JPS6126779A - Plasma cvd apparatus - Google Patents
Plasma cvd apparatusInfo
- Publication number
- JPS6126779A JPS6126779A JP14604684A JP14604684A JPS6126779A JP S6126779 A JPS6126779 A JP S6126779A JP 14604684 A JP14604684 A JP 14604684A JP 14604684 A JP14604684 A JP 14604684A JP S6126779 A JPS6126779 A JP S6126779A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- drums
- drum
- pair
- plasma cvd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
r技術分野】
本発明は、プラズマCVD装置を用いてドラム等の円f
l[基体の表面にアモルファス・シリコン等の膜を蒸着
して、例えば、電子写真用感光体ドラムを連続的に生産
することができるプラズマCVD装置に関し、特にドラ
ム表面にアモルファスφシリコン膜を均等に蒸着するこ
とができるプラズマCVD装置に関するものである。rTechnical Field] The present invention uses a plasma CVD apparatus to form a circle f on a drum, etc.
[Regarding a plasma CVD device that can continuously produce, for example, electrophotographic photoreceptor drums by depositing a film of amorphous silicon or the like on the surface of a substrate, in particular, it is possible to deposit an amorphous φ silicon film evenly on the drum surface. The present invention relates to a plasma CVD apparatus that can perform vapor deposition.
【従来技術]
この種の装置は、プラズマCVD装置の電極配置方式か
ら分類すれば、従来の容量結合型プラズマCVD装置と
同様の構造を有するが、この構造を主に電子写真用感光
体ドラム作製用のプラズマCVD装置に適用すると、カ
ソード電極とアノード電極(ドラム)とが同心円状に配
置されているため、ドラム収納個数が制約され、装置構
造が複雑になる。
そこで以上のような問題を考慮して、主としてアモルフ
ァス・シリコン感光体材料を用いる電千写真用感光体ド
ラムの量産装置を得べく、上述の従来例のごとき複雑な
装置構造を大幅に簡素化し、ドラムの収納個数を増やし
、かつ電極配置方法、及び形状を改善することにより、
従来の装置では困難であった電子写真用ドラム等の量産
、及び高速成膜を有利に可能ならしめた装置が提案され
た。
第1図はこのようなプラズマCVD装置を示し、図中1
5は表面にアモルファス・シリコン膜を形成するように
アルミニウム製の基板をドラム状に形成した円筒状基体
としてのドラムである。
1はドラム15を加熱するための加熱室、2は加熱室l
に続けて設けられ、ドラム15の表面にプラズマCVD
法によりアモルファスΦシリコン膜を形成するための反
応室、および3は反応室2に続けて設けられ、膜形成後
のドラム15を冷却するための冷却室である。これらの
室1.2および3は気密構造を有している。6は保持枠
であって、複数のドラム15を軸中心に回転させると共
に、これらの中心軸 が互いに同一平面上になるように
、かつ各軸が平行になるように直立して保持し、さらに
ドラム回転搬送機構を有する。
4は加熱室1内に各室1.2および3の連続方向5沿う
ように配置された一対のヒーターである。
この一対のヒーター4は、互いに平行になるように直立
して配置され、かつその間に配列方向がヒーター4に平
行になるように配置されたドラム15を加熱する。5は
各室の一側壁に設けられ、各室を真空に保つためのフィ
ルタ1及びバッフルを備えた排気系である。
7はカソード電極としての一対の平板状電極であって、
互いに平・行になるように直立して反応室2内に配置さ
れている。この一対の電極7は、原料ガス供給のため二
重構造となし、その間に配列方向が電極7・と平行にな
るように配置されたドラム15に向ってガスを噴出する
多数の孔7Aを内側全面にわたって有し、さらに外側に
はヒータを有する。8は平板状電極7の外側に接続され
た、同電極7の二重構造内に原料ガスを供給するための
原料ガス供給パイプ、Illは電極7にパイプ8を介し
て接続して同電極7をカソード電極とし、かつこの電極
7に高周波パワーを供給するための電源。
−1−0−Jt保持枠6に保持されたドラム15を7ノ
ード電極とするためのアースである。
11は一対の冷却板であって、互いに平行になるように
直立して冷却室3内に配置されている。一対の冷却板1
1はその間にある膜形成の終ったドラム15を冷却する
ために内部に水等の冷媒流路を有する。12は冷却板l
l内に供給する水等の冷媒である。
13は各室1,2および3を隔離し、かつドラム15が
保持枠8とともに移動するときに開状態になるように制
御されるゲート・バルブ、14は加熱室1及び冷却室3
の排気系5に設けられ各室1および3を大気に戻すため
のリーク・バルブである。
保持枠6に固定されたドラム15は、第1図中左端のゲ
ート・バルブ13内を通って、加熱室1に保持枠6とと
もに搬入され、排気系5により真空にされた後、加熱室
1内において図中矢印のように回転しながらヒーター4
により加熱される。
加熱されたドラム15は両室1およ°び2間のゲート・
バルブ13内を通って排気系5により真空に保たれた反
応室2に保持枠6とともに搬入されて、所定位置に配置
される0反応室2に入ったドラム15は保持枠6ととも
にアース10に接続されて、カソード電極としての一対
の電極7に対するアノード電極を形成する。電極7と電
場を形成し、図中矢印で示すように回転しながら、ヒー
ターにより加熱されたドラム15の表面には、原料ガス
供給パイプ8を介して一対の平板状電極7の内側の孔7
Aから反応室2内に供給されたシラン等の原料ガスがプ
ラズマ中で分解することによってアモルファス・シリコ
