JPS59155977A - Manufacture of semiconductor laser element - Google Patents

Manufacture of semiconductor laser element

Info

Publication number
JPS59155977A
JPS59155977A JP2950183A JP2950183A JPS59155977A JP S59155977 A JPS59155977 A JP S59155977A JP 2950183 A JP2950183 A JP 2950183A JP 2950183 A JP2950183 A JP 2950183A JP S59155977 A JPS59155977 A JP S59155977A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
laser
transparent
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2950183A
Other languages
Japanese (ja)
Inventor
Shigeo Yamashita
茂雄 山下
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2950183A priority Critical patent/JPS59155977A/en
Publication of JPS59155977A publication Critical patent/JPS59155977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0203Etching

Abstract

PURPOSE:To assure stable operation even at high optical output with low oscillating threshold current by a method wherein a formed layer of double hetero construction is removed by etching process to form a transparent semiconductor layer into the removed space further forming a reflecting surface on the semiconductor layer. CONSTITUTION:The first clad layer 2, a laser active layer 3, the second clad layer 4 and a cap layer 5 are formed on a semiconductor substrate 1. Firstly the layer comprising the layers 2-5 is removed by chemical etching process until the layer 1 is exposed. Secondly a transparent semiconductor layer 6 is formed into the space removed by the etching process. Lastly the layer 6 is removed by reactive ion etching process to form a reflecting surface 7 of a laser resonator. The semiconductor laser element manufactured by the procedures so far mentioned may be assured of stable operation even at high optical output since its optical output end is constructed to be hardly deteriorated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体レーザ素子の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a semiconductor laser device.

〔従来技術〕[Prior art]

半導体レーザ素子の光出力による劣化現象のうち最も重
要なのは光出力端面の劣化である。このうち光出力か高
くなると半導体レーザ素子の光出力端面か瞬時に破壊さ
れるという現象については、光出力端面付近をレーザの
発振波長に対し透明化することにより、その破壊限界出
力が大幅に増加されることか知られ゛ている。(例えば
、High opti−cal power dens
ity emission from a ”wind
ow−stripe” Ajl’ GaAs doub
le−heterostructure 1aser;
 H−Yones 、et、 at ; Appl。
Among the deterioration phenomena caused by the optical output of a semiconductor laser element, the most important is the deterioration of the optical output end face. Regarding the phenomenon in which the optical output end face of a semiconductor laser element is instantaneously destroyed when the optical output becomes high, by making the vicinity of the optical output end face transparent to the laser's oscillation wavelength, the destruction limit output can be significantly increased. It is known that it will happen. (For example, High optical power dens
ity emission from a ”wind
ow-stripe” Ajl' GaAs doub
le-heterostructure 1aser;
H-Yones, et, at; Appl.

Phys、 Let:t、 Vol、 34N6.15
 (1979) 637p−およびGaAs−AJ G
a As D、 H,La5ers with Bur
ied Facet; H,5ai−to 、et、a
l、; J、J、A、P、 Vol、 17 No、 
5 (1978) 865 p、)この光出力端面付近
を透明化する一方法として、従来光出力端面付近となる
領域に透明な半導体結晶を埋込み、この領域内でへき開
を行ってレーザの反射面を作る方法が実施されていた。
Phys, Let:t, Vol, 34N6.15
(1979) 637p- and GaAs-AJ G
a As D, H, La5ers with Bur
ied Facet; H,5ai-to,et,a
l, ; J, J, A, P, Vol, 17 No,
5 (1978) 865 p.) One method of making the vicinity of the light output end face transparent is to embed a transparent semiconductor crystal in the area near the light output end face and cleave it in this region to make the laser reflective surface. The method of making was implemented.

