JPS58154226A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS58154226A
JPS58154226A JP3759482A JP3759482A JPS58154226A JP S58154226 A JPS58154226 A JP S58154226A JP 3759482 A JP3759482 A JP 3759482A JP 3759482 A JP3759482 A JP 3759482A JP S58154226 A JPS58154226 A JP S58154226A
Authority
JP
Japan
Prior art keywords
gas
electrodes
electrode
substrate
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3759482A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
毅 中村
Toshihisa Hamano
浜野 利久
Hisao Ito
久夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP3759482A priority Critical patent/JPS58154226A/en
Publication of JPS58154226A publication Critical patent/JPS58154226A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)

Abstract

PURPOSE:To form films of good quality on a number of substrates having a large area by a method wherein the substrates are arranged across double cylindrical or polygonal pillar-shaped electrodes, which are formed in such a manner that reaction gas uniformly flows therebetween. CONSTITUTION:Second electrodes 15 are arranged suitably far from the periphery of a first cylindrical or polygonal pillar-shaped electrode 12 and a suitable space is also provided between the second electrodes, whereas substrates 16 are suitably positioned between the second electrodes 15 and the first electrode 12. Moreover, a heater 13 using infrared rays is provided on the first electrode side and gas is introduced in a chamber from a projected port 11 provided on the first electrode side and the gas is discharged from the space. In so doing, films are simultaneously formed on a number of substrates having a large area and the flow of the reaction gas and then the state of plasma can be made uniform. By properly changing the position of the substrate, the film of good quality having suitable thickness is formed in an optimum atmosphere of reaction.

Description

【発明の詳細な説明】 この発明は、真空蒸着法、スパッタリング法等のa膜作
製技術の一つであるCvD装置にかかり、特に膜の形成
時に反応気体をプラズマ状態とづるプラズマCV D 
HII/に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a CVD apparatus which is one of the a-film manufacturing techniques such as vacuum evaporation method and sputtering method, and in particular to a plasma CVD apparatus which turns a reactive gas into a plasma state during film formation.
Regarding HII/.

一般に使用されているcvoi置は、反応に必要な気体
(以1・単に「ガス」という)例えば膜形成に直接関与
する気体あるいは必要に応してこれらの気体を循環させ
る4ヤリア刀スの供給系と、ガスを反応させて所定の基
板上に股を形成づる反応系と、反応の終了したガスない
しは不費イiガスを排気する排気系とを有している。
Generally used CVOI equipment supplies gases necessary for the reaction (hereinafter simply referred to as "gases"), such as gases directly involved in film formation, or a gas supply system that circulates these gases as necessary. The reactor system includes a reaction system that reacts gases to form a ridge on a predetermined substrate, and an exhaust system that exhausts the gas after the reaction or waste gas.

さらに、プラスンCV I’、)装量は、他に反応系(
、■おいてプラズマをR11:させるIこめの手段を口
え(おり、この手段の方式から容品結合り式と誘導結合
方式とに大別される。このうら容量結合方式は、例えば
、第1図に示すように、所定の反応容器(以下「チェン
バー」という))99C内に所定の間隔をおいて円板状
の電極97 C198Cか配置されており、両電極間に
電源95Cによ・−)(適宜の電圧(直流又は高周波電
圧)が印加される。。
In addition, the amount of Plasun CV I',) is different from the reaction system (
, (2), the method for bringing the plasma to R11 is described.(This method is roughly divided into the container coupling method and the inductive coupling method. Of these, the capacitive coupling method is, for example, the As shown in Fig. 1, disc-shaped electrodes 97C198C are arranged at a predetermined interval in a predetermined reaction vessel (hereinafter referred to as "chamber") 99C, and a power source 95C is connected between the two electrodes. -) (Appropriate voltage (DC or high frequency voltage) is applied.

