JPS61267375A - Planar type hetero junction semiconductor photodetector - Google Patents

Planar type hetero junction semiconductor photodetector

Info

Publication number
JPS61267375A
JPS61267375A JP60108661A JP10866185A JPS61267375A JP S61267375 A JPS61267375 A JP S61267375A JP 60108661 A JP60108661 A JP 60108661A JP 10866185 A JP10866185 A JP 10866185A JP S61267375 A JPS61267375 A JP S61267375A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
junction
type
carrier concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60108661A
Other languages
Japanese (ja)
Inventor
Toshitaka Torikai
俊敬 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60108661A priority Critical patent/JPS61267375A/en
Priority to DE8686106627T priority patent/DE3678338D1/en
Priority to EP86106627A priority patent/EP0205899B1/en
Publication of JPS61267375A publication Critical patent/JPS61267375A/en
Priority to US07/653,487 priority patent/US5057891A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a planar type hetero junction avalanche photodiode with guard ring effect and low noise by reducing the carrier concentration of the second semiconductor in accordance with a distance from a hetero interface. CONSTITUTION:An N-type InP buffer layer 2 and an N<-> type InGaAs layer 3 are successively formed on a sulfer doped N<+> type InP substrate 1 and the layer 2 is a layer for preventing defects and dislocations in the substrate 1 from reaching layers 3-4'' and the layer 3 is a layer for absorbing a light and generating positive hole-electron carriers. An N-type InGaAsP layer 3' is a layer for avoiding delay of travel of positive hole carriers caused by a valence band discontinuity between the InGaAs layer 3 and an InP layer 4 and an N-type InP layer 4'', which has the gradient of carrier concentration, is a layer for forming a P-N junction and generating avalanche multiplication. The N-type InP layer 4 includes a P<+> type conductive layer 5 and a guard ring 5' at its center part. A positive side electrode 7 is provided annularly through a surface protection film 6 and a negative side electrode 8 is formed over the whole backplane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガードリング効果を有し、均一アバランシ増
倍を可能にするプレーナ型ヘテロ接合半導体受光素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a planar heterojunction semiconductor light receiving element that has a guard ring effect and enables uniform avalanche multiplication.

(従来技術とその問題点) 現在、光通信用波長域として光ファイバの伝送損失の低
い1〜1.6μm帯が主流でありIn0.53G80.
47As化合物半導体を用いたアバランシ・フォトダイ
オード(APD)の開発が進められている。このエnO
,53oaO,47AS格子整合するInPとのヘテロ
接合形成が可能であるため、InGaAsを光吸収層と
して、ここで光励起によって発生した電子−正孔キャリ
アの一方のみをアバランシ増倍層であるInP層へ輸送
してアバランシ増倍を生じさせる構造を採用することに
よって受信感度の優れた光検出素子が実現できる。この
概念は既に西田(K、 N15hida)らによってア
プライド・フィジックス・レターズ誌(Appl、 P
hys、 Lett、)、 35巻251〜253ペー
ジ(1979年)に提案されている。
(Prior art and its problems) Currently, the 1-1.6 μm band with low transmission loss of optical fiber is the mainstream wavelength range for optical communication, and In0.53G80.
Development of an avalanche photodiode (APD) using a 47As compound semiconductor is progressing. This enO
, 53oaO, 47AS Since it is possible to form a heterojunction with lattice-matched InP, InGaAs is used as a light absorption layer, and only one of the electron-hole carriers generated by photoexcitation is transferred to the InP layer, which is an avalanche multiplication layer. By adopting a structure that transports light and causes avalanche multiplication, a photodetecting element with excellent reception sensitivity can be realized. This concept has already been proposed by Nishida et al. in Applied Physics Letters (Appl, P.
hys, Lett, ), Vol. 35, pp. 251-253 (1979).

第2図は西田(Nishida)らによって提案された
構造の一例でn+−InP基板1の上に、n−InPバ
ッファ層2、n−In8.53Gao、4yAS層3、
n−InP層4、n −InP層4′ヲ順次成長した後
、p+型導電領域5を設けて階段型pn接合を形成して
いる。ここで階段型pn接合とは、第1の高いキャリア
濃度を有する導電型(第2図の例では5のp+型)から
、第1とは異方る導電型(第2図の例ではInP層4の
n型)への変化が急峻であるpn接合の事を意味し、従
って逆バイアス電圧を階段型pn接合に印加した時、空
乏層が低いキャリア濃度を有する方の導電領域(第2図
の例では4及び3のn型領域)に向って選択的に伸びて
いく接合を意味している。6は反射防止を兼ねた表面保
護膜、7,8は各々p側電極、n側電極である。かかる
構造で電極7−8間に逆バイアス電圧を印加し、空乏層
をInGaAs層3壕で伸ばす事によって禁制帯幅の狭
いInGaAs層で光を吸収させ、そこで発生した正孔
キャリアのみを禁制帯幅の広いInP層4内に設けたp
n接合まで輸送してアバランシ増倍を生じさせている。
FIG. 2 shows an example of the structure proposed by Nishida et al. On an n+-InP substrate 1, an n-InP buffer layer 2, an n-In8.53 Gao layer, a 4yAS layer 3,
After the n-InP layer 4 and the n-InP layer 4' are sequentially grown, a p+ type conductive region 5 is provided to form a stepped pn junction. Here, the stepped p-n junction is defined as a transition from a first conductivity type having a high carrier concentration (in the example of FIG. 2, 5 p+ type) to a conductivity type anisotropic to the first (in the example of FIG. 2, InP This refers to a pn junction in which the change to layer 4 (n-type) is steep. Therefore, when a reverse bias voltage is applied to the stepped pn junction, the depletion layer changes to the conductive region (second layer) with lower carrier concentration. In the illustrated example, it means a junction that selectively extends toward the n-type regions (4 and 3). 6 is a surface protection film that also serves as antireflection, and 7 and 8 are a p-side electrode and an n-side electrode, respectively. In this structure, by applying a reverse bias voltage between the electrodes 7 and 8 and extending the depletion layer with three trenches in the InGaAs layer, light is absorbed by the InGaAs layer, which has a narrow forbidden band width, and only the hole carriers generated there are transferred to the forbidden band. p provided in the wide InP layer 4
It is transported to the n-junction and causes avalanche multiplication.