ン膜が形成される。膜形成に寄与したガスは、反応室2
の排気系5から外に排気される。
膜形成の終ったドラム15は反応室2と冷却室3との間
のゲート・バルブ13内を通って、排気系5により真空
に保たれた冷却室3に入り、図中矢印のように回転しな
がら冷却板11を介して冷媒12と熱交換して冷却され
、リーク・バルブ14により。
大気に戻された冷却室3から第1図中右端のゲートφバ
ルブ13内を通って冷却室3外に出される。
しかしながら以上のような構成のプラズマCVD装置に
おいては次のような欠点がある。すなわち、ドラム!5
の表面にアモルファス・シリコンの膜が堆積する速度は
、放電強度が強いほど速い。
ドラム15に関して、反応室2内の放電強度は電極7に
近い部分はど強く、そこから離れるほど弱い。
したがってドラム15の間の間隙に該当する部分の放電
強度が最も弱い。
その結果、ドラム15の周方向に、アモルファス書シリ
コンの堆積速度が不均一になりやすく、そのため、ドラ
ム15の表面に得られたアモルファス・シリコンの膜厚
および膜質は不均一になりやすい。
r目的】
本発明の目的は以上のような問題を解消し、膜厚および
膜質の均一なドラム等の円筒状基体が得られるプラズマ
CVD装置を提供することにある。
[実施例]
第2図は本発明の一実施例にかかるプラズマCVD装置
の平面図である0本発明にかかるプラズマCVD装置に
おいては、反応室内の電極および原料ガス供給排気のた
めの構造を除いて第1図に示したプラズマCVD装置と
同様な構成であるので、以下、反応室について主に説明
する。
すなわち第2図に示すように、本発明にかかるプラズマ
CVD装置における反応室21内には、一対の平板状電
極7が互いに平行になるように直立して配置されている
。
一対の電極7の間の所定位置には、従来の保持枠Bと同
様な構成の保持枠81によって、複数のドラム15が配
置される。
なお、排気系5は、反応室21の両側壁に設けられてい
る。
ドラム15はアースされて、アノード電極となっている
。
一対の電極7の間の所定位置に配置された複数のドラム
15の間の間隙およびその配列方向の両端の外側部分に
は、カソード電極の一部を構成する棒状補助電極1Bを
各々配置する。各電極18は、カソード電極としての一
対の電極7に電気的に接続する。各電極lBは、例えば
反応室21の天井壁を貫通して昇降可能になるように適
当な昇降手段に取付け、この昇降手段によって、一対の
電極7の間の所定位置に配置した複数のドラム15の間
の間隙およびその配列方向の両端の外側部分に配置する
。なお、各電極1Bは、反応室21の天井壁および保持
枠81と絶縁する。
以上のような構成による本′発明プラズマCvD装置の
反応室における作用を次に説明する。
まず、棒状補助電極1Bを上げておき、反応室21内の
一対の電極7の間の所定位置に複数のドラム15を配置
し、アースする。ついで複数のドラム15の間の間隙お
よびそ配列方向の両端の外側部分に適当な昇降手段によ
って下降させた棒状補助電極1Bを各々配置する。つい
で第2図に矢印で示すように、原料ガスを、一対の電極
7の内側の孔から複数のドラム15に向って噴出し、一
対の電極7および棒状補助電極1Bに電極8から高周波
電力を供給する。このように補助電極1Bを設けること
によって、複数のドラム15の間の間隙および配列方向
の両端の外側部分の放電強度の不足を補うことができ、
したがって、複数のドラム15に関して。
その周方向における放電強度の不均一が良好に改善され
る。
その結果、アモルファス・シリコンの堆積速度をドラム
15の周方向に均一化することができ、ドラム15の表
面には膜厚および膜質が均一なアモルファス・シリコン
膜が形成される。
加熱室1および冷却室3におけるドラム15の処理は従
来と同様である。[Prior art] This type of device has a structure similar to that of a conventional capacitively coupled plasma CVD device, if classified based on the electrode arrangement method of the plasma CVD device. When applied to a commercial plasma CVD apparatus, the cathode electrode and the anode electrode (drum) are arranged concentrically, which limits the number of drums that can be accommodated and complicates the apparatus structure. Therefore, in consideration of the above-mentioned problems, in order to obtain a mass production device for electrophotographic photoreceptor drums that mainly uses amorphous silicon photoreceptor material, the complicated device structure of the conventional example described above was greatly simplified. By increasing the number of drums that can be stored and improving the electrode arrangement method and shape,
An apparatus has been proposed that advantageously enables mass production of electrophotographic drums and the like and high-speed film formation, which has been difficult with conventional apparatuses. FIG. 1 shows such a plasma CVD apparatus, and in the figure 1
Reference numeral 5 denotes a drum as a cylindrical base body, which is an aluminum substrate formed into a drum shape so as to form an amorphous silicon film on its surface. 1 is a heating chamber for heating the drum 15, 2 is a heating chamber l