このような従来方法によるとへき開の精度が悪いため透
明半導体領域の長さをあらかじめ大きくとる必要があっ
た。しかし上記の透明半導体領域の中を伝播する間に光
が発散されるため、透明半導体領域の長さが大きくなる
と光か光出力端面て反則して再び活性層と結合する効率
は比較的小さくなる。したがって従来のこの種の半導体
レーザ素子は発振しきい電流値が相対的に大きくなって
しまうという欠点かあった。
According to such conventional methods, the precision of cleavage is poor, so it is necessary to increase the length of the transparent semiconductor region in advance. However, since the light is dispersed while propagating through the transparent semiconductor region, as the length of the transparent semiconductor region increases, the efficiency with which the light is reflected by the light output end face and recombined with the active layer becomes relatively small. . Therefore, the conventional semiconductor laser device of this type has a disadvantage in that the oscillation threshold current value becomes relatively large.

〔発″明の目的〕[Purpose of the invention]

本発明の目的は低発振しきい電流値で高光出力まで安定
に動作する半導体レーザ素子の製造方法を得ることであ
る。
An object of the present invention is to provide a method for manufacturing a semiconductor laser device that operates stably up to a high optical output with a low oscillation threshold current value.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明による半導体レーザ
素子の製、遣方法はつぎのような工程を経て半導体レー
ザ素子を製造するものである。半導体基板上に第1クラ
ッド層、レーザ活性層、第2クラッド層からなるダブル
へテロ構造の結晶を形成し、レーザ素子の光出力端面付
近となる上記形成層の領域をレーザ活性層よりも深い位
置までエツチングして除去する。このエツチングはレー
ザ活性層への損傷を考慮して、化学エツチング法か、あ
るいは反応性イオンエツチング法と化学エツチング法と
を併用した方法により行う。このようにしてダブルへテ
ロ構造の形成層を除去した部分にレーザ波長に対して透
明な半導体層を形成し、この透明半導体層の一部をレー
ザ活性層を延長した平面よりも深く、かつ加工面か上記
レーザ活性層平面に対してほぼ直角になるようにエツチ
ングして反射面を形成するものである。エツチングには
加工部の側面をほぼ垂直にてきる反応性イオンエッチツ
ク法が反射面を作成する上で適しているか、形状が制御
できれ、ば化学エツチングでもよい。ダブルへテロ構造
に直接反応性イオンエツチング法で反射面を作成する方
法では、加工によりレーザ活性領域に結晶欠陥を生じゃ
すくレーザ素子の寿命特性に悪影響をおよぼす可能性か
あり、またエツチング速度が結晶方位により異ったりレ
ーザ活性層とクラッド層でエツチング速度が異る場合に
−は共振器長方向に対して加工面が直角になりにくいな
との問題点があるか、本発明ではダブルへテロ構造の結
晶(こはレーザ活性層への影響か少い化学エッチツク法
を用い、透明′−16導体層の反射面はレーザ活性1等
から離れた非励起領域の均一な結晶をエツチングして得
るため、レーザ素子の寿゛命への悪影響が少く、はぼレ
ーザ活性層平面に直角で平滑な反則面を形成することが
できる。
In order to achieve the above object, the method for manufacturing and using a semiconductor laser device according to the present invention is to manufacture a semiconductor laser device through the following steps. A double heterostructure crystal consisting of a first cladding layer, a laser active layer, and a second cladding layer is formed on a semiconductor substrate, and a region of the formed layer near the optical output end face of the laser element is deeper than the laser active layer. Etch to the desired location and remove. This etching is performed by a chemical etching method or a method using a combination of a reactive ion etching method and a chemical etching method, taking into consideration damage to the laser active layer. In this way, a semiconductor layer that is transparent to the laser wavelength is formed in the part where the double heterostructure formation layer is removed, and a part of this transparent semiconductor layer is processed to be deeper than the plane that extends the laser active layer. The reflective surface is formed by etching the surface so that the surface is substantially perpendicular to the plane of the laser active layer. For etching, a reactive ion etching method in which the sides of the processed portion are made almost vertical is suitable for creating a reflective surface, or chemical etching may be used as long as the shape can be controlled. In the method of creating a reflective surface on a double heterostructure by direct reactive ion etching, the processing may create crystal defects in the laser active region, which may adversely affect the lifetime characteristics of the laser element, and the etching rate may be reduced. If the etching speed differs depending on the crystal orientation or the laser active layer and the cladding layer, there is a problem that it is difficult to make the machined surface perpendicular to the cavity length direction. A crystal with a terrorist structure (this uses a chemical etching method that has little effect on the laser active layer, and the reflective surface of the transparent 16 conductor layer is etched with a uniform crystal in the non-excited region away from the laser active layer). Therefore, it is possible to form a smooth irregular surface perpendicular to the plane of the laser active layer with little adverse effect on the life of the laser element.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともtこ説明する。。 Next, embodiments of the present invention will be described with reference to the drawings. .