すなわち、禁制帯幅の広いInPによって電圧降伏が生
じるため、InGaAsからのトンネル電流の発生が抑
えられ低暗電流受光素子が実現できる。
That is, since voltage breakdown occurs due to InP having a wide forbidden band width, generation of tunnel current from InGaAs is suppressed, and a low dark current light receiving element can be realized.

しかし、第2図の構造においては、選択的に形成された
階段型pn接合の周縁部5aがp型導電領域5の中に曲
率中心を有していて(これを「正の曲率」と称す)、逆
バイアス電圧kpn接合に印加した時この「正の曲率」
部5aに高電界が集中し、従ってpn接合平担部5bよ
りも低い電圧において電圧降伏(云わゆるエッヂ・ブレ
ークダウン)が生じる。この電圧降伏は特に、InGa
As層3のキャリア濃度がInP層4のそれと比べて低
い場合に顕著である。この事実は受光領域に対応する平
担部5bで充分にキャリアのアバランシ増倍が得られて
いない事を意味している。
However, in the structure shown in FIG. 2, the peripheral edge 5a of the selectively formed stepped p-n junction has a center of curvature within the p-type conductive region 5 (this is referred to as "positive curvature"). ), when a reverse bias voltage is applied to the kpn junction, this "positive curvature"
A high electric field is concentrated in the portion 5a, and therefore a voltage breakdown (so-called edge breakdown) occurs at a lower voltage than the pn junction flat portion 5b. This voltage breakdown is especially true for InGa
This is noticeable when the carrier concentration of the As layer 3 is lower than that of the InP layer 4. This fact means that sufficient avalanche multiplication of carriers is not obtained in the flat portion 5b corresponding to the light receiving area.

自弁(T、 5hirai et a2>Eg1)は、
このエッヂ嗜ブレークダウンを緩和するため第3図に示
す構造を提案している(Electron、 Lett
、、 19巻534〜535ページ、1983年)。こ
の構造では降伏電圧が階段型pn接合より高く々る傾斜
型pn接合、もしくは傾斜型に近似できるpn接合を形
成するp型導電領域5′(云わゆるガードリング)を階
段型pn接合の周縁部にpn接合の表面からの深さが、
階段型pn接合の深さにほぼ等しく彦る位置に設けたも
のである。ここで傾斜型pn接合とは互いに同程度のキ
ャリア濃度を有するp型及びn型導電領域がキャリア濃
度傾斜をもって緩やかに導電型が変化(p型からn型へ
、或いはその逆)するpn接合の事を意味し、従って逆
バイアス電圧を傾斜型pn接合に印加した時、空乏層が
p型及びn型の導電領域にほぼ均等に伸びていく接合を
意味している。しかし、第3図の構造でもエッヂゆブレ
ークダウンの抑制されたアバランシ増倍を再現性よく実
現することは困難である。その理由は以下の通りである
。逆バイアス電圧を印加した場合、階段型p+n接合に
おいては、その性質上、空乏層は主にn型導電領域へ伸
びていくのに対し、傾斜型pn接合においては空乏層は
p型及びn型導電領域の両方に分配されて伸びていく。
Self-defense (T, 5hirai et a2>Eg1) is
In order to alleviate this edge-prone breakdown, we have proposed the structure shown in Figure 3 (Electron, Lett
, Vol. 19, pp. 534-535, 1983). In this structure, a p-type conductive region 5' (so-called guard ring) forming a sloped pn junction whose breakdown voltage is higher than that of a stepped pn junction, or a pn junction that can be approximated to a sloped type, is placed at the periphery of the stepped pn junction. The depth from the surface of the p-n junction is
It is provided at a position approximately equal to the depth of the stepped pn junction. Here, a graded pn junction is a pn junction in which the conductivity type of p-type and n-type conductive regions having the same carrier concentration changes gradually (from p-type to n-type, or vice versa) with a carrier concentration gradient. This means that when a reverse bias voltage is applied to a graded pn junction, the depletion layer extends almost equally into the p-type and n-type conductive regions. However, even with the structure shown in FIG. 3, it is difficult to realize avalanche multiplication with suppressed edge breakdown with good reproducibility. The reason is as follows. When a reverse bias voltage is applied, in a stepped p+n junction, the depletion layer mainly extends to the n-type conductive region, whereas in a graded pn junction, the depletion layer extends into the p-type and n-type conductive regions. It is distributed and extended to both conductive regions.

従って、逆バイアス電圧印加時には、第4図の斜線で示
した空乏層分布5cに示すように、階段型p+n接合周
縁空乏層端5aは正の曲率を有することになり、従って
前述の第2図の場合と同様、この正の曲率部で最終的に
エッヂブレークダウンが生じ易い。
Therefore, when a reverse bias voltage is applied, the stepped p+n junction peripheral depletion layer edge 5a has a positive curvature, as shown in the depletion layer distribution 5c indicated by diagonal lines in FIG. As in the case of , edge breakdown is likely to occur eventually at this positive curvature section.