A plasma CVD film is applied to the surface of the drum 15.
A reaction chamber 3 is provided following the reaction chamber 2 to form an amorphous Φ silicon film by the method, and is a cooling chamber 3 for cooling the drum 15 after the film is formed. These chambers 1.2 and 3 have an airtight structure. Reference numeral 6 denotes a holding frame which rotates the plurality of drums 15 around their axes and holds them upright so that their center axes are on the same plane and each axis is parallel to each other, and It has a drum rotation conveyance mechanism. A pair of heaters 4 are arranged in the heating chamber 1 along the continuous direction 5 of the chambers 1, 2 and 3. The pair of heaters 4 are arranged upright so as to be parallel to each other, and heat a drum 15 arranged between them so that the arrangement direction is parallel to the heaters 4. An exhaust system 5 is provided on one side wall of each chamber and includes a filter 1 and a baffle for keeping each chamber in a vacuum. 7 is a pair of flat electrodes as cathode electrodes,
They are arranged upright in the reaction chamber 2 so as to be parallel and parallel to each other. This pair of electrodes 7 has a double structure for supplying raw material gas, and has a large number of holes 7A inside that eject gas toward a drum 15 arranged so that the arrangement direction is parallel to the electrodes 7. It has a heater over the entire surface and a heater on the outside. 8 is a raw material gas supply pipe connected to the outside of the flat electrode 7 for supplying raw material gas into the double structure of the electrode 7, and Ill is connected to the electrode 7 via the pipe 8 to is used as a cathode electrode, and a power source for supplying high frequency power to this electrode 7. -1-0-Jt Ground for making the drum 15 held by the holding frame 6 a 7-node electrode. A pair of cooling plates 11 are arranged upright in the cooling chamber 3 so as to be parallel to each other. A pair of cooling plates 1
1 has a refrigerant flow path for water or the like inside to cool the drum 15 between which the film formation has been completed. 12 is a cooling plate l
It is a refrigerant such as water that is supplied into the tank. 13 is a gate valve that isolates each chamber 1, 2, and 3 and is controlled to be open when the drum 15 moves together with the holding frame 8; 14 is a heating chamber 1 and a cooling chamber 3;
This is a leak valve provided in the exhaust system 5 for returning each chamber 1 and 3 to the atmosphere. The drum 15 fixed to the holding frame 6 is carried into the heating chamber 1 together with the holding frame 6 through the gate valve 13 at the left end in FIG. Heater 4 is rotated in the direction shown by the arrow in the figure.
heated by. The heated drum 15 is connected to the gate between chambers 1 and 2.