第1図は本発明による半導体レーザ素子の製造方法によ
り製造した半尋体し− ザ素子の一実施例を示す光の進
行方向に平行な方向の断面図、第2図は上記実施例の光
の進行方向に垂直な方向の断面図、第3図は−に記事導
体レーサ素子の電流〜光出力特性の一例を示す図、第4
図は上記半導体レーザ素子において透明半導体層の共振
器長方向の長さを変えた場合のレーザ発振しきい電流値
の変化の一例を示す図である。第1図および第2図に示
す本実施例てはn形Ga As基板(Siドープ、n−
1Xl018c+++ ” ) 1上の〔011〕方向
に幅約4μm、深さ約1.3μmの溝を形成し、この上
にn形Gao、5Alo5Asクラッド層(Teドープ
、n〜3×1017cm−3、厚さは溝のタト側で約0
3μm)2、アンドープGa0.86AJ0.14 A
sレーザ活性層(厚さ約0.06 μm ) 3、p形
Ga、)、5 Ago5Asクラッド層(Znドープ、
pm2×1017cm−3−、厚さ約2.3 μm )
 4、p形Ga Asキャップ層(Geトープ、n−1
×1018cm−3、厚さ約0.6 pm ) 5を液
相成長法によって連続的に形成した。つきに上H己のよ
うに形成したダブルへテロ構造のn形Ga o、5Al
o、5 Asクラッド層2、アンドープGa0.86 
Aj?o、I4 Asレーザ活性層3、p形Gao5A
lo5Asクラッド層4、p形Ga Asキャップ層5
からなる成長層を共振器長方向に250μm残して、残
りの両端部分がn形GaAs基板1が露出するまで硫酸
−過酸化水素系のエツチング液を用いる化学エツチング
により除去した。エツチングのマスク(こはプラスマC
VDて形成した窒化シリコン膜を用いた。前記成長層゛
を除去した部分に再度液相成長法によってアンドープG
aO,75,”0.25 As透明層6を形成した後、
反応性イオンエッチングによってアント′−プGao、
75Azo、25 As透明層である透明半導体層6を
エツチングしレーザ共振器の反則面7を形成した。この
とき透明半導体層6の長さすなわち共振器長方向の長さ
は約3μm月とした。つぎに窒化シリコン膜8を表面に
形成しレーザ活性領域上部に幅約4μmのストライプ状
開口を有する電流狭窄用絶縁膜を設けた後、Cr、Au
c7)p側電極9 、Au−Ge−Niのn側電極1゜
を真空蒸着法で形成した。」二記つェーハ処耶プロセス
を完了した後スクライビングを行って半導体レーザチ゛
ツブを切り出しヒートシンク上に固定した。
FIG. 1 is a cross-sectional view in a direction parallel to the direction of propagation of light, showing an embodiment of a semicircular semiconductor laser device manufactured by the method of manufacturing a semiconductor laser device according to the present invention, and FIG. Fig. 3 is a cross-sectional view taken in a direction perpendicular to the direction of movement of the conductive laser element.
The figure shows an example of a change in the laser oscillation threshold current value when the length of the transparent semiconductor layer in the resonator length direction is changed in the semiconductor laser device. In this embodiment shown in FIGS. 1 and 2, an n-type GaAs substrate (Si doped, n-
A groove with a width of about 4 μm and a depth of about 1.3 μm is formed in the [011] direction on the 1 The width is about 0 on the vertical side of the groove.
3μm) 2, undoped Ga0.86AJ0.14A
s laser active layer (thickness approximately 0.06 μm) 3. p-type Ga, ), 5. Ago5As cladding layer (Zn doped,
pm2×1017cm-3-, thickness approximately 2.3 μm)
4, p-type GaAs cap layer (Ge tope, n-1
x 1018 cm-3, thickness approximately 0.6 pm) 5 was continuously formed by a liquid phase growth method. Finally, a double heterostructure of n-type GaO, 5Al formed as shown above.
o,5 As cladding layer 2, undoped Ga0.86
Aj? o, I4 As laser active layer 3, p-type Gao5A
lo5As cladding layer 4, p-type GaAs capping layer 5
A grown layer of 250 μm was left in the cavity length direction, and the remaining end portions were removed by chemical etching using a sulfuric acid-hydrogen peroxide based etching solution until the n-type GaAs substrate 1 was exposed. Etching mask (Koha Plasma C
A silicon nitride film formed by VD was used. Undoped G is applied again to the part from which the growth layer has been removed by liquid phase growth.
aO,75,”0.25 After forming the As transparent layer 6,
Ant'-pu Gao by reactive ion etching,
The transparent semiconductor layer 6, which is a 75Azo, 25As transparent layer, was etched to form the irregular surface 7 of the laser resonator. At this time, the length of the transparent semiconductor layer 6, that is, the length in the cavity length direction, was approximately 3 μm. Next, a silicon nitride film 8 is formed on the surface, and a current confinement insulating film having a striped opening with a width of about 4 μm is provided above the laser active region.
c7) A p-side electrode 9 and an n-side electrode 1° of Au-Ge-Ni were formed by vacuum evaporation. After completing the two wafer processing steps, a semiconductor laser chip was cut out by scribing and fixed on a heat sink.