電極97C上にはその表面に膜か形成されるM板96C
が載置され、また、吸気IJ 93 Gから矢印0−1
の如くガスが流入し、排気[1’92 Cから矢印02
の如くガスが流出する。前記電極間に電圧が印加される
とチェンバー99C内で放電が発生し、カスの 部分が
プラズマ化される。
On the electrode 97C is an M plate 96C on which a film is formed.
is placed, and from the intake IJ 93 G to the arrow 0-1
The gas flows in as shown, and the exhaust gas [1'92
Gas flows out like this. When a voltage is applied between the electrodes, a discharge occurs within the chamber 99C, and the waste portion is turned into plasma.

例えば?モルファスシリコンの薄膜を作製する4 gに
J3いては、シランガス(StHa)、フッ化シリニl
ンガス(StFa)等を吸気口93Gか1)f1ンバー
99C内に導入するとともに、電極97C198C間に
数KV程度の^電圧を印加し、シランガス等を分解して
St 、St H,St Hz等のイオンを形成せしめ
る。これらが基板上に沈着して躾が形成されてゆく。
for example? In step 4 of producing a thin film of amorphous silicon, silane gas (StHa) and silicon fluoride were used.
At the same time, a voltage of about several KV is applied between the electrodes 97C and 198C to decompose the silane gas and the like into St, St H, St Hz, etc. Forms ions. These deposit on the substrate and form a slag.

他り、誘導結合方式は、−第2図に承りように吸気口9
31、排気口92Lを有し、石英等の絶縁物【″形成さ
れるチェンバー99 Lの外周に一1イル≦〕4Fを巻
回し、これに高周波電流を流入することによ・)でチェ
ンバ−99[−内のガスをプラズマ11゜ 化する。チェンバー99L内には、ペデスタル99Cが
設けられており、この上に基板96 Lが載置される。
In addition, the inductive coupling method is as shown in Figure 2.
31. The chamber has an exhaust port 92L and is made of an insulating material such as quartz (by winding an insulator of 4F around the outer circumference of the chamber 99L to be formed, and flowing a high-frequency current into it). The gas in the chamber 99L is turned into a plasma at 11 degrees. A pedestal 99C is provided in the chamber 99L, and a substrate 96L is placed on the pedestal 99C.

ガスは、矢印Ll乃至L3の如く流れるが、ヂIンバー
991内で(よ、」イル941に対4る通電によって発
生した磁界により分解、プラズマ化が行われ、F記と同
様にしく基板96L1に膜が形成されてゆく。
The gas flows as shown by the arrows L1 to L3, but is decomposed and turned into plasma by the magnetic field generated by energizing the inverter 941 within the diagonal inverter 991. A film is formed on the surface.

以[のようなプラズマCVD法は、他の薄酸形成法にく
らべて比較的大面積の膜形成が可能【−あるというCv
D法本米の利点とともに、膜形成過程にお【)るプラズ
マの挙動に起因づるガス渇庶あるいは基板温度の低減化
等の利点を有しく Jjす。
The plasma CVD method described below is capable of forming a film over a relatively large area compared to other thin acid formation methods.
In addition to the advantages of the D method, it also has advantages such as reduction in gas starvation and substrate temperature due to the behavior of plasma during the film formation process.

今後発展が予想される技賛1である。This is Techsan 1, which is expected to develop in the future.

しかしながら従来のプラズマCV D −1& IIの
うh容ω結合方式において、大面積あるいは多数のM板
に同時に膜形成するためには電極の面積含入とりるか又
は多数の電極を設けることが必要(あるが、電極面積を
大とケるとその形状が平根(あるため装置全体の大型化
あるいはプラズマの不拘を招くこととなり、他方、電極
の数を多くし、多I、: 小電極構造では大面積基板の膜形成に適さず史には導電
性を有するガスの使用において電極間の放電発生という
不都合がある。
However, in the conventional plasma CV D-1 & II cell omega coupling method, in order to simultaneously form a film on a large area or a large number of M plates, it is necessary to increase the area of the electrode or provide a large number of electrodes. (However, if the electrode area is increased, the shape becomes flat. This results in an increase in the size of the entire device or inconsistency of the plasma.On the other hand, if the number of electrodes is increased and the number of electrodes is increased, the small electrode structure It is not suitable for film formation on large-area substrates, and there is the disadvantage that discharge occurs between electrodes when using a conductive gas.

