JPS6126776A - Plasma cvd apparatus - Google Patents
Plasma cvd apparatusInfo
- Publication number
- JPS6126776A JPS6126776A JP14604384A JP14604384A JPS6126776A JP S6126776 A JPS6126776 A JP S6126776A JP 14604384 A JP14604384 A JP 14604384A JP 14604384 A JP14604384 A JP 14604384A JP S6126776 A JPS6126776 A JP S6126776A
- Authority
- JP
- Japan
- Prior art keywords
- drums
- raw material
- material gas
- electrodes
- drum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
[技術分野J
本発明は、プラズマCVD技術を用いてドラム等の円筒
状基体の表面にアモルファス・シリコン等の膜を蒸着し
て、例えば、電子写真用感光体ドラムを連続的に生産す
ることができるプラズマCVD装置に関し、特にその原
料ガスを適切に処理してドラム表面にアモルファス・シ
リコン膜を均等に蒸着することができるプラズマCVD
装置に関するものである。
[従来技術]
この種の装置は、プラズマCVD装置の電極配置方式か
ら分類すれば、従来の容量結合型プラズマCVO装置と
同様の構造を有する。
しかしながら、この構造を主に電子写真用感光体ドラム
作製用のプラズマCVD装置に適用すると、カソード電
極とアノード電極(ドラム)とが同心円状に配置されて
いるため、ドラム収納個数が制約され、装置構造が複雑
になる。[Technical Field J The present invention is directed to the continuous production of, for example, photosensitive drums for electrophotography by depositing a film of amorphous silicon or the like on the surface of a cylindrical substrate such as a drum using plasma CVD technology. Regarding plasma CVD equipment that can be used, in particular, plasma CVD that can uniformly deposit an amorphous silicon film on the drum surface by appropriately processing the raw material gas.
It is related to the device. [Prior Art] This type of device has a structure similar to a conventional capacitively coupled plasma CVO device if classified based on the electrode arrangement method of the plasma CVD device. However, when this structure is applied to a plasma CVD apparatus mainly used for producing photoreceptor drums for electrophotography, the cathode electrode and anode electrode (drum) are arranged concentrically, which limits the number of drums that can be stored in the apparatus. The structure becomes complicated.
【目的1
そこで本発明の目的は、以上のような問題を解消して、
例えばアモルファス・シリコン感光体材料を用いる電子
写真用感光体ドラムの量産装置を得ることにあり、さら
に上述の従来例のごとき複雑な装置構造を大幅に簡素化
し、ドラムの収納側数を増やし、かつ電極配置方法、及
び形状を改善することにより、例えば従来の装置では困
難であった電子写真用ドラム等の量産、及び高速成膜を
有利に可能ならしめた装置を提供することにある。
【実施例】
第1図は本発明にかかるプラズマCVD装置の一実施例
の平面を示し、図中15は表面にアモルファス・シリコ
ン膜を形成するようにアルミニウム製の基板をドラム状
に形成した円筒状基体としてのドラムである。
lはドラム15を加熱するための加熱室、2は加熱室1
に続けて設けられ、ドラム15の表面にプラズマCVD
法によりアモルファス拳シリコン膜ヲ形成するための反
応室、および3は反応室2に続けて設けられ、膜形成後
のドラム15を冷却するための冷却室である。これらの
室!、2および3は気密構造を有している。8は保持枠
であって、複数のドラム15を軸中心に回転させると共
に、これらの中心軸が互いに同一平面上になるように、
かつ各軸が平行になるように直立して保持し、さらにド
ラム回転搬送機構を有する。
4は加熱室l内に各室1.2および3の連続方向に沿う
ように配置された一対のヒーターである。
この一対のヒーター4は、互いに平行になるように直立
して配置され、かつその間に配列方向がヒーター4に平
行になるように配置されたドラム15を加熱する。5は
各室の一側壁に設けられ、各室を真空に保つためのフィ
ルター及びバッフルを備えた排気系である。なお、反応
室2は、その両側壁に排気系5を有する。
7はカソード電極としての一対の平板状電極であって、
互いに平行になるように直立して反応室2内に配置され
ている。保持枠6によって、複数のドラム15は一対の
平板状電極7の間の所定の位置に配置される。この一対
の電極7は原料ガス供給のため二重構造となし、また、
ヒータ40を有する。さらに一対の電極7の各々は、前
記所定位置に配置した複数のドラム15の間の間隙に向
って原料ガスが噴出するように、その内側に原料ガスの