本実施例の半導体レーザ素子は波長的780nm、しき
い電流値約5QmAで発振した。第3図に本実施例の電
流−光出力特性の一例を示すが、図に点線で示したよう
に活性層が光出力端面まで連続している従来の半導体レ
ーザ素子ては高光出力動作時に光出力端面がしばしは破
壊されて劣化するが、本実施例の半導体レーザ素子は光
出力端面が劣化しにくい構造であるため図の実線で示す
ように高光出力でも安定な動作か得られた。また本実施
例において透明半導体層6の共振器長方向の長さを大き
くするとレーザ素子の発振しきい電流値が増大するか、
第4図に示したように透明半導体層6の共振器長方向の
長さを5μm以下とすれば発振しきい電流値はほとんど
上昇せず上昇値は20%以下である。なお本実施例の半
導体レーザ素子を光出力40mW、周囲温度70°Cで
連続動作させたが1000時間経過してもほとんと劣化
が見られながった。
The semiconductor laser device of this example oscillated at a wavelength of 780 nm and a threshold current value of about 5 QmA. Figure 3 shows an example of the current vs. optical output characteristics of this embodiment.As shown by the dotted line in the figure, a conventional semiconductor laser device in which the active layer is continuous up to the optical output end face does not emit light during high optical output operation. Although the output end face is often destroyed and deteriorated, the semiconductor laser device of this example has a structure in which the optical output end face is not easily deteriorated, so stable operation was obtained even at high optical output as shown by the solid line in the figure. Furthermore, in this embodiment, if the length of the transparent semiconductor layer 6 in the cavity length direction is increased, the oscillation threshold current value of the laser element increases.
As shown in FIG. 4, if the length of the transparent semiconductor layer 6 in the cavity length direction is set to 5 μm or less, the oscillation threshold current value hardly increases and the increase value is 20% or less. The semiconductor laser device of this example was operated continuously at an optical output of 40 mW and an ambient temperature of 70° C., and almost no deterioration was observed even after 1000 hours.