The drum 15 passes through the valve 13 and is carried together with the holding frame 6 into the reaction chamber 2 kept in a vacuum by the exhaust system 5, and is placed at a predetermined position. They are connected to form an anode electrode for a pair of electrodes 7 serving as cathode electrodes. An electric field is formed with the electrode 7, and the surface of the drum 15 is heated by a heater while rotating as shown by the arrow in the figure.
A raw material gas such as silane supplied from A into the reaction chamber 2 is decomposed in plasma to form an amorphous silicon film. The gas that contributed to film formation is transferred to the reaction chamber 2.
It is exhausted to the outside from the exhaust system 5. The drum 15 after film formation passes through the gate valve 13 between the reaction chamber 2 and the cooling chamber 3, enters the cooling chamber 3 kept in vacuum by the exhaust system 5, and rotates as shown by the arrow in the figure. At the same time, it is cooled by exchanging heat with the refrigerant 12 via the cooling plate 11, and is cooled by the leak valve 14. From the cooling chamber 3 that has been returned to the atmosphere, it passes through the gate φ valve 13 at the right end in FIG. 1 and exits the cooling chamber 3. However, the plasma CVD apparatus having the above configuration has the following drawbacks. Namely, drums! 5
The rate at which an amorphous silicon film is deposited on the surface of the battery increases as the discharge intensity increases. Regarding the drum 15, the discharge intensity within the reaction chamber 2 is strongest near the electrode 7 and weaker as it moves away from there. Therefore, the discharge intensity in the area corresponding to the gap between the drums 15 is the weakest. As a result, the deposition rate of the amorphous silicon tends to be non-uniform in the circumferential direction of the drum 15, and therefore the film thickness and quality of the amorphous silicon obtained on the surface of the drum 15 tend to be non-uniform. [Purpose] An object of the present invention is to solve the above-mentioned problems and provide a plasma CVD apparatus capable of producing a cylindrical substrate such as a drum with uniform film thickness and film quality. [Example] Fig. 2 is a plan view of a plasma CVD apparatus according to an example of the present invention. Since the structure is similar to that of the plasma CVD apparatus shown in FIG. 1, the reaction chamber will mainly be described below. That is, as shown in FIG. 2, in the reaction chamber 21 of the plasma CVD apparatus according to the present invention, a pair of flat electrodes 7 are arranged upright so as to be parallel to each other. A plurality of drums 15 are arranged at predetermined positions between the pair of electrodes 7 by a holding frame 81 having a structure similar to that of the conventional holding frame B. Note that the exhaust system 5 is provided on both side walls of the reaction chamber 21. The drum 15 is grounded and serves as an anode electrode. Rod-shaped auxiliary electrodes 1B, which form part of the cathode electrodes, are arranged in the gaps between the plurality of drums 15 arranged at predetermined positions between the pair of electrodes 7 and in the outer portions of both ends in the arrangement direction. Each electrode 18 is electrically connected to a pair of electrodes 7 as cathode electrodes. Each electrode IB is attached to a suitable elevating means so that it can be raised and lowered by penetrating the ceiling wall of the reaction chamber 21, for example. and in the outer part of both ends in the arrangement direction. Note that each electrode 1B is insulated from the ceiling wall of the reaction chamber 21 and the holding frame 81. Next, the operation in the reaction chamber of the plasma CVD apparatus of the present invention having the above-described configuration will be explained. First, the rod-shaped auxiliary electrode 1B is raised, and a plurality of drums 15 are placed at predetermined positions between a pair of electrodes 7 in the reaction chamber 21 and grounded. Next, the rod-shaped auxiliary electrodes 1B are placed in the gaps between the plurality of drums 15 and at the outer portions of both ends in the arrangement direction, respectively, and are lowered by suitable lifting means. Next, as shown by arrows in FIG. 2, the raw material gas is ejected from the holes inside the pair of electrodes 7 toward the plurality of drums 15, and high-frequency power is applied from the electrode 8 to the pair of electrodes 7 and the rod-shaped auxiliary electrode 1B. supply By providing the auxiliary electrode 1B in this way, it is possible to compensate for the lack of discharge intensity in the gaps between the plurality of drums 15 and in the outer portions at both ends in the arrangement direction,
Therefore, regarding the plurality of drums 15. The non-uniformity of discharge intensity in the circumferential direction is improved satisfactorily. As a result, the deposition rate of amorphous silicon can be made uniform in the circumferential direction of the drum 15, and an amorphous silicon film with uniform thickness and quality is formed on the surface of the drum 15. The processing of the drum 15 in the heating chamber 1 and the cooling chamber 3 is the same as in the conventional case.