また、アンドウ(H,Ando)らによってエレクトロ
ニクスレターズ誌(Electron、 Lett、)
、19巻543〜544ページ(1983年)に、ある
いは松島(Y。
In addition, H. Ando et al. published an article in Electronics Letters (Electron, Lett, ).
, Vol. 19, pp. 543-544 (1983), or Matsushima (Y.

Matsushima)らによってエレクトロニクス拳
しターズ誌(Electron、 Lett、)、20
巻235〜236ぺ一ジ(1984年)に発表されてい
るように、傾斜型pn接合が階段型p+n接合よりも浅
く位置している構造においては言うに及ばず階段型p+
n接合周縁の正の曲率を完全に覆うことが不可能であり
従ってエッヂブレークダウンの問題に関して犬き力改善
は彦されてい々い。
Matsushima et al., Electron, Lett, 20
As published in Vol. 235-236 (1984), it goes without saying that in structures where the sloped pn junction is located shallower than the stepped p+n junction, the stepped p+
It is impossible to completely cover the positive curvature of the periphery of the n-junction, and therefore, improvements in strength with respect to the problem of edge breakdown are still being sought.

そこで第4図53の正の曲率部を完全に覆う、す々わち
第5図に示す構造が有効そうにみえる。
Therefore, the structure shown in FIG. 5, which completely covers the positive curvature portion of FIG. 453, seems to be effective.

このよう女構造Fi8i−APDあるいはGe −A 
P Dのように単一の半導体で構成されるAPDに対し
てはよく知られていて有効である。しかし、本発明者は
第5図の構造を試行したかエッヂブレークダウンの抑制
された均一アバランシ増倍を実現するのが困難であった
。その理由は以下の通りである。
Such a female structure Fi8i-APD or Ge-A
This is well known and effective for APDs made of a single semiconductor such as PDs. However, although the inventors tried the structure shown in FIG. 5, it was difficult to realize uniform avalanche multiplication with suppressed edge breakdown. The reason is as follows.

第5図に示すようにガードリング5′の接合位置が階段
型p+n接合5よりもInGaAs層3とInPn連層
のヘテロ界面に近接するため、InGaAs層における
電界強度は、ガードリング部の下の領域の方が階段型p
+n接合部の下の領域よりも高く々る。従ってガードリ
ング部において禁制帯幅の小さいInGaAs層の電圧
降伏の影響が現われる。この影響はガードリングの正の
曲率部5’aにおいて最も強く、階段型p+n接合の平
担部5bで電圧降伏が生じる以前に、ガードリング外周
縁の正の曲率部5’aにおいて電圧降伏が生じてしまう
という欠点を有している。
As shown in FIG. 5, since the junction position of the guard ring 5' is closer to the hetero interface between the InGaAs layer 3 and the InPn layer than the stepped p+n junction 5, the electric field strength in the InGaAs layer is lower than that of the stepped p+n junction 5. The area is more of a staircase type p
It is higher than the area below the +n junction. Therefore, the influence of voltage breakdown of the InGaAs layer having a small forbidden band width appears in the guard ring portion. This effect is strongest at the positive curvature part 5'a of the guard ring, and before voltage breakdown occurs at the flat part 5b of the stepped p+n junction, the voltage breakdown occurs at the positive curvature part 5'a of the guard ring outer periphery. It has the disadvantage that it can occur.

今までは、ガードリング効果に関する従来の欠点を述べ
てきたが、更に、第2図から第5図までの従来構造につ
いては、次に述べる欠点をも有している。す力わち、階
段型p+n接合は、キャリア濃度の低いn−InP層4
′とキャリア濃度の高いn−InPn連層の界面あるい
は、n−InPn連層中に位置している。これは、n 
 InP層4′のキャリア濃度が〜l Q ”am−”
程度であり、このような低キヤリア濃度のInP層の中
に階段型p+n接合の位置を制御するのが困難力ためで
ある。この様子を第6図に示した。第6図の9はn−I
nPにCd不純物を熱拡散してpn接合を形成した時の
正孔キャリア濃度分布を示したものであるが、図から、
<5×1015cm″″3のキャリア濃度が緩まんに変
化していることから、〜5 x l Q15cm−’ 
以上のキャリア濃度に々るp型領域の位置制御に比べて
、< 5 x 10” cm−”のキャリア濃度の位置
制御が困難である事がわかる。
Up to now, conventional drawbacks regarding the guard ring effect have been described, but the conventional structures shown in FIGS. 2 to 5 also have the following drawbacks. In other words, the stepped p+n junction is formed using an n-InP layer 4 with a low carrier concentration.
' and the n-InPn series of layers with high carrier concentration, or located in the n-InPn series of layers. This is n
The carrier concentration of the InP layer 4' is ~l Q "am-"
This is because it is difficult to control the position of the stepped p+n junction in such a low carrier concentration InP layer. This situation is shown in Figure 6. 9 in Figure 6 is n-I
This figure shows the hole carrier concentration distribution when a pn junction is formed by thermally diffusing Cd impurities into nP.
Since the carrier concentration of <5 x 1015 cm''3 changes slowly, ~5 x l Q15 cm-'
It can be seen that position control of a carrier concentration of <5 x 10''cm-'' is more difficult than position control of the p-type region corresponding to the above carrier concentration.