第5図は本発明による半導体レーザ素子の製造方法によ
り製造した半導体レーザ素子の他の実施例を示す光の進
行方向に平行な方向の断面図である。n形Ga As基
板1上に前記実施例と同様にストライプ状溝を形成し、
n形ca[+、5 AzCl、5 Asクラッド層2、
アンドープGa0.86 Aj?O,I4 As L/
 −f g性層3p形Ga(1,5A/(1,5Asク
ラッド層4、p形GaAsキャップ層5を液相成長法に
より連続的に形成した。つぎに上記のように形成したタ
プルヘテロ構造の各成長層2.3.4.5を共振器長方
向に、レーザ共振器用として250μmおよび光検出器
用として60μm残して、残りの成長層部分をn形Ga
As基板1か露出するまで硫酸−過酸化水素系のエツチ
ング液を用いて化学エツチングにより除去した。残存す
るレーザ共振器用の成長層と光検出器用の成長層との間
隔は30μmとした。つきに上記成長層を除去した部分
に再度液相成長法(こよってアンドープGao7s A
”0.25 As透明層6を形成し、該透明層6を反応
性イオンエツチングによりエツチングしてレーザ共振器
の反則面11および光検出器の光入射面12を形成した
。その後上面に電流狭窄用絶縁膜としてレーザ活性領域
上部に開1コを有する窒化ンリコン膜をそれぞれ形成し
レーザ共振器のp側電極(Cr、Au)9、光検出器上
部電極(Cr、 Au) 13、基板電極(Au−Ge
−Ni) 10を真空蒸着法で形成した。ウェーハ処理
のプロセス完了後スクライビングを行ってレーザチップ
を切り出し半導体レーザ複合素子を製造した。本実施例
の半導体レーザ複合素子の光検出器部は上部電極]3に
負電圧を加えて逆バイアスし、レーザの光出力モニタと
して用いた。レーザ共振器部は前記の実施例と同様に低
発振しきい電流値で高光出力でも安定した動作が得られ
た。
FIG. 5 is a cross-sectional view in a direction parallel to the direction in which light travels, showing another embodiment of a semiconductor laser device manufactured by the method for manufacturing a semiconductor laser device according to the present invention. Striped grooves were formed on the n-type GaAs substrate 1 in the same manner as in the previous embodiment,
n-type ca[+, 5 AzCl, 5 As cladding layer 2,
Undoped Ga0.86 Aj? O, I4 As L/
-f g-type layer 3 p-type Ga(1,5A/(1,5As) cladding layer 4 and p-type GaAs cap layer 5 were successively formed by liquid phase growth method.Next, the tuple heterostructure formed as described above was Each grown layer 2.3.4.5 is left with 250 μm for the laser cavity and 60 μm for the photodetector in the cavity length direction, and the remaining grown layer portion is made of n-type Ga.
The As substrate 1 was removed by chemical etching using a sulfuric acid-hydrogen peroxide based etching solution until it was exposed. The distance between the remaining growth layer for the laser resonator and the growth layer for the photodetector was 30 μm. Finally, the liquid phase growth method (thus, undoped Gao7s A
A 0.25 As transparent layer 6 was formed, and the transparent layer 6 was etched by reactive ion etching to form a refractory surface 11 of a laser resonator and a light incident surface 12 of a photodetector. Thereafter, a current confinement was formed on the upper surface. A silicon nitride film having an opening 1 is formed above the laser active region as an insulating film for the laser resonator p-side electrode (Cr, Au) 9, photodetector upper electrode (Cr, Au) 13, and substrate electrode ( Au-Ge
-Ni) 10 was formed by a vacuum evaporation method. After completing the wafer processing process, scribing was performed to cut out laser chips to manufacture semiconductor laser composite devices. The photodetector section of the semiconductor laser composite device of this example was reverse biased by applying a negative voltage to the upper electrode 3, and was used as a laser light output monitor. The laser resonator section was able to operate stably even at a low oscillation threshold current value and high optical output, as in the previous example.