、L t−、誘導結合方式には、プラズマの^密麿化庖
図ることができるが、大面積基板の膜形成で%−龜lノ
ズマの不均一を招くという不都合がある。
, Lt-, Although the inductive coupling method can achieve a dense plasma, it has the disadvantage of causing non-uniformity of the nozzle when forming a film on a large-area substrate.

この発明は、上記実情に鑑みてなされたものであり、従
来技術の欠点を改善して多数の大面1liii基板に刑
する膜形成を可能とするととムに、プラス\〕の均 化
を図って最適なる反応雰囲気中で良好なる躾の形成を行
うことができるプラズマCVD%ILIVを提供するこ
とをその目的とする。
This invention was made in view of the above-mentioned circumstances, and aims to improve the drawbacks of the prior art, make it possible to form a film on a large number of large-sized 1lIII substrates, and even out the advantages. The purpose is to provide a plasma CVD %ILIV that can form good discipline in an optimal reaction atmosphere.

すなわら、この発明は、プラズマ発生用の電極台−小の
円筒又は多角柱状に形成し、この電極間に基板を配置し
、また基板の加熱装置を赤外線照制型どして中心の電極
側に配置して基板の位置を変更できるようにするととも
に、反応ガスが両電極間を均 に流れるように電極を形
成づることに五つで多数の人、面積基板に対して良質な
る躾′形成ヲ11うまうにしたものである。
In other words, in this invention, an electrode stand for plasma generation is formed in the shape of a small cylinder or a polygonal prism, a substrate is arranged between these electrodes, and a heating device for the substrate is of an infrared irradiation type or the like to heat the central electrode. In addition to making it possible to change the position of the substrate by placing it on the side, it is also possible to form the electrodes so that the reaction gas flows evenly between both electrodes. It is made 11 times better.

以下、この発明にかかるプラズマCVD装置を添61図
面に承り実施例に従って詳細に説明する。
Hereinafter, the plasma CVD apparatus according to the present invention will be described in detail according to embodiments with reference to the attached 61 drawings.

第3図は、この発明にかかるプラズマCVD装置の反応
系であるブ1ンバー10を 部断面しく示した斜視図e
あり、この図のtv−tv線tこ沿) I=側断面第4
図に、v−V線に沿った断面舎弟5J[ヌ1に各々示す
。なお、第3図は蓋部19を開GJ /、、:状態を示
し、第4図は閉じIこ状態を示?J1゜これら第3図乃
至第5図において、チ1ンバー10は、本体11と、蓋
部19とから成つ(おりこの蓋部19の開閉を行って後
述づる基板16のセット等を行うことができるようにa
つ(いる。
FIG. 3 is a perspective view showing a partial cross section of the chamber 10 which is the reaction system of the plasma CVD apparatus according to the present invention.
Yes, along the tv-tv line t in this figure) I = side cross section 4th
In the figure, a cross section taken along the line v-V is shown in 5J [1]. Note that FIG. 3 shows the lid 19 in the open state, and FIG. 4 shows the closed state. J1゜In these Figures 3 to 5, the chamber 10 consists of a main body 11 and a cover 19 (the cover 19 can be opened and closed to set the board 16 as described later). so that a
end.

本体11は、略円筒状に形成され、での底部略中火に吸
気口17が、また側部適宜位置tこIJI気1118が
各々設&Jられている。
The main body 11 is formed into a substantially cylindrical shape, and is provided with an intake port 17 at a substantially medium bottom portion, and an intake port 1118 at an appropriate position on the side.