この状況は、cd以外の不純物、例えばBe、Zn等に
ついても同様である。ところが、より低雑音のAPD’
jz作製しようとすれば、n−InP層の中に階段型p
+n接合を形成するのが望ましい。これは、n −In
P層4′中にp+n接合を形成する方が、n−InP層
4中に形成するよりも、逆バイアス電圧印加時の最高電
界強度が低くできるからである。APDの雑音特性を決
定する正孔と電子とのイオン化率比は、電界強度が低く
力る程、大きくカリ、従って雑音は小さく々るためであ
る。
This situation also applies to impurities other than CD, such as Be and Zn. However, the lower noise APD'
If you try to make a p-type p-type layer in the n-InP layer,
It is desirable to form a +n junction. This is n −In
This is because forming a p+n junction in the P layer 4' can lower the maximum electric field strength when a reverse bias voltage is applied than forming it in the n-InP layer 4. This is because the ionization rate ratio of holes and electrons, which determines the noise characteristics of APD, increases as the electric field strength decreases, and therefore the noise decreases.

(発明の目的) 本発明は、上記の従来の欠点を除去せしめ、ガードリン
グ効果を有し、かつ低雑音のプレーナ型ヘテロ接合AP
D’i提供することにある。
(Object of the Invention) The present invention eliminates the above-mentioned conventional drawbacks, and provides a planar heterojunction AP having a guard ring effect and low noise.
D'i is to provide.

(発明の構成) 本発明は、少なくともEg、々る禁制帯幅を有する第1
の半導体層とE2(ただしEg2〉Ego)力る禁制帯
幅を有する第2の半導体層とから構成されるヘテロ構造
、あるいは第1の半導体と第2の半導体との中間にEg
3 (ただしEg2> Eg3>E、1 )なる禁制帯
幅を有する第3の半導体中間層が挿入されたヘテ四構造
、を有し、第1の半導体を光吸収層として用い、かつ第
2の半導体層中に選択的にpn接合の設けられたヘテロ
接合半導体受光素子において、上記第2の半導体のキャ
リア濃度が第1の半導体と第2の半導体とのヘテロ界面
、あるいは第1の半導体と第3の半導体とのヘテロ界面
から遠ざかるに従って、任意のキャリア濃度勾配をもっ
て減少している事を特徴とするプレーナ型ヘテロ接合半
導体受光素子である。
(Structure of the Invention) The present invention provides a first
A heterostructure consisting of a semiconductor layer and a second semiconductor layer having a forbidden band width of E2 (where Eg2>Ego), or an Eg layer between the first semiconductor and the second semiconductor.
3 (where Eg2>Eg3>E, 1), the structure has a heterostructure in which a third semiconductor intermediate layer having a forbidden band width of 1 is inserted, the first semiconductor is used as a light absorption layer, and the second In a heterojunction semiconductor light-receiving element in which a pn junction is selectively provided in a semiconductor layer, the carrier concentration of the second semiconductor is at the hetero-interface between the first semiconductor and the second semiconductor, or at the hetero-interface between the first semiconductor and the second semiconductor. This is a planar heterojunction semiconductor light-receiving element characterized in that the carrier concentration decreases with an arbitrary gradient as it moves away from the heterointerface with the semiconductor of No. 3.

(発明の作用・原理) 本発明は、上述の方法により従来の欠点を解決した。す
力わち、本発明では、次の2つの要点から構築されてい
る。
(Operation/Principle of the Invention) The present invention solves the conventional drawbacks by the method described above. In other words, the present invention is constructed from the following two points.

1、ガードリングが階段型p+n接合周縁部の正の曲率
を完全にじゃへいし、かつガードリング周縁部の正の曲
率をある程度緩和して、結果としてガ−ドリング自体の
降伏電圧をより向上させる事。
1. The guard ring completely blocks the positive curvature of the periphery of the stepped p+n junction, and also moderates the positive curvature of the periphery of the guard ring to some extent, resulting in further improvement of the breakdown voltage of the guard ring itself. .

2 階段型p十〇接合位置の制御をより容易にさせ結果
として、階段型p+n接合の位置をn −InP層中に
形成可能にしてより低雑音のAP Df:提供する事、 である。以上2つの要点を満足するため、InGaAs
光吸収層の上に形成するInP層が、従来InGaAs
層から遠ざかるに従ってn(nP、n −InP層の2
層構造であったのに対し、本発明ではInGaAs層か
ら遠ざかるに従って、任意のキャリア濃度勾配をもって
減少してい(InP層を提案している。このようにして
形成される本発明の受光素子の構造例を第1図に示して
いる。第1図中に示した記号は第2図〜第5図の場合と
同じである。第1図の如く、n−InPのキャリア濃度
勾配層を採用する事によってガードリング周縁部の正の
曲率は従来よりも緩和される。すなわちp型不純物″i
n型導電領域に拡散もしくは注入する場合、n型のキャ
リア濃度が低い程、p型不純物はより深く侵入するため
、従来の例えば第5図の場合と比べて第1図に示した様
々正の曲率の緩和されたガードリングが形成される。
2. To provide an AP Df with lower noise by making it easier to control the position of the stepped p+n junction and, as a result, forming the position of the stepped p+n junction in the n-InP layer. In order to satisfy the above two points, InGaAs
The InP layer formed on the light absorption layer is conventionally InGaAs.
As the distance from the layer increases, n(nP, 2 of n-InP layer
In contrast, in the present invention, the carrier concentration decreases with an arbitrary gradient as it moves away from the InGaAs layer (an InP layer is proposed). An example is shown in Fig. 1. The symbols shown in Fig. 1 are the same as in Figs. 2 to 5. As shown in Fig. 1, an n-InP carrier concentration gradient layer is adopted. As a result, the positive curvature of the guard ring periphery is more relaxed than before. In other words, the p-type impurity "i
When diffusing or implanting into an n-type conductive region, the lower the n-type carrier concentration, the deeper the p-type impurity penetrates. A guard ring with a relaxed curvature is formed.