本発明による半導体レーザ素子の製造方法は上記の各実
施例に示したGa Az As系に限らず、池C系例え
ば用−V族化合物半導体であるIn Ga AsF系の
半導体レーザ素子についても適用することができる。
The method for manufacturing a semiconductor laser device according to the present invention is applicable not only to the Ga Az As-based semiconductor laser device shown in each of the above embodiments, but also to an InGaAsF-based semiconductor laser device, such as an InGaAsF-based semiconductor laser device, which is a group V compound semiconductor. be able to.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による半導体レーザ素子の製造方法
は、該レーザ素子の光出力端面(こ透明半導体層を設け
て覆い高光出力時における光出力端面の劣化を防ぐもの
であるか、上記透明半導体層の光出力端面における反射
面の形成は従来のへき開による方法と異り、レーザ活性
層、から離れた均一な結晶をエツチングによって加工す
るため、上記透明半導体層の共振器長方向の長さをほぼ
ホトリソクラフィおよびエツチングの加工精度の範囲内
で制御できるので1〜5μmと非常に短くすることがで
き、かつ平滑な反射面を得ることが可能であるから、こ
の間を伝播する光の損失か極めて少く、そのため発振し
きい電流値が小さくて高光出力でも安定して動作する半
導体レーザ素子を得ることかできる。さらに透明半導体
層の反則面を形成するのにへき開法によらずエツチング
性を用いるから、レーザ素子と電気回路との集積化を行
う場合工程−にでも有利である。
As described above, the method for manufacturing a semiconductor laser device according to the present invention involves the method of manufacturing a semiconductor laser device by forming a light output end face of the laser device (either by providing a transparent semiconductor layer to cover the light output end face to prevent deterioration of the light output end face at the time of high light output, or by covering the light output end face with the transparent semiconductor layer). Unlike the conventional method of cleavage, the formation of the reflective surface at the light output end face of the layer is performed by etching a uniform crystal separated from the laser active layer, so the length of the transparent semiconductor layer in the cavity length direction is Since it can be controlled almost within the processing precision of photolithography and etching, it can be made very short to 1 to 5 μm, and it is also possible to obtain a smooth reflective surface, so the loss of light propagating between this is extremely small. Therefore, it is possible to obtain a semiconductor laser device that has a small oscillation threshold current value and operates stably even at high optical output.Furthermore, etching is used instead of the cleavage method to form the irregular surface of the transparent semiconductor layer. This is also advantageous in the process of integrating a laser element and an electric circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明による半導体レーザ素子の
製造方法により製造した半導体レーザ素子の一実施例を
示す図で、第1図は光の進行方向に平行な方向の断面図
、第2図は光の進行方向に垂直な方向の断面図、第3図
は上記半導体レーザ素子の電流−光出力特性の一例を示
す図、第4図は」二記半導体レーザ素子において透明半
導体層の共振器長方向の長さを変えた場合のレーザ発振
しきい電流値の変化の一例を示す図、第5図は本発明に
よる半導体レーザ素子の製造方法により製造した半導体
レーザ素子の他の実施例を示す光の進行方向に平行な方
向の断面図である。 ]・・・半導体基板 2・・・第1クラッド層 3・・・レーザ活性層 4・・・第2クラッド層 6・・・透明半導体層 7・・・反射面 代理人弁理士 中村純之助 t]図 tJ 卆2図 才3図
1 and 2 are diagrams showing an embodiment of a semiconductor laser device manufactured by the method of manufacturing a semiconductor laser device according to the present invention. The figure is a cross-sectional view in the direction perpendicular to the direction of light propagation, Figure 3 is a diagram showing an example of the current-light output characteristics of the semiconductor laser element described above, and Figure 4 is the resonance of the transparent semiconductor layer in the semiconductor laser element mentioned above. A diagram showing an example of a change in the laser oscillation threshold current value when the length in the longitudinal direction is changed, and FIG. 5 shows another example of a semiconductor laser device manufactured by the method for manufacturing a semiconductor laser device according to the present invention. FIG. 3 is a cross-sectional view taken in a direction parallel to the traveling direction of the light shown in FIG. ] ... Semiconductor substrate 2 ... First cladding layer 3 ... Laser active layer 4 ... Second cladding layer 6 ... Transparent semiconductor layer 7 ... Reflective surface Patent attorney Junnosuke Nakamura t] Figure tJ Figure 2 Figure 3 Figure tJ