このうら、吸気L117に連結し、t−’t″)、4、
体11の凹部中火に突出して円筒状の電極(1スI甲に
「アノード」という)12が設しノら↑)(いる。
Behind this, it is connected to the intake L117, t-'t''), 4,
A cylindrical electrode (referred to as an ``anode'' in the upper part of the body 11) 12 is provided protruding from the recessed part of the body 11.

このアノード12の側面には、多数のガス突出111−
1が規則的に配列されており、前記吸気[−,1’17
 /)〜ら導入されたガスがこのガス突出口E1からチ
]ンバー10内に放出されるようIJな・ノ(いる。史
に、前記アノード121:&、本体10に対して図示し
1イfい手段t、ニより適宜の絶縁が施されており、プ
ラスン光1用の電圧が印加されるにうになっている。
On the side surface of this anode 12, a large number of gas protrusions 111-
1 are arranged regularly, and the intake air [-, 1'17
The IJ is arranged so that the gas introduced from the gas outlet E1 is released into the chamber 10 from the gas outlet E1. Appropriate insulation is applied to the means t and d, and a voltage for the positive light 1 is applied thereto.

このアノード12の上部には、支持部材14が設(Jら
れており、この支持部材14と7ノード12の外側面と
の交差する位置並びに本体10の内側底面と7ノード1
42の外側面との交差する位置にはぞれぞれ加熱装[1
13が対称に設けられている。この加熱装置13は、ハ
ロゲンランプ13Aが石英等の透明状ケースに内装され
た構成となっており、ハロゲンランプ13Aから発せら
れる赤外線が対向Jる基板16に照射されるようになっ
ている。
A support member 14 is provided on the upper part of this anode 12, and the position where this support member 14 intersects with the outer surface of the 7 nodes 12 and the inner bottom surface of the main body 10 and the 7 nodes 1
A heating device [1
13 are provided symmetrically. This heating device 13 has a structure in which a halogen lamp 13A is housed in a transparent case made of quartz or the like, and infrared rays emitted from the halogen lamp 13A are irradiated onto the opposing substrate 16.

次に、前記アノード12の外周には、適宜の間隔15A
をおいて略円弧状の他の電極(以下単に[カソード」と
いう)15が4個対称に配置されている。これらカッ−
115は、前記加熱装置13に各々対峙しており、この
カソード15とアン−11糞1.−よっ、形成され、、
Ml、円筒状。空間内適宜位置に基板16が配置される
。第3図におい(は、基板16は1個のみ示すが、第5
図では4個の基板16を配置しIこ場合を承り、基板1
6は適宜の基板ホルダー168にヒツトされ−(/Iン
バー10内に配置されるようにイト)(いるが、通常カ
ソード15がアースされているので、このカソード15
にホルダー装置を設GJ、基板16をカソード15の表
向にしツトするようにしくシ」、い。
Next, the outer periphery of the anode 12 is provided with an appropriate interval of 15A.
Four other electrodes (hereinafter simply referred to as "cathode") 15 having a substantially circular arc shape are arranged symmetrically. These cool
115 respectively face the heating device 13, and the cathode 15 and the an-11 feces 1. -Okay, it's formed...
Ml, cylindrical; A substrate 16 is placed at an appropriate position within the space. In FIG. 3, only one substrate 16 is shown, but the fifth
In the figure, four boards 16 are arranged.
6 is attached to a suitable substrate holder 168 (to be placed inside the inverter 10) (but since the cathode 15 is normally grounded, this cathode 15
A holder device is installed in the GJ, and the substrate 16 is placed on the surface of the cathode 15.