噴出用の孔7Aを形成する。
8は平板状電極7の外側に接続された。同電極7の二重
構造内に原料ガスを供給するための原料ガス供給パイプ
、8は電極7にパイプ8を介して接続して同電極7をカ
ソード電極とし、かつこの電極7に高周波パワーを供給
するための電源、10は保持枠6に保持されたドラム1
5を7ノード電極とするためのアースである。
11は一対め冷却板であって、互いに平行になるように
直立して冷却室3内に配置されている。一対の冷却板1
1はその間にある膜形成の終ったドラム15を冷却する
ために内部に水等の冷媒流路を有する。 12は冷却板
ll内に供給する水等の冷媒である。
13は各室!、2および3を隔離し、かつドラム15が
保持枠8とともに移動するときに開状態になる。
ように制御されるゲート・バルブ、14は加熱室l及び
冷却室3の排気系5に設けられ各室1および3を大気に
戻すためのり−ク・バルブである。
以上のような構成のプラズマCVD装置の作用について
以下に説明する。
保持枠6に固定されたドラム15は、第1図中左端のゲ
ート・バルブ13内を通って、加熱室lに保持枠Bとと
もに搬入され、排気系5により真空にされた後、加熱室
1内において図中矢印のように回転しながらヒーター4
により加熱される。
加熱されたドラム15は両室1および2間のゲート・バ
ルブ13内を通って排気系5により真空に保たれた反応
室2に保持枠Bとともに搬入されて、所定位置に配置さ
れる0反応室2に入ったドラム15はアース10に接続
されて、カソード電極としての一対の電極7に対する7
ノード電極を形成する。電極7と電場を形成し、図中矢
印で示すように回転しながら、ヒーターにより加熱され
たドラム15の表面には、原料ガス供給パイプ8を介し
て一対の平板状電極7の内側の孔7Aから反応室2内に
供給されたシラン等の原料ガスがプラズマ中で分解する
ことによってアモルファス・シリコン膜が形成される。
膜形成に寄与したガスは、反応室2の両側壁の排気系5
から外に排気される。
なお、ドラム15の表面にアモルファス・シリコンの膜
が堆積する速度は、放電強度が強いほど、およびガス密
度が高いほど(原料ガス流量が多いほど)速い、ドラム
15に関して、反応室2内の放電強度は電極7に近い部
分はど強く、そこから離れるほど弱い、したがってドラ
ム15の間の間隙における放電強度が最も弱い、一方、
原料ガスを反応室2内の所定位置に配置されたドラム1
5の間の間隙に向って電極7の孔7Aから噴出させるこ
とによって、反応室2内の原料ガス密度を、ドラム15
の間の間隙が最も高く、そこからドラム15の周方向に
遠ざかるにしたがって低くすることができる。
したがって、放電強度が弱い部分におけるガス密度を高
く、放電強度が強い部分におけるガス密度を低くするこ
とができる。その結果、ドラム15の表面へのアモルフ
ァス・シリコンの堆積速度をその周方向に均一化するこ
とができ、かくして、ドラム!5の表面に堆積するアモ
ルファス・シリコンの膜厚および膜質を均一にすること
ができる。
膜形成の終ったドラム15は反応室2と冷却室3との間
のゲート・バルブ13内を通って、排気系5により真空
に保たれた冷却室3に入り、図中矢印のように回転しな
がら冷却板11を介して冷媒!2と熱交換して冷却され
、リーク・バルブ14により大気に戻された冷却室3か
ら第1図中右端のゲー)−バルブ13内を通って冷却室
3外に出される。
また、上記実施例では、一対の電極7は共に高周波電源
8に接続してカソード電極としたが、これらのいずれか
一方をカソード電極とし、他方を高周波電源8に接続せ
ずにアースして一17ノード電極としてもよい(ドラム
15はいずれの場合も7−スする)。
【効果1
以上説明したように本発明によれば、膜厚および膜質が
均一であり、電気的特性に優れたアモルファスリシリコ
ン等の膜を表面に有する円筒状基体を効率的に得ること
ができる。[Objective 1] Therefore, the object of the present invention is to solve the above problems,
For example, the objective is to obtain a mass production device for electrophotographic photoreceptor drums using amorphous silicon photoreceptor material, and to further simplify the complicated device structure of the above-mentioned conventional example, increase the number of drum storage sides, and The object of the present invention is to provide an apparatus that advantageously enables mass production of electrophotographic drums and the like and high-speed film formation, which has been difficult with conventional apparatuses, by improving the electrode arrangement method and shape. [Example] Fig. 1 shows a plan view of an embodiment of a plasma CVD apparatus according to the present invention, and 15 in the figure shows a cylinder made of an aluminum substrate formed into a drum shape so as to form an amorphous silicon film on the surface. The drum serves as a shaped substrate. 1 is a heating chamber for heating the drum 15, 2 is a heating chamber 1
A plasma CVD film is applied to the surface of the drum 15.