更に、n−InPのキャリア濃度が傾斜している事によ
って、階段型p+n接合の位置1InPの比較的低いキ
ャリア濃度領域に設ける事が可能となる。
Furthermore, since the carrier concentration of n-InP is sloped, it becomes possible to provide the stepped p+n junction in a relatively low carrier concentration region at position 1InP.

す々わち、第6図のp型不純物キャリア濃度分布から明
らか力ように、nInPのバックグラウンドキャリア濃
度が〜5XIQIIlα−3である位置に容易にpn接
合位置が制御される。従って、より高濃度の1〜3 X
 IQ”cIn−3バックグラウンドキャリア濃度のI
nP中にpn接合位置を設けていた従来の場合に比べて
低雑音のAPDが可能となる。
That is, as is clear from the p-type impurity carrier concentration distribution in FIG. 6, the pn junction position is easily controlled to a position where the background carrier concentration of nInP is ~5XIQIIlα-3. Therefore, higher concentrations of 1-3
IQ”cIn-3 background carrier concentration I
Compared to the conventional case in which a pn junction position is provided in the nP, APD with lower noise is possible.

以下、InP/InGaAs系ヘテロ接合APDについ
て実施例を用いてより詳細に説明するが、他のヘテロ接
合、例えばAlGaAs/GaA s系、A/GaSb
/GaSb系等についても全く同様である事は容易に理
解される。
Hereinafter, InP/InGaAs-based heterojunction APDs will be explained in more detail using examples, but other heterojunctions, such as AlGaAs/GaAs-based, A/GaSb-based APDs, etc.
It is easily understood that the same holds true for /GaSb systems, etc.

(実施例) 第1図において、APDはサルファードープ(S−do
ped)のn’−InP基板1の上に、順次積層したn
−InPバッファ層2(約IAm厚)、3〜5刈Q”c
m−”キャリア濃度のn −In(1430a0.43
As層3 (3,5〜4.0μm厚)、波長1.3μm
相当の禁制帯幅を有するInGaAsP層3′(約0.
1μyx厚)、約5×10”cIn″″3キャリア濃度
から約1×10” cm−3キャリア濃度まで勾配をも
って変化しているキャリア濃度勾配層n−InP4を含
む。ここでn−InPバッファ層2Fi積層時にInP
基板1の欠陥、転位が層3〜層4′まで達しないように
阻止するための層、n −InGaAs層3は波長1〜
1.7μmの光を吸収し、正孔−電子キャリアを発生さ
せる層、n−In(hAsP層3′はInPn種層In
GaAs層3との価電子帯不連続にもとづく正孔キャリ
アの走行遅れを防ぐための層、n〜InP層4はpn接
合を形成してアバランシ増倍を生じさせる −ための層
である。
(Example) In FIG. 1, APD is sulfur doped (S-doped).
n'-InP substrate 1 of
-InP buffer layer 2 (approximately IAm thickness), 3 to 5 cutting Q"c
n-In(1430a0.43
As layer 3 (3.5-4.0 μm thick), wavelength 1.3 μm
InGaAsP layer 3' with a considerable forbidden band width (approximately 0.
1 μyx thick), and includes a carrier concentration gradient layer n-InP4 having a gradient carrier concentration from about 5 x 10"cIn""3 carrier concentration to about 1 x 10" cm-3 carrier concentration. Here, when laminating the n-InP buffer layer 2Fi, the InP
The n-InGaAs layer 3, which is a layer for preventing defects and dislocations of the substrate 1 from reaching layers 3 to 4', has a wavelength of 1 to 4'.
A layer that absorbs light of 1.7 μm and generates hole-electron carriers, n-In (hAsP layer 3' is an InPn seed layer In
The n-InP layer 4 is a layer for preventing a delay in the travel of hole carriers due to valence band discontinuity with the GaAs layer 3, and is a layer for forming a p-n junction to cause avalanche multiplication.

n−InPn種層中央部には上から見て円形もしくは卵
形に選択的に設けられたp十型導電領域5(直径約80
μ77L)、p+領域周縁部のリング状に設けられたガ
ードリング5′(外径的100μTIL)を含む。p側
電極7はp+型導電領域5内に選択的に窓あけされた表
面保護膜6全通してリング状に設けられ、n側電極8は
基板1の裏面全面に形成されている。
In the center of the n-InPn seed layer, a p-type conductive region 5 (about 80 mm in diameter) is selectively provided in a circular or oval shape when viewed from above.
μ77L), and includes a guard ring 5' (100 μTIL in outer diameter) provided in a ring shape at the peripheral edge of the p+ region. The p-side electrode 7 is provided in a ring shape throughout the surface protection film 6 selectively opened in the p+ type conductive region 5, and the n-side electrode 8 is formed on the entire back surface of the substrate 1.

