JPS61268088A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS61268088A
JPS61268088A JP11109885A JP11109885A JPS61268088A JP S61268088 A JPS61268088 A JP S61268088A JP 11109885 A JP11109885 A JP 11109885A JP 11109885 A JP11109885 A JP 11109885A JP S61268088 A JPS61268088 A JP S61268088A
Authority
JP
Japan
Prior art keywords
section
active layer
terrace
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11109885A
Other languages
Japanese (ja)
Inventor
Saburo Yamamoto
三郎 山本
Taiji Morimoto
泰司 森本
Hiroshi Hayashi
寛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11109885A priority Critical patent/JPS61268088A/en
Publication of JPS61268088A publication Critical patent/JPS61268088A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/106Comprising an active region having a varying composition or cross-section in a specific direction varying thickness along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the generation of a higher transverse mode by forming a window region transparent to laser beam generated in a thick active layer by cleaving a terrace section with a thin active layer and bringing the terrace section to a resonance surface. CONSTITUTION:An N-GaAs layer 6 is grown on a P-GaAs substrate 1 with a terrace section 9 and a groove section 10 until the surface of the layer 6 is flattened, and a groove section 10' is shaped where conforming to the groove section 10. A terrace section 9' is also formed simultaneously, and a channel section 11 is shaped onto the surface of the terrace section 9' and made to reach the substrate 1 extending over the terrace section 9' and the groove section 10'. The double-hetero structure of a P-GaAlAs clad layer 2, a GaAlAs active layer 3, an N-GaAlAs clad layer 4 and an N-GaAs cap layer 5 is formed. An N-type electrode 7 is shaped onto the cap layer 5 and a P-type electrode 8 onto the back of the substrate, and the central section of the terrace section is cloven to form a reflecting surface. Accordingly, a window section, a band end thereof does not absorb laser beams oscillated on the groove section 10' with the thick active layer, is shaped.

Description

【発明の詳細な説明】 く技術分野〉 本発明は端面近傍にレーザ光に対して吸収の少ない窓領
域を有する高出力半導体レーザ素子に関するものである
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a high-output semiconductor laser device having a window region near an end face that absorbs little laser light.

〈従来技術〉 半導体レーザ素子の寿命を制限する要因のひとつに、光
出射面となる共振器端面の劣化があることはよく知られ
ている。また、半導体レーザ素子を高出力動作させた場
合に、この共振器端面ば破壊されることがある。このと
きの端面破壊出力(以下P waxという)は、従来の
半導体レーザでは106W/cI112程度であった。
<Prior Art> It is well known that one of the factors that limits the lifespan of semiconductor laser devices is the deterioration of the resonator end face, which serves as the light emitting surface. Further, when the semiconductor laser device is operated at high output, the end face of the resonator may be destroyed. At this time, the end face destruction output (hereinafter referred to as P wax) was approximately 106 W/cI112 in the conventional semiconductor laser.

レーザ光を安定に高出力発振させるためにPmaxを増
大させ、さらに端面劣化を防止するために端面でのレー
ザ光の吸収を少くした窓形半導体レーザ素子として、端
面近傍のバンドギャップEgを内部のそれよりも大きく
した一i ndo%* 5tripeレーザ(Appl
、 Phys、 Lett、 15 Mac、 197
9 p、 637 )、あるいは端面近傍の活性層厚を
内部のそれよりも薄くしてキャリア蓄積によるフェルミ
レベル上昇を利用したwindor−VSISレーザ(
Appl、 Phys、 Lett。
In order to stably oscillate the laser beam at high output, Pmax has been increased, and the absorption of laser light at the end facet has been reduced to prevent facet deterioration. A larger 1indo%*5tripe laser (Appl.
, Phys, Lett, 15 Mac, 197
9p, 637), or a window-VSIS laser that uses the Fermi level increase due to carrier accumulation by making the active layer near the end face thinner than that inside.
Appl, Phys, Lett.

I March、 1983 L 406)がある。後
者のwindosn−VSISレーザは、窓領域におい
ても光導波路が形成されているという前者の−indo
w 5tripeレーザにない特長を有しているが、約
20mW以上で高次横モードが発振しやすいという欠点
も有している。
I March, 1983 L 406). The latter windows-VSIS laser differs from the former -indo in that an optical waveguide is also formed in the window region.
Although it has features that the w5tripe laser does not have, it also has the drawback that higher-order transverse modes tend to oscillate at approximately 20 mW or more.