A reaction chamber 3 is provided following the reaction chamber 2 to form an amorphous silicon film by the method, and a cooling chamber 3 is provided to cool the drum 15 after the film is formed. These rooms! , 2 and 3 have an airtight structure. Reference numeral 8 denotes a holding frame which rotates the plurality of drums 15 around their axes and so that their central axes are on the same plane.
It is held upright so that its axes are parallel to each other, and has a drum rotation conveyance mechanism. Reference numeral 4 denotes a pair of heaters arranged in the heating chamber 1 along the continuous direction of the chambers 1, 2 and 3. The pair of heaters 4 are arranged upright so as to be parallel to each other, and heat a drum 15 arranged between them so that the arrangement direction is parallel to the heaters 4. Reference numeral 5 denotes an exhaust system provided on one side wall of each chamber and equipped with a filter and baffle for keeping each chamber in a vacuum. Note that the reaction chamber 2 has an exhaust system 5 on both side walls thereof. 7 is a pair of flat electrodes as cathode electrodes,
They are arranged upright in the reaction chamber 2 so as to be parallel to each other. The plurality of drums 15 are arranged at predetermined positions between the pair of flat electrodes 7 by the holding frame 6 . This pair of electrodes 7 has a double structure for supplying raw material gas, and
It has a heater 40. Further, each of the pair of electrodes 7 has a hole 7A for ejecting raw material gas inside thereof so that the raw material gas is ejected toward the gap between the plurality of drums 15 arranged at the predetermined positions. 8 was connected to the outside of the flat electrode 7. A raw material gas supply pipe 8 for supplying raw material gas into the double structure of the electrode 7 is connected to the electrode 7 via a pipe 8 to use the electrode 7 as a cathode electrode, and to apply high frequency power to the electrode 7. A power source 10 for supplying a drum 1 held in a holding frame 6
This is the ground for making 5 into a 7 node electrode. A pair of cooling plates 11 are arranged upright in the cooling chamber 3 so as to be parallel to each other. A pair of cooling plates 1
1 has a refrigerant flow path for water or the like inside to cool the drum 15 between which the film formation has been completed. Reference numeral 12 denotes a coolant such as water that is supplied into the cooling plate ll. 13 is each room! , 2 and 3 and are in an open state when the drum 15 moves together with the holding frame 8. The gate valve 14 controlled in this manner is a leak valve provided in the exhaust system 5 of the heating chamber 1 and the cooling chamber 3 to return each chamber 1 and 3 to the atmosphere. The operation of the plasma CVD apparatus configured as above will be explained below. The drum 15 fixed to the holding frame 6 is carried into the heating chamber 1 together with the holding frame B through the gate valve 13 at the left end in FIG. Heater 4 is rotated in the direction shown by the arrow in the figure.
heated by. The heated drum 15 passes through the gate valve 13 between both chambers 1 and 2, and is carried into the reaction chamber 2, which is kept in vacuum by the exhaust system 5, together with the holding frame B, and is placed in a predetermined position for zero reaction. The drum 15 entering the chamber 2 is connected to ground 10 and connected to a pair of electrodes 7 as cathode electrodes.
Form a node electrode. An electric field is formed with the electrode 7, and the surface of the drum 15 is heated by the heater while rotating as shown by the arrow in the figure. An amorphous silicon film is formed by decomposing a raw material gas such as silane supplied into the reaction chamber 2 in the plasma. The gas that contributed to film formation is discharged from the exhaust system 5 on both side walls of the reaction chamber 2.
is exhausted outside. Note that the rate at which an amorphous silicon film is deposited on the surface of the drum 15 is faster as the discharge intensity is stronger and as the gas density is higher (the flow rate of the raw material gas is larger). The intensity is strongest near the electrode 7 and weaker as it moves away from there, so the discharge intensity in the gap between the drums 15 is the weakest.
A drum 1 arranged at a predetermined position in a reaction chamber 2 supplies raw material gas.