層2,3.3’、4.4’、4’はH2SO4:H2O
:H2O2−3:1:1混合液によってエツチング処理
されたInP基板1の上にInP成長室、InGaAs
P成長室、InQaAs成長室の複合された反応管内に
おいてハイドライド輸送気相エピタキシャル成長法ニよ
って基板温度700℃で形成された。エピタキシャル構
造が形成された後、ベリリウムイオン注入によってガー
ドリングを次の工程で形成した。これはベリリウムが最
も傾斜型に近似できるpn接合を形成しやすい事による
。熱分解化学気相堆積法(熱CVD法と略記)によって
370℃で8 i02膜を層4′上に約1μm厚積層し
通常の露光技術によりリング状にパターン描画されたガ
ードリンク5形成用の露光マスクを用いて該5i02膜
をパフファードフッ酸エツチング液を用いて選択的に窓
あけし、しかる後、ベリリウムイオンを100〜140
KVの加速電圧範囲及び5 X 101scwt−2注
入量の条件で注入した。この時べIJ IJウムイオン
は選択的にS i02膜が窓あけされて露出したInP
結晶中に注入される。5i02膜をフッ酸液でエツチン
グ除去し、次いで熱CVD法によってりん化ガラス(P
SGと略記)膜ff:370℃において約100 nm
積層し、べIJ IJウムイオンの活性化かつ押し込み
拡散のための熱処理を700℃20分間行ってガードリ
ング5を形成した。この時、拡散されたベリリウムは、
n−InPのキャリア濃度が低い程、深くp型導電領域
を形成するため、第1図に示されるよう々ガードリング
形状を呈する。
Layers 2, 3.3', 4.4', 4' are H2SO4:H2O
An InP growth chamber and an InGaAs
It was formed at a substrate temperature of 700° C. by hydride transport vapor phase epitaxial growth method in a reaction tube that is a combination of a P growth chamber and an InQaAs growth chamber. After the epitaxial structure was formed, a guard ring was formed in the next step by beryllium ion implantation. This is because beryllium can easily form a pn junction that can be most approximated to a tilted type. An 8i02 film was laminated to a thickness of about 1 μm on layer 4' at 370°C by pyrolysis chemical vapor deposition method (abbreviated as thermal CVD method), and a ring-shaped pattern was drawn by ordinary exposure technology for forming guard link 5. Using an exposure mask, the 5i02 film is selectively opened using a puffed hydrofluoric acid etching solution, and then beryllium ions are etched at 100-140%.
The implantation was performed under the conditions of an accelerating voltage range of KV and an implantation dose of 5 x 101 scwt-2. At this time, the IJIJium ions are selectively released into the InP layer where the Si02 film is opened and exposed.
injected into the crystal. The 5i02 film was removed by etching with a hydrofluoric acid solution, and then phosphide glass (P) was removed by thermal CVD.
(abbreviated as SG) film ff: approximately 100 nm at 370°C
The guard ring 5 was formed by laminating the layers and performing a heat treatment at 700° C. for 20 minutes to activate and intrude diffusion of the aluminum ions. At this time, the diffused beryllium is
The lower the carrier concentration of n-InP, the deeper the p-type conductive region is formed, so that it takes on a guard ring shape as shown in FIG.

しかる後、ガードリングの内側に露光マスクを用いて円
形状に選択的に窓あけされたPSG膜を介して、カドミ
ウムを570 ’Cの温度で20〜30分間熱拡散して
、階段型p+n接合が3〜5 X I Q”cm−3キ
ャリア濃度のInP領域に位置するようにp十型導電領
域5を形成した。
Thereafter, cadmium is thermally diffused at a temperature of 570'C for 20 to 30 minutes through the PSG film, which is selectively opened in a circular shape using an exposure mask inside the guard ring, to form a stepped p+n junction. The p-type conductive region 5 was formed so that the p-type conductive region 5 was located in an InP region having a carrier concentration of 3 to 5.times.IQ"cm.sup.-3.

次に、熱拡散に用いた上記PSG膜をフッ酸液によって
エツチング除去した後プラズマ堆積法によってSiN表
面保護膜6を300℃において150〜200nm積層
した。しかる後、露光技術によりリング状にパターン描
画された露光マスクを用いて、p型導電領域5の上に選
択的に窓あけし、電子衡撃蒸着法によって、チタン・白
金・金を順次者々100 nm 、 100 nm 、
 300 nm積層してn側電極7を形成した。更に基
板裏面全面には抵抗加熱蒸着法によってAuGe/N 
iアロイを用いたn側電極8を形成してAPDを完成さ
せた。
Next, the PSG film used for thermal diffusion was removed by etching with a hydrofluoric acid solution, and then a SiN surface protection film 6 of 150 to 200 nm thick was deposited at 300 DEG C. by plasma deposition. Thereafter, windows are selectively opened on the p-type conductive region 5 using an exposure mask on which a ring-shaped pattern is drawn using an exposure technique, and titanium, platinum, and gold are sequentially deposited on the p-type conductive region 5 using an electron equilibration deposition method. 100 nm, 100 nm,
The n-side electrode 7 was formed by laminating 300 nm thick layers. Furthermore, AuGe/N is deposited on the entire back surface of the substrate by resistance heating evaporation method.
The APD was completed by forming the n-side electrode 8 using i-alloy.

(発明の効果) ガードリングの降伏電圧をチーツクするため同一のエピ
タキシャル層構造をもつウェーハを用いて前述の工程に
並行してベリリウムイオン注入による傾斜型pn接合を
も形成した。形成された傾斜型pn接合の降伏電圧は1
20〜150Vであり、従来の第3図もしくは第5図と
同一のエピタキシャル層構造にベリリウムイオン注入し
て傾斜型pn接合を形成した時の100〜ll0Vに比
べて大きく改善され、従って本発明の効果を実現した。
(Effects of the Invention) In order to check the breakdown voltage of the guard ring, a graded pn junction was also formed by beryllium ion implantation in parallel to the above process using a wafer having the same epitaxial layer structure. The breakdown voltage of the formed sloped pn junction is 1
This is 20 to 150V, which is greatly improved compared to 100 to 10V when a graded pn junction is formed by implanting beryllium ions into the same epitaxial layer structure as shown in the conventional FIG. 3 or FIG. achieved the effect.