以トのように、チ1ンバー10内は、円筒状のアノード
12を中心としてイの周囲に基板16庖放射状に対称に
配置し、更にこの基板1Gの背後に同様な対称位置でカ
ソード15が間隔1F)Aをおいて配置し、更にアノー
ド12の上下部に前記基板16に対して赤外線照射41
−sう加熱装置13を配置した構成となっている。従−
)τチェンバー10内の平面図は、第5図に示づような
略λ・1称どなる。但し、V板16の数によっては史に
7Jソード15、加熱装置13の数を増減しくもよく、
また基板16を必ず対称、に配置する必要はない。
As shown above, inside the chamber 10, the substrates 16 are arranged radially and symmetrically around the cylindrical anode 12, and the cathode 15 is arranged behind the substrate 1G at a similar symmetrical position. The substrate 16 is irradiated with infrared rays 41 at the upper and lower portions of the anode 12.
-s heating device 13 is arranged. subordinate
) The plan view of the interior of the τ chamber 10 is approximately λ·1 as shown in FIG. However, depending on the number of V plates 16, the number of 7J swords 15 and heating devices 13 may be increased or decreased.
Further, it is not necessary to arrange the substrates 16 symmetrically.

次に、前記吸気D 1””7は、従来と同様の構成の図
示しないガス供給系に接続されており、υ1気口18は
、図示しないロークリ−ボンlあるいはスカー力ルフー
スターポンプ等の排気系に接続されている。また本体1
1の上端部にはシール20(第ご1図において図示せず
)が設iノられており、本体11と蓋部19との密着性
を向上させ、真空しれ等4=防止するようになっている
Next, the intake air D1""7 is connected to a gas supply system (not shown) having the same configuration as the conventional one, and the υ1 air port 18 is connected to a gas supply system (not shown) such as a low-reservoir pump (not shown) or a scarf-le-Fuster pump (not shown). Connected to the exhaust system. Also, main body 1
A seal 20 (not shown in FIG. 1) is provided at the upper end of the seal 1 to improve the adhesion between the main body 11 and the lid 19 and to prevent vacuum leakage. ing.

次に上記実施例の全体的動作を説明する。まf塁椴16
をヂ1ンバー10内にセットすることなく基部19を閉
じて排気口18より排気し、チェンバー10内を適宜の
真空状態とする。このとき必曹に応じCチェンバ−10
全体を図示しない手段にJ、ってベーキングし、不要な
吸着ガスを排気する。この後、吸気口17から反応ガス
を第4図の矢印F1の如くチェンバー10内に導入し、
膜形成の条例と同一の条件例えば真空度、ガスの混合比
、流量等を同一とし、更にアノード12とアノード15
との間に電圧を印加し、プラズマを発生台さける。
Next, the overall operation of the above embodiment will be explained. maf base 16
Without setting the chamber 10 in the chamber 10, the base 19 is closed and the air is evacuated from the exhaust port 18 to bring the inside of the chamber 10 into an appropriate vacuum state. At this time, depending on the necessity, C chamber 10
The whole is baked by means not shown, and unnecessary adsorbed gas is exhausted. After that, the reaction gas is introduced into the chamber 10 from the intake port 17 as indicated by the arrow F1 in FIG.
The conditions are the same as those for film formation, such as the degree of vacuum, gas mixture ratio, flow rate, etc., and the anode 12 and anode 15 are
A voltage is applied between the two and the plasma generation stage is avoided.

この状態で図示しない分光分析あるいは質量分析装置に
よって7ノード12からカソード15に至る空間におけ
るプラズマの状態を観察し、その分布を調査する。
In this state, the state of the plasma in the space from the seven nodes 12 to the cathode 15 is observed using a spectrometer or mass spectrometer (not shown), and its distribution is investigated.

この後、蓋部19を開けて基板16をヒツト−・yる。After that, the lid 19 is opened and the substrate 16 is pressed.

この時に前述した操作によって調べたプラズマの分布を
参考にして形成しJ、うどする睦に最適な位置すなわち
アノード12からの距離を求め、この位置に基板16苓
セツトする。例えば、前述したアモルファスシリ」ンに
43いては、S、ll、11@の活性種の密痘が最も高
い位置に基板16をセットする。
At this time, referring to the plasma distribution investigated by the above-mentioned operations, the optimum position for forming and discharging the substrate, that is, the distance from the anode 12, is determined, and the substrate 16 is set at this position. For example, in the above-mentioned amorphous silicone 43, the substrate 16 is set at the position where the active species of S, 11, and 11@ are the highest.

