A (en) Hydroconversion of an oil-coal mixture
US5064527A (en) Catalytic process for hydroconversion of carbonaceous materials
US4411767A (en) Integrated process for the solvent refining of coal
CA1153720A (en) Upgrading of hydrocarbon feedstock
JPH0611403B2 (en) Method for producing hydrogenation catalyst and hydroconversion method using the same
US2369432A (en) Desulphurization catalysts
US3766054A (en) Demetalation of hydrocarbon charge stocks
US4260471A (en) Process for desulfurizing coal and producing synthetic fuels
US3846275A (en) Coal liquefaction process
US3923634A (en) Liquefaction of coal
US3772185A (en) Catalyst for the demetalation of a hydrocarbon charge stock
US4356079A (en) Denitrification of hydrocarbon feedstock
US4324559A (en) Method for the removal of sulfur from carbonaceous material
JPS6037156B2 (en) Zinc sulfide coal liquefaction catalyst
US4696733A (en) Process for selectively hydrogenating polycondensed aromatics
JPS6126955B2 (en)
US4818374A (en) Process for converting coal to an oil fraction
JP3128292B2 (en) Method for producing catalyst for coal liquefaction
Prien Pyrolysis of coal and shale
JPS5829837B2 (en) Tankasuisoyuinoshiyorihohou