完成したAPD素子の降伏電圧は100〜1】0■の範
囲にあり、ガードリング部の降伏電圧120〜150v
よりも低かった。従ってリング状のn側電極7に囲まれ
た受光領域に対応した階段型p+n接合部でのキャリア
のアバランシ増倍が充分に行われた。この様子は第7図
に示される。第7図において10は代表的な増倍感度分
布であり、ガードリング部よりも受光領域に対応する階
段型p十〇接合部におけるキャリア増倍が大きいことが
明らかである。
The breakdown voltage of the completed APD device is in the range of 100 to 1㎜, and the breakdown voltage of the guard ring is 120 to 150V.
It was lower than Therefore, avalanche multiplication of carriers was sufficiently performed at the stepped p+n junction corresponding to the light receiving area surrounded by the ring-shaped n-side electrode 7. This situation is shown in FIG. In FIG. 7, reference numeral 10 indicates a typical multiplication sensitivity distribution, and it is clear that carrier multiplication is greater in the stepped p-10 junction corresponding to the light-receiving region than in the guard ring portion.

更に、階段型p+n接合位置を中程度のキャリア濃度を
有するn2−InP層4′中に設ける事が可能であるた
め、従来の高キャリア濃度層にp+n接合位置を設けた
構造に比べて低雑音が実現された。雑音の指標と力る電
子と正孔とのイオン化率比α/β(αは電子、βは正孔
に対するイオン化率)は、従来の第2図、第3図及び第
5図に示した構造では0.7〜0.8であったのに対し
本発明の一例である第1図の構造では0.5〜0.6と
改善された。
Furthermore, since it is possible to provide a stepped p+n junction position in the n2-InP layer 4' having a medium carrier concentration, noise is lower than the conventional structure in which a p+n junction position is provided in a high carrier concentration layer. was realized. The ionization rate ratio α/β between electrons and holes (α is the ionization rate for electrons, β is the ionization rate for holes), which is used as a noise index, is based on the conventional structure shown in Figures 2, 3, and 5. In the case of the structure shown in FIG. 1, which is an example of the present invention, it was improved to 0.5 to 0.6.

以上、InGaAs光吸収層の上に積層されたInPの
キャリア濃度が3段階に変化している構造について説明
してきたが、本発明の効果はそれ以上の段階にInPの
キャリア濃度が変化している場合についても同様であっ
た。
Above, we have explained the structure in which the carrier concentration of InP layered on the InGaAs light absorption layer changes in three stages, but the effect of the present invention is that the carrier concentration of InP changes in three stages. The same was true for cases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のプレーナ型ヘテロ接合半導体受光素
子の一実施例を示す断面図であり、第2図、第3図、第
5図は従来のヘテロ接合半導体受光素子の断面図である
。第4図は、第3図の受光素子構造における空乏層分布
を示す図である。第6図は階段型p+n接介におけるp
型導電キャリア分布を示す図である。第7図は本発明の
効果の一例で増倍特性を示す図である。図において、1
:半導体基板、2:1と同種の半導体バッファ層、3:
禁制帯幅の小さい光吸収層、3’:3と4との中間の禁
制帯幅全有する半導体中間層、4:禁制帯幅の大きい半
導体層、4’:4と同種で4よりキャリア濃度の小さい
半導体76%、4’:キャリア濃度勾配を有する禁制帯
幅の大きい半導体層、5:階段型p+n接合を示すp型
導電領域、5′:傾斜型pn接合を示すp型導電領域、
5 a H5’a :接合の曲率部、5b:接合の平担
部、5c:空乏層分布、6:表面保護膜、7:p側電極
、8:n側電極、9:キャリア濃度分布、10:キャリ
ア増倍分布である。                
 、、・−′−、/l゛・ − 代yj(人弁ご±1)1 月1.晋 ゛、− 第 j 図 第 2 図 第3図 第4図 銅 5 図
FIG. 1 is a cross-sectional view showing one embodiment of a planar heterojunction semiconductor light-receiving device of the present invention, and FIGS. 2, 3, and 5 are cross-sectional views of conventional heterojunction semiconductor light-receiving devices. . FIG. 4 is a diagram showing the depletion layer distribution in the light receiving element structure of FIG. 3. Figure 6 shows p in a stepped p+n junction.
FIG. 3 is a diagram showing type conductive carrier distribution. FIG. 7 is a diagram showing multiplication characteristics as an example of the effects of the present invention. In the figure, 1
: Semiconductor substrate, 2: Same type of semiconductor buffer layer as 1, 3:
3': a semiconductor intermediate layer having a full forbidden band width between 3 and 4; 4: a semiconductor layer with a large forbidden band width; 4': the same type as 4 but with a higher carrier concentration than 4; 76% small semiconductor, 4': semiconductor layer with a large forbidden band width having a carrier concentration gradient, 5: p-type conductive region showing a stepped p+n junction, 5': p-type conductive region showing a sloped pn junction,
5 a H5'a: curved part of junction, 5b: flat part of junction, 5c: depletion layer distribution, 6: surface protective film, 7: p-side electrode, 8: n-side electrode, 9: carrier concentration distribution, 10 : Carrier multiplication distribution.
,,・-′-,/l゛・-daiyj(jinbengo±1) January 1. - Figure j Figure 2 Figure 3 Figure 4 Copper Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)少なくともE_g_1なる禁制帯幅を有する第1
の半導体層とE_g_2(ただしE_g_2>E_g_
1)なる禁制帯幅を有する第2の半導体層とから構成さ
れるヘテロ構造を有し、第1の半導体を光吸収層として
用い、かつ第2の半導体層中に選択的にpn接合の設け
られたヘテロ接合半導体受光素子において、上記第2の
半導体のキャリア濃度が第1の半導体と第2の半導体と
のヘテロ界面から遠ざかるに従って、任意のキャリア濃
度勾配をもって減少している事を特徴とするプレーナ型
ヘテロ接合半導体受光素子。
(1) The first one having a forbidden band width of at least E_g_1
semiconductor layer and E_g_2 (however, E_g_2>E_g_
1) has a heterostructure composed of a second semiconductor layer having a forbidden band width, the first semiconductor is used as a light absorption layer, and a pn junction is selectively provided in the second semiconductor layer. The heterojunction semiconductor light-receiving device is characterized in that the carrier concentration of the second semiconductor decreases with an arbitrary carrier concentration gradient as it moves away from the heterointerface between the first semiconductor and the second semiconductor. Planar heterojunction semiconductor photodetector.
(2)少なくともE_g_1なる禁制帯幅を有する第1
の半導体層とE_g_2(ただしE_g_2>E_g_
1)なる禁制帯幅を有する第2の半導体層との中間にE
_g_3(ただしE_g_2>E_g_3>E_g_1
)なる禁制帯幅を有する第3の半導体中間層が挿入され
たヘテロ構造を有し、第1の半導体を光吸収層として用
い、かつ第2の半導体層中に選択的にpn接合の設けら
れたヘテロ接合半導体受光素子において、上記第2の半
導体のキャリア濃度が第1の半導体と第3の半導体との
ヘテロ界面から遠ざかるに従って、任意のキャリア濃度
勾配をもって減少している事を特徴とするプレーナ型ヘ
テロ接合半導体受光素子。
(2) a first band having a forbidden band width of at least E_g_1;
semiconductor layer and E_g_2 (however, E_g_2>E_g_
1) E between the second semiconductor layer and the second semiconductor layer having a forbidden band width of
_g_3 (however, E_g_2>E_g_3>E_g_1
) has a heterostructure in which a third semiconductor intermediate layer having a forbidden band width is inserted, the first semiconductor is used as a light absorption layer, and a pn junction is selectively provided in the second semiconductor layer. A planar heterojunction semiconductor light-receiving device, characterized in that the carrier concentration of the second semiconductor decreases with an arbitrary carrier concentration gradient as the distance from the heterointerface between the first semiconductor and the third semiconductor increases. type heterojunction semiconductor photodetector.
JP60108661A 1985-05-20 1985-05-21 Planar type hetero junction semiconductor photodetector Pending JPS61267375A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60108661A JPS61267375A (en) 1985-05-21 1985-05-21 Planar type hetero junction semiconductor photodetector
DE8686106627T DE3678338D1 (en) 1985-05-20 1986-05-15 PLANAR HETEROUE TRANSITION-AVALANCHE-PHOTODIODE.
EP86106627A EP0205899B1 (en) 1985-05-20 1986-05-15 Planar heterojunction avalanche photodiode
US07/653,487 US5057891A (en) 1985-05-20 1991-02-12 Planar heterojunction avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60108661A JPS61267375A (en) 1985-05-21 1985-05-21 Planar type hetero junction semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS61267375A true JPS61267375A (en) 1986-11-26