次に、蓋部19を閉じ(再び10内を真空ど伎る。この
時に前述したチェンバー10全体のベーキングのほかに
、加熱装置13によりす根1Gを加熱することによって
、基板16の表面にイ・]吟した微細なチリ等を除去す
ることが−(さ、4/1成される膜の質を^めることが
できる。また、ある程度真空に引いた後アルーfン、ブ
ッ木などの小活性ガスを導入し、アノード12に電圧を
印加しく適切なる放電を行いブシズンをR1さけること
によ−)で基板16の表面のみならずカソード15葛の
表面に付着したチリ等を除去することしできる1゜以1
の操作の後、第4図の矢印F1の如くブ■ンバー10内
に反応ガスを導入し、所定の条件にづるとともに、アノ
ード12に電圧を印加しくブノスンを発生させる。これ
によって基板16の表面lに膜が形成されてゆく。反応
ガスは、アノード12の規則的に配列されたガス突出口
Hからチーンハー10内に流入するため、略均−にヂJ
ンt<−1Q内に拡がるとともに、カソード15間に1
4称に設けられた間隔15Aからカソード15の前面に
達しく第5図参照)、更には排気[118から第4図の
矢印「2の如く排気される。従って、f+ンバー10内
のプラズマの分布は略均−1対称に保持されることとな
り、基板上には良質な膜か形成されることとなる。なお
、必要に応じて加熱装置により基板16の加熱を行う。
Next, the lid part 19 is closed (the inside of the chamber 10 is vacuumed again. At this time, in addition to baking the entire chamber 10 described above, by heating the base 1G with the heating device 13, the surface of the substrate 16 is heated.・]Removal of fine dust etc. can improve the quality of the film formed.Also, after vacuuming to a certain extent, the removal of dust, etc. By introducing a small amount of active gas and applying a voltage to the anode 12 to generate an appropriate discharge and avoid the gas R1, dust and the like adhering not only to the surface of the substrate 16 but also to the surface of the cathode 15 are removed. 1° or more 1
After the above operation, a reactive gas is introduced into the bubble 10 as indicated by the arrow F1 in FIG. 4, and a voltage is applied to the anode 12 under predetermined conditions to generate a bubble. As a result, a film is formed on the surface l of the substrate 16. Since the reaction gas flows into the chamber 10 from the regularly arranged gas outlets H of the anode 12, the reaction gas flows approximately evenly.
1Q between the cathodes 15 and 1Q.
(see FIG. 5), which reaches the front surface of the cathode 15 from the space 15A provided in the 4th direction), and further exhaust gas from the space 118 as shown by arrow 2 in FIG. The distribution is maintained to be approximately uniform and -1 symmetrical, and a high quality film is formed on the substrate.The substrate 16 is heated by a heating device if necessary.

この発明に関して試作した装置において、膜形成時の貞
空麿数1l−Orr乃至斂7orr、アノード12への
印加電圧Lt13.56MHz 、数Kvとし、チJン
バー10の内径を30 al+、高さ30個として7 
cm X 24αの大きさのガラス基板10枚程度に対
し同時に膜を形成したが、きわめて良好なる膜質、膜形
成速度を得ることが(さ/、: 、、。
In the apparatus prototyped in connection with the present invention, the magnetic flux during film formation was 1 l-Orr to 7 orr, the voltage applied to the anode 12 was 13.56 MHz, several Kv, the inner diameter of the chamber 10 was 30 al+, and the height was 30 7 as a piece
Films were simultaneously formed on about 10 glass substrates with a size of cm x 24α, and extremely good film quality and film formation speed were obtained.