この原因は、素子内部の活性層厚を端面近傍よりも厚く
する手段として、第3図の断面図に示すように、チャネ
ル内での活性層3の湾曲を利用している為である。活性
層を湾曲させると実効屈折率差が大きくなり過ぎ、高次
横モードが発生しやすいのである。尚、第4図は端面近
傍での断面図を示す。
The reason for this is that the curvature of the active layer 3 within the channel is used as a means to make the active layer thickness inside the element thicker than near the end face, as shown in the cross-sectional view of FIG. If the active layer is curved, the effective refractive index difference becomes too large, and higher-order transverse modes are likely to occur. Incidentally, FIG. 4 shows a cross-sectional view near the end face.

〈発明の目的〉 本発明は素子内部の活性層を湾曲させずに、平坦にした
まま端面近傍の活性層厚よりも厚くすることにより、高
次横モードの発生を防いだ新規なwindow−VSI
Sレーザ素子を提供することを目的とする。
<Objective of the Invention> The present invention provides a novel window-VSI in which the generation of higher-order transverse modes is prevented by making the active layer inside the element thicker than the active layer near the end face while keeping it flat without curving it.
The purpose of the present invention is to provide an S laser device.

〈発明の構成〉 本発明は、テラス部と溝部を有する基板上に液相エピタ
キシャル法でダブルヘテロ構造を成長させてなる半導体
レーザ素子において、上記ダブルヘテロ構造の成長に際
して上記テラス部上の活性層厚が上記溝部の活性層厚よ
りも薄くなる現象を利用して形成した薄い活性層を有す
る上記テラス部でへき開して共振面とすることにより厚
い活性層で発生するレーザ光に対して透明な窓領域を形
成してなることを特徴とする。
<Structure of the Invention> The present invention provides a semiconductor laser device in which a double heterostructure is grown by a liquid phase epitaxial method on a substrate having a terrace portion and a groove portion, in which an active layer on the terrace portion is grown during the growth of the double heterostructure. It has a thin active layer formed by taking advantage of the phenomenon that the thickness of the active layer becomes thinner than the active layer thickness of the groove part, and is cleaved at the terrace part to form a resonant surface, making it transparent to the laser beam generated in the thick active layer. It is characterized by forming a window area.

〈実施例〉 本実施例では、第2図に示すように、テラス部9及び溝
部10を有する基板1上に液相エピタキシャル法により
ダブルヘテロ構造を成長させる際にテラス部9上の活性
層3の層厚が溝部10上の活性層3の層厚よりも薄くな
る現象を利用するものである。これは、テラス直上のG
a溶液中の溶質Asがそのテラス両側の溝内での活性層
成長の為に両側から引っ張られて、As量が減少する結
果、活性層厚が薄くなると解釈される。
<Example> In this example, as shown in FIG. 2, when a double heterostructure is grown by liquid phase epitaxial method on a substrate 1 having a terrace part 9 and a groove part 10, the active layer 3 on the terrace part 9 is grown. This method utilizes the phenomenon that the layer thickness of the active layer 3 on the groove portion 10 becomes thinner than the layer thickness of the active layer 3 on the groove portion 10. This is the G directly above the terrace.
It is interpreted that the solute As in the a solution is pulled from both sides due to active layer growth in the grooves on both sides of the terrace, and the amount of As decreases, resulting in the active layer thickness becoming thinner.

第1図(a)、 (b)、 (C)は半導体レーザ素子
の製作工程の各段階における構造を示す。まず、第1図
(a)に示すように、テラス部9及び溝部10を有する
P−GaAs基板1上に、n−GaAs層6をその表面
が平坦になる迄成長させる。次に、第1回申)に示すよ
うに、n−GaAs層6の表面の基板1の溝部10に合
致する場所に溝部10′を形成する。この時、同時にテ
ラス部9′も形成する。さらに、この表面上に前記溝部
10′に直交する方向にチャネル部11を形成し、この
チャネル部11がテラス部9′及び溝部10’にわたっ
てP−GaAs基板1に到達するように形成する。この
ようにして形成されたP−GaAs基板1上のn−Ga
As層6は電流を阻止し、チャネル部11のみに電流を
狭容する役目をする。
FIGS. 1(a), 1(b), and 1(C) show the structure at each stage of the manufacturing process of a semiconductor laser device. First, as shown in FIG. 1(a), an n-GaAs layer 6 is grown on a P-GaAs substrate 1 having terraces 9 and grooves 10 until its surface becomes flat. Next, as shown in the first section), grooves 10' are formed on the surface of the n-GaAs layer 6 at locations that match the grooves 10 of the substrate 1. At this time, the terrace portion 9' is also formed at the same time. Furthermore, a channel portion 11 is formed on this surface in a direction perpendicular to the groove portion 10', and this channel portion 11 is formed so as to reach the P-GaAs substrate 1 across the terrace portion 9' and the groove portion 10'. The n-Ga on the P-GaAs substrate 1 formed in this way
The As layer 6 serves to block current and limit the current to only the channel portion 11 .