By ejecting from the hole 7A of the electrode 7 toward the gap between the drums 15 and 5, the raw material gas density in the reaction chamber 2
The gap between them is the highest, and can be decreased as the distance from there in the circumferential direction of the drum 15 increases. Therefore, it is possible to increase the gas density in areas where the discharge intensity is weak and to lower the gas density in areas where the discharge intensity is strong. As a result, the deposition rate of amorphous silicon on the surface of the drum 15 can be made uniform in the circumferential direction, and thus the drum! The film thickness and quality of the amorphous silicon deposited on the surface of the film 5 can be made uniform. The drum 15 after film formation passes through the gate valve 13 between the reaction chamber 2 and the cooling chamber 3, enters the cooling chamber 3 kept in vacuum by the exhaust system 5, and rotates as shown by the arrow in the figure. While cooling the coolant through the cooling plate 11! From the cooling chamber 3, which is cooled by exchanging heat with the cooling chamber 2 and returned to the atmosphere by the leak valve 14, it passes through the valve 13 at the right end in FIG. Furthermore, in the above embodiment, both of the pair of electrodes 7 were connected to the high frequency power source 8 to serve as cathode electrodes, but one of these electrodes could be used as a cathode electrode, and the other one could be grounded without being connected to the high frequency power source 8. It may also be a 17-node electrode (drum 15 has 7-nodes in both cases). [Effect 1] As explained above, according to the present invention, it is possible to efficiently obtain a cylindrical substrate having a film of amorphous silicon or the like on its surface that has uniform film thickness and film quality and excellent electrical properties. .
第1図は電子写真感光体ドラム製造用の本発明にかかる
プラズマCVD装置の平面図である。
2・・・反応室、
7・・・平板状電極、
7A・・・原料ガスの噴射用の孔、
15・・・ドラム。FIG. 1 is a plan view of a plasma CVD apparatus according to the present invention for manufacturing an electrophotographic photosensitive drum. 2... Reaction chamber, 7... Flat electrode, 7A... Hole for injection of raw material gas, 15... Drum.
Claims (1)
、 各中心軸が前記平行平板電極と平行な一同一平面上に位
置し、かつ互いに平行になるように複数の円筒状基体を
前記一対の平行平板電極の間の所定位置に配置するため
の基体保持手段とを具え、少なくとも1つの前記平行平
板電極は、前記所定位置に配置した複数の円筒状基体の
間の間隙に向って原料ガスを噴出する原料ガスの噴出部
を有することを特徴とするプラズマCVD装置。[Scope of Claims] A pair of parallel plate electrodes arranged parallel to each other, and a plurality of cylinders each having a central axis located on the same plane parallel to the parallel plate electrodes and parallel to each other. a substrate holding means for disposing the shaped substrate at a predetermined position between the pair of parallel plate electrodes, and at least one of the parallel plate electrodes is arranged in the gap between the plurality of cylindrical substrates disposed at the predetermined position. A plasma CVD apparatus characterized by having a raw material gas ejection part that spouts raw material gas toward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14604384A JPS6126776A (en) | 1984-07-16 | 1984-07-16 | Plasma cvd apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14604384A JPS6126776A (en) | 1984-07-16 | 1984-07-16 | Plasma cvd apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6126776A true JPS6126776A (en) | 1986-02-06 |
Family
ID=15398808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14604384A Pending JPS6126776A (en) | 1984-07-16 | 1984-07-16 | Plasma cvd apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6126776A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5970528A (en) * | 1995-07-07 | 1999-10-26 | Matsushita Electric Industrial Co., Ltd. | Warm-water washing device |
-
1984
- 1984-07-16 JP JP14604384A patent/JPS6126776A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5970528A (en) * | 1995-07-07 | 1999-10-26 | Matsushita Electric Industrial Co., Ltd. | Warm-water washing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005064660A1 (en) | Microwave plasma processing method, microwave plasma processing apparatus, and its plasma head | |
US6335281B1 (en) | Deposited film forming process | |
JPS6126776A (en) | Plasma cvd apparatus | |
JPS6010618A (en) | Plasma cvd apparatus | |
JPS6126777A (en) | Plasma cvd apparatus | |
JPH0427293B2 (en) | ||
JPS6126779A (en) | Plasma cvd apparatus | |
JPS616277A (en) | Plasma cvd device | |
JPH0152052B2 (en) | ||
JPS6126778A (en) | Plasma cvd apparatus | |
US5718769A (en) | Plasma processing apparatus | |
JPS6242027B2 (en) | ||
JPS6242026B2 (en) | ||
JPS616278A (en) | Plasma cvd device | |
JP2920637B2 (en) | Glow discharge decomposition equipment | |
JPS6239532B2 (en) | ||
JPH06252060A (en) | Plasma cvd device | |
JPH05217915A (en) | Plasma cvd device | |
JP2620782B2 (en) | Deposition film forming apparatus by plasma CVD method | |
JP2001214276A (en) | Deposited film depositing apparatus | |
JPS58171564A (en) | Capacity coupling type decomposing device using glow discharge | |
JP2776087B2 (en) | Electrophotographic photoreceptor manufacturing equipment | |
JPS58154226A (en) | Plasma cvd apparatus | |
JPS6010619A (en) | Film formation by glow discharge | |
JP2003129245A (en) | Apparatus and method for forming plasma cvd film |