なお、上記実施例においては、ヂfンバー10内に4個
のカソード15を設(Jだが、必要に応して適宜数設け
てよい。また、基板16の数とカソード15の数を2一
致させる必要はなく、例えば1つのカソード15に対し
て3枚の基板16を対応させるようにしてもよい。また
、排気口18ム必要に応じて複数個設けてもよい。更に
、1記実施例においては、チ]ンバー10を円筒状に形
成したが、多角柱状に形成し、アノード12ら多角+1
状に形成して各側面に対応Jるように基板1G、カソー
ド15を配置し、あるいはカソード1j5を平板で形成
してもよい。またガス突出[]11をチ1ンバー10の
底面に設けるようにしてbよい。
In the above embodiment, four cathodes 15 are provided in the dif- fer 10 (J, but an appropriate number may be provided as necessary. Also, the number of substrates 16 and the number of cathodes 15 are set to match 2). For example, three substrates 16 may correspond to one cathode 15. Also, a plurality of exhaust ports 18 may be provided as necessary. In the above, the chamber 10 was formed in a cylindrical shape, but it was formed in a polygonal column shape, and the anode 12 was formed in a polygonal shape with +1
The substrate 1G and the cathode 15 may be arranged so as to correspond to each side surface, or the cathode 1j5 may be formed as a flat plate. Further, the gas protrusion [] 11 may be provided on the bottom surface of the chamber 10.

以−[説明したように、この発明にがかるプラズマCV
D装置によれば、円筒又は多角柱状の第1の電極の外周
に適宜の距離をおい−(第2の#i極を配置し、且つこ
の第2の電極相nに適宜の間隔を段重〕、これら第2の
電極と第1の電極どの間の適宜(C置にM板を配置し、
更に前記第1の電極側に4外線による加熱装置を設ける
とともに、第1の14の側面に設(〕だガス突出口から
チェンバー内に)fス庖導入し、更に前記間隔からガス
を排気ケることどしたので、多数の人面相基板に対して
同u1に膜形成を行うことができるとともに、反応ガス
の流れひいてはプラズマの状態を均一化し、且つ基板の
位置を適宜変更することによって最適なる反応雰囲気中
で膜質、膜厚の良好なる躾の形成を行うことができると
いうすぐれた効果を秦する。
[As explained above, the plasma CV according to the present invention
According to the device D, the second #i pole is placed at an appropriate distance on the outer periphery of the cylindrical or polygonal columnar first electrode, and the second electrode phase n is stepped at an appropriate interval. ], place the M plate at the appropriate position (C) between these second electrodes and the first electrode,
Further, a heating device using 4 external wires is provided on the side of the first electrode, and an f-span installed on the side of the first electrode (into the chamber from the gas outlet) is introduced into the chamber, and furthermore, gas is introduced from the above-mentioned interval into an exhaust pipe. As a result, it is possible to perform film formation on a large number of human-faced substrates at the same u1, and by uniformizing the flow of the reactant gas and the state of the plasma, and by changing the position of the substrates as appropriate, the process can be optimized. It has an excellent effect of being able to form a film with good quality and thickness in a reaction atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は容量結合方式のプラズマCVD装置のM本釣構
成を示す斜?R図、第2図はM*結合り式のプラズマC
VD装置の基本的構成を示す斜視図、i13図はこの発
明にかかるプラズマCVD装置の構成例を示寸一部断面
した斜視図、第4図は第3図のtv −tv線に沿った
断面を示寸断面図、第5図は第3図のv−v線に沿った
断面を示す断面図である。 12・・・第1の電極であるアノード、13・・・加熱
装置、15・・・第2の電極であるカソード、1bへ・
・・間隔、16・・・基板、11・・・ガス突出し]。
Figure 1 shows the M-line configuration of a capacitively coupled plasma CVD apparatus. Figure R and Figure 2 are M* coupled type plasma C.
FIG. 4 is a perspective view showing the basic configuration of a VD device; FIG. 5 is a sectional view taken along line v--v in FIG. 3. FIG. 12... Anode which is the first electrode, 13... Heating device, 15... Cathode which is the second electrode, to 1b.
... spacing, 16... substrate, 11... gas protrusion].