以上説明したように本発明によれば、膜厚および膜質が
均一であり、電気的特性に優れたアモルファス・シリコ
ン等の膜を表面に有する円筒状基体を効率的に得ること
ができる。As explained above, according to the present invention, it is possible to efficiently obtain a cylindrical substrate having on its surface a film of amorphous silicon or the like having uniform film thickness and film quality and excellent electrical properties.
第1図は電子写真感光体ドラム製造用の従来のプラズマ
CVD装置の平面図、
第2図は電子写真感光体ドラム製造用の本発明にかかる
プラズマCVD装置の一実施例を示す平面図である。
15・・・ドラム、
16・・・棒状補助電極、 区
21・・・反応室、 −派FIG. 1 is a plan view of a conventional plasma CVD apparatus for manufacturing electrophotographic photoreceptor drums, and FIG. 2 is a plan view showing an embodiment of the plasma CVD apparatus according to the present invention for manufacturing electrophotographic photoreceptor drums. . 15... Drum, 16... Rod-shaped auxiliary electrode, Ward 21... Reaction chamber, − group
Claims (1)
、 各中心軸が前記電極と平行な同一平面上に位置し、かつ
互いに平行になるように複数の円筒状基体を前記一対の
電極の間の所定位置に配置するための基体保持手段と、 前記所定位置に配置した複数の円筒状基体の間の間隙中
に配置した棒状補助電極とを具えたことを特徴とするプ
ラズマCVD装置。[Claims] A pair of parallel plate electrodes arranged parallel to each other, and a plurality of cylindrical substrates arranged parallel to each other, each central axis of which is located on the same plane parallel to the electrodes. The method is characterized by comprising: a base holding means for disposing at a predetermined position between the pair of electrodes; and a rod-shaped auxiliary electrode disposed in a gap between the plurality of cylindrical bases disposed at the predetermined position. Plasma CVD equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14604684A JPS6126779A (en) | 1984-07-16 | 1984-07-16 | Plasma cvd apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14604684A JPS6126779A (en) | 1984-07-16 | 1984-07-16 | Plasma cvd apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6126779A true JPS6126779A (en) | 1986-02-06 |
Family
ID=15398875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14604684A Pending JPS6126779A (en) | 1984-07-16 | 1984-07-16 | Plasma cvd apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6126779A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010031363A (en) * | 2008-06-30 | 2010-02-12 | Canon Inc | Deposition film forming apparatus |
-
1984
- 1984-07-16 JP JP14604684A patent/JPS6126779A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010031363A (en) * | 2008-06-30 | 2010-02-12 | Canon Inc | Deposition film forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4995341A (en) | Microwave plasma CVD apparatus for the formation of a large-area functional deposited film | |
US4998968A (en) | Plasma CVD apparatus | |
WO2005064660A1 (en) | Microwave plasma processing method, microwave plasma processing apparatus, and its plasma head | |
JPS6126779A (en) | Plasma cvd apparatus | |
JPS6010618A (en) | Plasma cvd apparatus | |
JPH0427293B2 (en) | ||
JPS6126777A (en) | Plasma cvd apparatus | |
JPS6126776A (en) | Plasma cvd apparatus | |
JPS6239532B2 (en) | ||
JPS616277A (en) | Plasma cvd device | |
JPH01103828A (en) | Plasma cvd device | |
JPS6126778A (en) | Plasma cvd apparatus | |
JPH0152052B2 (en) | ||
JPS616276A (en) | Plasma cvd device | |
JP2907403B2 (en) | Deposition film forming equipment | |
JP3259452B2 (en) | Electrode used for plasma CVD apparatus and plasma CVD apparatus | |
JPS616278A (en) | Plasma cvd device | |
JPS616275A (en) | Plasma cvd device | |
JPH06120153A (en) | Film-forming apparatus | |
JPH05217915A (en) | Plasma cvd device | |
JP2001214276A (en) | Deposited film depositing apparatus | |
JPS62139878A (en) | Film forming device by plasma | |
JP2920637B2 (en) | Glow discharge decomposition equipment | |
JPH11106930A (en) | Plasma cvd system | |
JPS6010619A (en) | Film formation by glow discharge |