Family

ID=14490468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60108661A Pending JPS61267375A (en) 1985-05-20 1985-05-21 Planar type hetero junction semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS61267375A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449283A (en) * 1987-08-19 1989-02-23 Nec Corp Planar-type heterojunction semiconductor photodetector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155083A (en) * 1976-06-18 1977-12-23 Hitachi Ltd Avalanche photo diode
JPS58170073A (en) * 1982-03-31 1983-10-06 Fujitsu Ltd Semiconductor device
JPS59161082A (en) * 1983-03-03 1984-09-11 Fujitsu Ltd Semiconductor light-receptor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155083A (en) * 1976-06-18 1977-12-23 Hitachi Ltd Avalanche photo diode
JPS58170073A (en) * 1982-03-31 1983-10-06 Fujitsu Ltd Semiconductor device
JPS59161082A (en) * 1983-03-03 1984-09-11 Fujitsu Ltd Semiconductor light-receptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449283A (en) * 1987-08-19 1989-02-23 Nec Corp Planar-type heterojunction semiconductor photodetector

Similar Documents

Publication Publication Date Title
US4651187A (en) Avalanche photodiode
EP3229279B1 (en) Avalanche photodiode
JP4220688B2 (en) Avalanche photodiode
JP2762939B2 (en) Superlattice avalanche photodiode
US7187013B2 (en) Avalanche photodiode
US4656494A (en) Avalanche multiplication photodiode having a buried structure
JP2970815B2 (en) Semiconductor light receiving element
US20100133637A1 (en) Avalanche photodiode
JPS5854685A (en) Avalanche photodiode and manufacture thereof
JP3675223B2 (en) Avalanche photodiode and manufacturing method thereof
EP0304048B1 (en) A planar type heterostructure avalanche photodiode
WO2018189898A1 (en) Semiconductor light-receiving element
JPS63955B2 (en)
KR100509355B1 (en) Photo-diode and method for fabricating the same
JPH08274366A (en) Semiconductor light receiving device
JPS61267375A (en) Planar type hetero junction semiconductor photodetector
JP2680817B2 (en) Method for manufacturing planar heterojunction semiconductor photodetector
JPS63281480A (en) Semiconductor photodetector and manufacture thereof
JPS61265876A (en) Planar type hetero junction semiconductor photodetector
JPS60198786A (en) Semiconductor photo receiving element
JP2995751B2 (en) Semiconductor light receiving element
KR970004492B1 (en) A method for manufacture of guard ring
JPH06105795B2 (en) Method for manufacturing group III-V semiconductor light receiving element
JPS58170073A (en) Semiconductor device
JP2754652B2 (en) Avalanche photodiode