次に、第1図(C)に示すように、液相エピタキシャル
法によりP−GaAlAsクラッド層2. GaAlA
s (又はGaAs)活性層3 、 n−GaAlAs
クラッド層4 、 n−GaAsキャップ層5からなる
ダブルヘテロ構造を形成する。この時、P−クラッド層
2及び活性層3が溝10′の端部で湾曲するように、成
長時間を調整する。このような構成にすると、必ずテラ
ス部り′上の活性層3の層厚は溝部10’上の活性層3
の層厚よりも薄くなる。
Next, as shown in FIG. 1(C), a P-GaAlAs cladding layer 2. GaAlA
s (or GaAs) active layer 3, n-GaAlAs
A double heterostructure consisting of a cladding layer 4 and an n-GaAs cap layer 5 is formed. At this time, the growth time is adjusted so that the P-cladding layer 2 and the active layer 3 are curved at the end of the groove 10'. With such a structure, the thickness of the active layer 3 on the terrace portion 10' is necessarily the same as that of the active layer 3 on the groove portion 10'.
becomes thinner than the layer thickness of

キャンプ層5上にn形電極7を形成し、基板裏面にP形
電極8を形成した後、テラス部の中央部でへき関し、反
射面を形成する。従って、反射面近傍の活性層厚は薄い
ので、同じ電流を流した場合、厚い活性層よりも多くの
キャリアが蓄積される。即ち、電子と正孔のフェルミレ
ベルの差が大きくなり(バンドギャップが大きくなり)
、厚い活性層をもつ溝部10′上(励起部)で発振した
レーザ光に対してバンド端吸収のない窓部が形成される
のである。
After forming an n-type electrode 7 on the camp layer 5 and a p-type electrode 8 on the back surface of the substrate, they are separated at the center of the terrace portion to form a reflective surface. Therefore, since the active layer near the reflective surface is thin, more carriers are accumulated than in a thick active layer when the same current is passed through the active layer. In other words, the difference between the Fermi levels of electrons and holes becomes larger (the band gap becomes larger)
, a window portion is formed in which there is no band edge absorption for the laser beam oscillated on the groove portion 10' (excitation portion) having a thick active layer.

実験によれば、活性層をGao、sうA Iats A
s +クラフト層をGao、6^1 o、4 A Sと
し、励起部の長さを200μm。
According to experiments, the active layer is Gao, so A.
The s+Craft layer is Gao, 6^1 o, 4 A S, and the length of the excitation part is 200 μm.

窓部の長さを25μmとしたとき、波長780na+。When the length of the window is 25 μm, the wavelength is 780 na+.

しきい値電流40mAで発振し、CW動作において20
0mW以上の出力まで端面劣化は生じなかった。
Oscillates at a threshold current of 40mA, and in CW operation
No end face deterioration occurred up to an output of 0 mW or more.

なお、本発明の半導体レーザ素子は、上記実施例のGa
As−GaAlAs系に限定されず、InP−InGa
AsP系やその他のへテロ接合レーザ素子に通用するこ
とができる。
Note that the semiconductor laser device of the present invention is based on the Ga of the above embodiment.
Not limited to As-GaAlAs system, but also InP-InGa
It can be applied to AsP-based and other heterojunction laser elements.