Claims (1)

【特許請求の範囲】[Claims] (1)  半導体基板」二に第1クラッド層、レーザ活
性層、第2クラッド層よりなるダブルへテロ構造を形成
し、該タプルヘテロ構造の成長層の一部を化学エツチン
グあるいは反応性イオンエツチングと化学エツチングと
の併用によりレーザ活性層より深い位置まで除去し、」
−記成長層を除去した部分にレーザ波長に対して透明な
半導体層を形成し、この透明半導体層の一部をその加工
面がレーザ活性層平而に対してほぼ直角になるようにレ
ーザ活性層より深い位置までエツチングして反則面を形
成する半導体レーザ素子の製造方法。゛(2)透明半導
体層の共振器長方向の長さを1〜5μmとする特許請求
の範囲第1項番こ記載した半導体レーザ素子の製造方法
(1) A double heterostructure consisting of a first cladding layer, a laser active layer, and a second cladding layer is formed on a semiconductor substrate, and a part of the growth layer of the tuple heterostructure is chemically etched or reactive ion etched and chemically etched. When used in combination with etching, it can be removed to a deeper position than the laser active layer.
- A semiconductor layer that is transparent to the laser wavelength is formed in the area where the growth layer has been removed, and a part of this transparent semiconductor layer is activated by laser so that the processed surface is approximately perpendicular to the plane of the laser active layer. A method of manufacturing a semiconductor laser device in which a nonconforming surface is formed by etching to a deeper position than the layer. (2) The method for manufacturing a semiconductor laser device as described in claim 1, wherein the length of the transparent semiconductor layer in the cavity length direction is 1 to 5 μm.
JP2950183A 1983-02-25 1983-02-25 Manufacture of semiconductor laser element Pending JPS59155977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2950183A JPS59155977A (en) 1983-02-25 1983-02-25 Manufacture of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2950183A JPS59155977A (en) 1983-02-25 1983-02-25 Manufacture of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS59155977A true JPS59155977A (en) 1984-09-05

Family

ID=12277826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2950183A Pending JPS59155977A (en) 1983-02-25 1983-02-25 Manufacture of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS59155977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005576A1 (en) * 1990-09-14 1992-04-02 Gte Laboratories Incorporated New structure and method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005576A1 (en) * 1990-09-14 1992-04-02 Gte Laboratories Incorporated New structure and method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers

Similar Documents

Publication Publication Date Title
JPS6343908B2 (en)
JPH10284800A (en) Semiconductor light-emitting element and manufacture therefor
JPS59155977A (en) Manufacture of semiconductor laser element
JPH0936474A (en) Semiconductor laser and fabrication thereof
JPS6258557B2 (en)
JP2947164B2 (en) Semiconductor laser device
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
EP0713275B1 (en) Method for fabricating a semiconductor laser diode
US5042044A (en) Semiconductor laser device, a semiconductor wafer
JPS61253882A (en) Semiconductor laser device
JPS60132381A (en) Semiconductor laser device
JP3200918B2 (en) Semiconductor laser device
JPH10223970A (en) Semiconductor laser
JPH0613709A (en) Semiconductor laser device and manufacture thereof
JPS5864084A (en) Semiconductor laser
JPH03203283A (en) Semiconductor laser device
JPH08307010A (en) Semiconductor laser
JPS5980983A (en) Semiconductor laser device
JPS6076184A (en) Semiconductor laser
JPH01161885A (en) Semiconductor laser
JPH07122813A (en) Manufacture of semiconductor laser
JPH0677607A (en) Semiconductor laser element and fabrication thereof
JPS6362289A (en) Semiconductor laser
JPS6058691A (en) Semiconductor device
JPS61184891A (en) Semiconductor laser