Claims (1)

【特許請求の範囲】[Claims] 所定のガスの供給系と、膜を形成づる反応系と、ガスの
排気系とを有し■つ前記反応系にプラズマ光′1用の第
1及び第2の電極を貝えたプラズマCV r、) H置
において、前記第1の電極を中空の円りl状又IJ多角
社状に形成せしめるとともにその側面(、二複数のガス
突出口を配列し、この第1の電極の周囲に一定の距離を
おき且つ相nに 定の間隔をJjいて複数の第2の電極
を配置し、第1及び第2の′tIIi極の中間又は第2
の電極の表面に基板を配置し、この基板に赤外線を照射
する加熱装置を第1の電極の近傍に配置したことを特徴
とするプラズマCVD装置。
A plasma CV r comprising a predetermined gas supply system, a reaction system for forming a film, and a gas exhaust system, and the reaction system is provided with first and second electrodes for plasma light '1; ) In the H position, the first electrode is formed into a hollow circular shape or an IJ polygonal shape, and a plurality of gas outlets are arranged on its side surface (2), and a certain number of gas outlets are arranged around the first electrode. A plurality of second electrodes are arranged at a distance and at a constant interval Jj to the phase n, and a
A plasma CVD apparatus characterized in that a substrate is disposed on the surface of the first electrode, and a heating device for irradiating the substrate with infrared rays is disposed near the first electrode.
JP3759482A 1982-03-10 1982-03-10 Plasma cvd apparatus Pending JPS58154226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3759482A JPS58154226A (en) 1982-03-10 1982-03-10 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3759482A JPS58154226A (en) 1982-03-10 1982-03-10 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPS58154226A true JPS58154226A (en) 1983-09-13

Family

ID=12501871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3759482A Pending JPS58154226A (en) 1982-03-10 1982-03-10 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS58154226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171622A (en) * 1984-09-17 1986-04-12 Ulvac Corp Plasma discharge processing apparatus
JPS628632U (en) * 1985-07-01 1987-01-19
CN106733264A (en) * 2016-08-30 2017-05-31 无锡荣坚五金工具有限公司 A kind of polymer coated device of big volume plasma of tubulose

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171622A (en) * 1984-09-17 1986-04-12 Ulvac Corp Plasma discharge processing apparatus
JPS628632U (en) * 1985-07-01 1987-01-19
CN106733264A (en) * 2016-08-30 2017-05-31 无锡荣坚五金工具有限公司 A kind of polymer coated device of big volume plasma of tubulose

Similar Documents

Publication Publication Date Title
US4995341A (en) Microwave plasma CVD apparatus for the formation of a large-area functional deposited film
JPS61164219A (en) Apparatus for manufacturing thin-film transistor array
JPS58154226A (en) Plasma cvd apparatus
JPS62203328A (en) Plasma cvd apparatus
JPH024976A (en) Thin film formation
JP2641193B2 (en) Deposition film manufacturing equipment
JPS58101735A (en) Plasma cvd device
JPS5832413A (en) Film forming apparatus by glow discharge
JPS62219912A (en) Plasma cvd apparatus
JPS6086277A (en) Formation of deposited film by discharge
JPH041730Y2 (en)
JP2920637B2 (en) Glow discharge decomposition equipment
JPH0418456B2 (en)
JPS62235471A (en) Deposited film forming device by plasma cvd method
JP2776087B2 (en) Electrophotographic photoreceptor manufacturing equipment
JPS59127832A (en) Plasma cvd device
JPS6126777A (en) Plasma cvd apparatus
JPS6247485A (en) Device for forming deposited film by plasma cvd
JPS6115973A (en) Plasma cvd device
JPS6277474A (en) Cvd device
JPS6242028B2 (en)
JPS616275A (en) Plasma cvd device
JPS6074534A (en) Method and equipment for forming thin film
JPS62139878A (en) Film forming device by plasma
JPS616278A (en) Plasma cvd device