〈発明の効果〉 以上説明したように、本発明においては、ダブルヘテロ
構造の成長に際してテラス部上の活性層厚が溝部の活性
層厚よりも薄くなる現象を利用して形成した薄い活性層
を有するテラス部でへき開して共振面とすることにより
厚い活性層で発生するレーザ光に対して透明な窓領域を
形成したので、高次横モードの発生を防止することがで
きる。
<Effects of the Invention> As explained above, in the present invention, a thin active layer is formed by taking advantage of the phenomenon that the active layer thickness on the terrace portion becomes thinner than the active layer thickness on the groove portion during the growth of a double heterostructure. By cleaving the terrace portion to form a resonant surface, a window region that is transparent to the laser light generated in the thick active layer is formed, thereby making it possible to prevent the generation of higher-order transverse modes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (b)、 (C)は本発明実施例の半
導体レーザ素子の構造を示す図、第2図は本発明実施例
のテラス部上の活性層が薄くなることを説明する図、第
3図と第4図は従来の−indow−VSISレーザ素
子の断面図である。 1−P−GaAs基板   2−・−P−GaAIAs
クラフト層3−GaAlAs (又はGaA4)活性層
4−−−n−GaAIAsクランド層 5−n−GaAsキャップ層 6−n−GaAs電流阻止層 7・−n形電極    8−・P形電極9.9′・−・
テラス部
FIGS. 1(al), (b), and (C) are diagrams showing the structure of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2 illustrates that the active layer on the terrace portion of an embodiment of the present invention becomes thinner. 3 and 4 are cross-sectional views of conventional -indow-VSIS laser elements. 1-P-GaAs substrate 2--P-GaAIAs
Craft layer 3 - GaAlAs (or GaA4) active layer 4 - n-GaAIAs ground layer 5 - n-GaAs cap layer 6 - n-GaAs current blocking layer 7 - n-type electrode 8 - p-type electrode 9.9 ′・−・
Terrace section

Claims (1)

【特許請求の範囲】[Claims] テラス部と溝部を有する基板上に液相エピタキシャル法
でダブルヘテロ構造を成長させてなる半導体レーザ素子
において、上記ダブルヘテロ構造の成長に際して上記テ
ラス部上の活性層厚が上記溝部の活性層厚よりも薄くな
る現象を利用して形成した薄い活性層を有する上記テラ
ス部でへき開して共振面とすることにより厚い活性層で
発生するレーザ光に対して透明な窓領域を形成してなる
ことを特徴とする半導体レーザ素子。
In a semiconductor laser device in which a double heterostructure is grown by a liquid phase epitaxial method on a substrate having a terrace part and a groove part, when the double hetero structure is grown, the active layer thickness on the terrace part is greater than the active layer thickness in the groove part. The thin active layer is formed by taking advantage of the phenomenon that the active layer becomes thinner, and the terrace section is cleaved to form a resonant surface, thereby forming a window region that is transparent to the laser beam generated in the thick active layer. Features of semiconductor laser device.
JP11109885A 1985-05-22 1985-05-22 Semiconductor laser element Pending JPS61268088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11109885A JPS61268088A (en) 1985-05-22 1985-05-22 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11109885A JPS61268088A (en) 1985-05-22 1985-05-22 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS61268088A true JPS61268088A (en) 1986-11-27

Family

ID=14552334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11109885A Pending JPS61268088A (en) 1985-05-22 1985-05-22 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS61268088A (en)

Similar Documents

Publication Publication Date Title
JPS5940592A (en) Semiconductor laser element
JP3234799B2 (en) Method for manufacturing semiconductor laser device
US4377865A (en) Semiconductor laser
JP3254812B2 (en) Semiconductor laser and manufacturing method thereof
JP2643276B2 (en) Driving method of semiconductor laser
US4841535A (en) Semiconductor laser device
JPS61268088A (en) Semiconductor laser element
JPS58197787A (en) Semiconductor laser
JPS58225681A (en) Semiconductor laser element
JPS61253882A (en) Semiconductor laser device
JP3717206B2 (en) Semiconductor laser element
JPH0278290A (en) Semiconductor laser device
JP3049916B2 (en) Semiconductor laser
JPH0614575B2 (en) Semiconductor laser device
JP2629194B2 (en) Manufacturing method of semiconductor laser
JPS6234473Y2 (en)
JP2000151020A (en) Semiconductor laser
JPH0410705Y2 (en)
JPH0821753B2 (en) Semiconductor laser device
JP2988552B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0147029B2 (en)
JPS6083388A (en) Semiconductor laser
JP2001148537A (en) Semiconductor laser
JPH02130886A (en) Semiconductor laser element
JPS59155977A (en) Manufacture of semiconductor laser element